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Abstract. The Yule model is a frequently-used evolutionary model that can be utilized to generate
random genealogical trees. Under this model, using a backwards counting method differing from
the approach previously employed by Heard (Evolution 46: 1818-1826), for a genealogical tree
of n lineages, the mean number of nodes with exactly r descendants is computed 2 <r <n—1).
The variance of the number of r-pronged nodes is also obtained, as are the mean and variance of
the number of r-caterpillars. These results generalize computations of McKenzie and Steel for
the case of r =2 (Math. Biosci. 164: 81-92, 2000). For a given n, the two means are largest at
r =2, equaling 2n/3 for n > 5. However, for n > 9, the variances are largest at r = 3, equaling
23n/420 for n > 7. As n — oo, the fraction of internal nodes that are r-caterpillars for some r
approaches (e — 5) /4 ~ 0.59726.
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1. Introduction

In many contexts in evolutionary biology, it is of interest to investigate the probability
distributions of various attributes of genealogical trees. First, predictions about these
distributions can be made using models of the evolutionary process that produces the
trees. These predictions can then be helpful in understanding which scenarios are pos-
sible or likely outcomes of evolution [2,5,16,22,26,29]. By comparison with estimates
made from biological data, they can also provide insight into the nature of the processes
that generate the data [9, 19,20,23,34].

Perhaps the simplest evolutionary model from which predictions about genealogi-
cal trees can be made is the Yule or Yule-Harding model [4, 12,31, 35,36, 39]. Under
this model, beginning with an ancestral lineage, the genealogical tree for n lineages
is formed by successive binary branching events, so that at any point in time, all lin-
eages have equal probability of being the next to branch into two. Equivalently, looking
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backwards from r lineages in the present, at any time point, all pairs of lineages have
equal probability of being the next to “coalesce” into one. This retrospective viewpoint
is typically adopted in population genetics, where the Yule model is used with each
lineage corresponding to a distinct copy of a particular genetic site (taken from a set
of such copies in a population of individuals). In this context, when combined with a
specific model for the times at which “coalescences” occur, the Yule model is termed
the coalescent model [14,15,24,38].

Here, using a backwards counting approach, we extend known properties of ge-
nealogical trees under the Yule model to obtain the mean and variance of the number of
nodes with exactly r descendants among the » lineages (2 < r < n — 1). These quanti-
ties then enable computation of the mean and variance of the number of r-caterpillars
in genealogical trees.

2. Definitions

The definitions used here are largely based on those of Semple and Steel [32]; Figure 1
illustrates many of the key concepts.

A genealogical tree or genealogy G = (G, X, y, t) for n leaves is a rooted binary
tree G for which (1) y is a bijection that associates each leaf of G with a label in a
label set X, and (2) ¢ is a map that associates each point p of G (that is, each vertex
and each point lying on an edge) with a nonnegative real number #(p), such that (i) for
any two distinct points pp, p2, if the path from p; to the root of G includes p,, then
t(p1) < t(p2); (ii) for any two distinct interior vertices vy, va, #(v1) # t(v2); (iii) for a
point p,#(p) = 0 if and only if p is a leaf of G.

If the path from a point p; to the root includes p;, then p; is descended from p,,
which, in turn, is ancestral to pj. Trivially, a point is both ancestral to and descended
from itself (however, the point itself is not included when counting its number of de-
scendants). For convenience the label set X is taken to be {xi, x2,...,x,}. Interior
vertices are alternately termed internal nodes (it is assumed in a genealogy that each
internal node has exactly two descendants). The value of #(p) for a point p is the time
of p. Thus, the leaves of genealogies are viewed as existing in the present, with time
increasing into the past. The lineage of a point p at time u > ¢(p) is the unique point
that is both ancestral to p and has time u; this time is usually O in uses of the term. The
most recent common ancestor (MRCA) of a subtree G’ of G (or a subset X' C X) is
the node with the smallest time among the collection of nodes that are ancestral to all
elements of G’ (or to the collection of leaves with label set X').

Let #(G) be the set of values taken by ¢ over all internal nodes of G. Let h be
the unique bijection from #(G) into {1,2,...,n — 1} with the property that for any
two vertices vy, vy, if #(vy) < £(v2), then h(vy) < h(v2). The coalescence sequence
or labeled history of G is the sequence of partitions 7o, 71, ..., T,—1 of X such that
o(G) ={{x1}, {x2},..., {xn}}andfori=1,2,...,n— 1, m;(G) is formed from 7;_; (G)
by combining the two blocks in T;_;(G) containing leaves descended from the vertex
h~(i) into the same block in 7;(G). The labeled history of G represents the sequence
of events that reduce the n leaves to their MRCA; h~!(i) corresponds to the ith co-
alescence or coalescent event. The k-truncated coalescence sequence or k-truncated
labeled history of G (1 <k < n) is the sequence T, 71, ..., Tp—k.
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Figure 1: Example genealogies with the label set {1,2, 3,4, 5, 6}. Genealogies (i)—(v)
all have the same unlabeled topology. In comparison with (i), (ii) has the same unla-
beled history and labeled topology, but a different labeled history; (iii) has the same
labeled topology, but different labeled and unlabeled histories; (iv) has the same un-
labeled history, but a different labeled history and labeled topology; (v) has different
labeled and unlabeled histories and a different labeled topology. Genealogy (vi) has
different labeled and unlabeled histories and topologies from the remaining genealo-
gies. It is a 6-caterpillar and is the only one of the genealogies to contain a pitchfork.
Genealogies (i)—(v) all contain a symmetric 4-pronged node; the 4-pronged node in (vi)
is not symmetric. There are three cherries in each of (i)—(v) and one cherry in (vi).

The unlabeled history of G is a particular sequence of partitions T, X7, ..., T, _;
of X obtained in the following manner. We begin with a set of “available” labels,
A=1{1,2,...,n}, and we equate B = A and 7, = . Sequentially, for i > 1, if one of
the blocks in 7;( G) containing leaves descended from 2~ ! (i) includes only one leaf, we
then reassign the label of that leaf as the label » with the smallest value among those in
B, and replace B with B\ {b} (if both blocks each include only one leaf, reassign the
labels of both leaves — the order in which the two reassignments are made is unimpor-
tant). We repeat this procedure until each leaf v has been assigned a label y(v) from A.
The unlabeled history of G is then the labeled history of G’ = (G, A, 7, t). The labeled
topology of G is the tree G with label set X and labeling v, ignoring the time function .
The unlabeled topology of G is the tree G, ignoring the label set X, the labeling y and
the time 7.

The subgenealogy G, of G induced by an internal node v is the genealogy (G,, Xy,
y|G,, t|G,), where G, is the subtree of G containing all leaves that descend from v, X,
is the label set for G,, and |G, and ¢|G, denote the restrictions of Wy and ¢ to G,,
respectively. An internal node v of G or its induced subgenealogy is r-pronged (2 <
r < n) if the subgenealogy contains exactly r descendants among the leaves of G; the
node (or subgenealogy) is an r-caterpillar if G, contains exactly r descendants among
the leaves of G, and if the internal node with the smallest value of  among all internal
nodes in G, is descended from all other internal nodes in G,. A genealogy whose
root is an r-caterpillar is termed pectinate. As special cases, 2-pronged and 3-pronged
internal nodes (or their induced subgenealogies) are termed cherries and pitchforks,
respectively. Both cherries and pitchforks are necessarily caterpillars.

For a genealogy G, d,(G) is the number of r-pronged nodes in G. An internal node
with more than two descendants in X is symmetric if the two subgenealogies induced
by its two immediate descendants have the same unlabeled topology. For a genealogy
G, s(G) is its number of symmetric internal nodes. The functions d, and s can be
applied also to labeled or unlabeled histories or topologies.
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3. The Yule Model

This section reviews properties of genealogical trees generated by the Yule model (Yule-
generated genealogies). A Yule-generated genealogy has the property that at any time,
each pair of lineages is equally likely to be the next to coalesce (or equivalently, re-
versing the direction of time, each lineage is equally likely to be the next to divide). It
follows directly from this property that the probability distribution of the labeled history
of such a genealogy is uniform.

In this section and in those that follow, G = (G, X, y, 1) is treated as a random n-
leaved Yule-generated genealogy, and “genealogy” implicitly refers to the Yule-
generated genealogy G. Henceforth, ay, a», as, i, k, n, n1, np, n3, and r are assumed to
be positive integers with n > 3, r > 2, and except where otherwise specified, i <n—1
and k < n. It is assumed in each of (3.1)—(3.5) that T is chosen from the appropriate
set of objects to which the result applies (for example, in Theorem 3.3, the collection
of possible labeled topologies for the label set X).

Except for (3.3) and (3.4), which are included for completeness, the results in this
section are used in proving the new results in the following sections; other than (3.8)
and (3.9), they utilize the uniform distribution of labeled histories for Yule-generated
genealogies.

Theorem 3.1. [4,30] The probability I(T) that a genealogy for n lineages has k-
truncated labeled history T is

1 20K (k—1)!

I(T)=—= 7( ) .
Lk nl(n—1)!
Corollary 3.2. [8,21] The probability H(T) that a genealogy for n lineages has labeled
history T is
1 2n71
HT)=—=——"—.
(T) H, nl(n—1)!
Theorem 3.3. [1,4,35] The probability L(T) that a genealogy for n lineages has
labeled topology T is
2n71

T AT (r— DD

Theorem 3.4. [25,38] The probability U(T) that a genealogy for n lineages has unla-
beled history T is

L(T)

2)‘!717(12(7‘)
T

Theorem 3.5. [4,36] The probability Q(T) that a genealogy for n lineages has unla-
beled topology T is
on—1—dy(T)—s(T)
TN=———"——.
CO =
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Corollary 3.6. [33,37] The probability Q(T) that a genealogy for n lineages has
unlabeled topology T, where T is pectinate, is

2n72

Theorem 3.7. [34,38] In a genealogy for n lineages, the probability C,, that the two
nodes immediately descended from the root have i and n — i descendants is

Cin=1/(n=1), ifi=n/2 and nis even,
Cy=2/(n—=1), ifi#n/2 andie{l,2,...,n—1}.

Theorem 3.8. [4,30] The number Wy, 4, of (n — a1 — a2)-truncated coalescence se-
quences possible for a fixed collection of n = ny +ny labels (withny > ay, ny > ay), such
that each coalescence sequence contains two specified subsequences, one of length a;
that coalesces ny lineages to ny — ay and another of length ay that coalesces the re-
maining ny lineages to ny — a, is the binomial coefficient

a1 +ax
o (5.

Theorem 3.9. [30] The number Wy, 4, 4, 0f (n — a1 — ax — a3)-truncated coalescence
sequences possible for a fixed collection of n = n1 + ny + n3 labels (with ny > ay, np >
az, n3 > as), such that each coalescence sequence contains three specified subsequences,
one of length a) that coalesces ny lineages to ny — a1, one of length a, that coalesces n;
lineages to ny — as, and the third of length as that coalesces the remaining n3 lineages
to n3 — as, is the trinomial coefficient

al%—a24—a3>

a, az, das

Way,az,a3 = (

Remark 3.10. A correspondence exists between Yule-generated genealogies with n
leaves and the entities generated during construction of random binary search trees
with n — 1 vertices (leaves plus internal nodes). A random binary search tree is ob-
tained via sequential addition of descendant vertices to a rooted binary tree so that each
vertex with one descendant has another slot in which a descendant can be added, and
each vertex with no descendants has two slots in which descendants can be added (in-
terior vertices in binary search trees are allowed to have either 1 or 2 descendants). At
any time (reversing the direction of time), all potential slots for insertion of vertices are
equally likely to be the next to have a vertex added [17, pp. 68-70]. The corresponding
binary search tree for a given Yule-generated genealogy G = (G, X, y, 1) is the pair
(Gp, t|Gp), where G, is the subtree of G containing only the internal nodes of G and
the edges that connect them, and ¢|Gy, is the restriction of ¢ to G.

4. The Number of r-Pronged Nodes

After proving three combinatorial identities as Lemmas 4.1, 4.2, and 4.3, the mean and
variance of the number of r-pronged nodes in a Yule-generated genealogy are obtained
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in Theorem 4.4, and the properties of the variance function are then examined in The-
orem 4.8. The mean had previously been obtained in [13] using a Polya urn method,
and the mean and variance were both calculated for the case of r =2 in [18]. Related
problems have also been considered in [10].

Because of the correspondence between Yule-generated genealogies and random
binary search trees, many results derived in the context of binary search trees [6,7, 17]
can be interpreted as statements about Yule-generated genealogies. For example, using
the fact that a node with r descendant nodes in a binary search tree has r+2 descendants
among the leaves of the corresponding Yule-generated genealogy, Theorem 4.4 (i) and
the r < n/2 case of Theorem 4.4 (ii) are demonstrated (via different proofs from the
ones here) in [6, Theorem 5], which further obtains a limiting distribution in n for the
number of r-pronged nodes (see also [3]).

Lemma 4.1. For positive integers n and r withn >3, r>2, n>r,

(050

Proof. The identity follows from [11, Identity 3.3], a statement straightforward to prove

using induction on m,
mis N (m—=1\ ([ m+1
E\a/\ s ) \g+s+1)

substituting k + 1 for /, 2 for g, r — 2 for s, and n — 1 for m. [ |

Lemma 4.2. For positive integers n, r, and i, withn —2r > 1,r > i,r > 2,

L)
_ (i+2)[(i+;zzigir+_11))zr— (i—1)] (2rr—_i2—2> (2;12)' @

Proof. Set w = n—2r and denote the ratio of the summand in Equation 4.1 to the
“right-hand side” by F (w, j):

Flw, j) = (e S ) 202r+w+1)
’ (Zf;jgz) (nggl) (i+2)[4r+(i+3)w—(i—1)]

Together with the proof certificate

(G—D@r+w—1—i—j)dr4+2w—=2i+2j+4jr+3jw+ijw)

Riw, j) = - (JHDWw+1=7)2r+w+1)(4r4+3w+4+iw)

)

F(w, j) satisfies the hypotheses of the Wilf-Zeilberger automatic summation theorem [27,
Theorem 7.1.1], from which it follows that }./”_; (w, j) isnot dependent on w. Because

¥ F(w, j) = 1 when w = 1, the result follows. |
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Lemma 4.3. For positive integers n and r withn >3, r>2, n>r,

:2 i+ 2)[(i+3)n— (i+1)2r— (i—1)] (2r—i—2) ( n )

: 2(n—2r—1) r—2 2r+2
_ 5r— 1173 —2n+8nr? [2r+1 n 4.2)
A+ D)@r=1)Q2r+1)\ 2r+1)° ’

Proof. Adding terms for i = 0 and i = 1 to both sides of Equation 4.2 and setting
u = r — i, the statement we wish to prove is equivalent to

" sfu+c u+c u+c —5r—8r2+5n+Tnr+1/2r+1
ZOClu —+ 0hu =+ 03 = ,
= u u u 2r+1 r

wherec=r—2, 01 =n—2r—1,0p = 8r+4r> —5n—2nr+1,and a3 = (r+2)(—3r—
2124 3n+nr+ 1). But this identity follows by setting ¢ = r — 2 in the following three
identities concerning nonnegative integers r and c:

" (u+c r+c+1
x ()= @)

u=0
iu<u+c>:r(6+l) <r+c+1) @4)
= u c+2 r
Z’:u2<u+c>_r(c+1)(2r+cr—|—1)<r—|—c+l)' @.5)
2\ u (c+2)(c+3) r
Each of equations 4.3-4.5 is straightforward to prove by induction on r. |

Theorem 4.4. In a genealogy for n > 3 lineages, if2<r<n-—1,
(1) [13] the mean number of r-pronged nodes, M(n, r), is

2n
r(r+1)’

(ii) the variance of the number of r-pronged nodes, V (n, r), is

204 =3r—4)(r—1)n .
Vi(n,r) = IR D) if r<n/2, (4.6)

Va(n, r) = %m, if r=n/2, 4.7

2(r2 +r—2n)n

Vsl ) = =

if r>n/2. 4.8)

Proof. Enumerate the (’r’) subsets of the label set that contain  elements, denoting the
bth such subset by Sj,. Let Z, be the indicator variable for whether there is some internal
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node of the genealogy for which S, is the label set of its induced subgenealogy. The
number of r-pronged nodes in the genealogy is

()
z=Y 7.
b=1

(i) The mean number of r-pronged nodes in the genealogy is

M(n,r) = E[Z] = :i’)lmzb] —(")eiz1=(")pz =,

P[Z; = 1] can be determined by counting the fraction of coalescence sequences for
which S| has MRCA at an r-pronged node (Figure 2). In such a sequence, at the time
just less than that of the r-pronged node, the r lineages with labels in S| have coalesced
to 2 lineages and the n — r lineages with labels in X \ S| have coalesced to k lineages
(1 £k <n—r). The next coalescence event is the r-pronged node. The remaining k+ 1
lineages coalesce to the MRCA for X. Thus, applying Theorem 3.1, Corollary 3.2,
and Theorem 3.8, the number of coalescence sequences in which S| has MRCA at an
r-pronged node is Y31 I 21—, kWy—2, n—r—iHj+1. Consequently, using Lemma 4.1,

n\ 1 n=r
M(n,r) = (r) T Z Loy iWre—2 n—r—kHit1

Hy =
C2n—r—I(r=I'"E (k+1\ (n—k-2
- 5 (7))
2n
- r(r+1) (4.9)
(ii) The variance of the number of r-pronged nodes is
() N2 () 12
V(n,r) :]EKZZ,,) } —E[Zzb]
b=1 b=1
() () 12 (7)
:]E[ZZ] {Zzb} +E[ y zbz,,,}
b=1 = b,b!
b'4b
()
=M(n,r)—M(n,r)? —HE[ Y z,,zb/] . (4.10)
b,b!
b'#b

Case 1. r<n/2.1fSpNS, # ¢, then E[Z,Z;,/] = 0. For all disjoint S, and S/, E[Z,Z;,/] =
P[ZyZ,» = 1] has the same value. The number of ordered pairs (Sp, S;/) for which
Sp, Spr C X and S, NS,y = ¢ is 2(7) ("."). Therefore, supposing that (S, S2) is such a

pair, )
{ (Z% Zbe/] - 2( > <”;r) P22 = 1. (4.11)

b,b’
b/ b
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2 k Time

r n-r

S, X\S,

Figure 2: Counting the fraction of coalescence sequences for which S; has MRCA
at an r-pronged node. Using Theorem 3.1, the number of ways that r lineages can
coalesce to 2 lineages is /.2, and for 1 < k < n —r, the number of ways that n —r
lineages can coalesce to k lineages is I,_,.x. By Theorem 3.8, the number of ways
of interweaving these sequences of r —2 and n — r — k coalescences is W, ,_,_.
By Corollary 3.2, the number of ways that £ + 1 lineages can coalesce to 1 lineage
is Hy+1. Consequently, the total number of coalescence sequences for which S has
MRCA at an r-pronged node is Y\ | 1.2l xWy—2 n—r—kHi+1. By Corollary 3.2, the
total number of coalescence sequences for n lineages is H,. Thus, the desired quantity
is (1/Hn)):Z;f v 2D kWr—2, n—r—kHpey1-

i 2 j Time
r r n-2r
S, S, X\{S,US,}

Figure 3: Counting the fraction of coalescence sequences for which both S and S, are
label sets for subgenealogies, with the time of the MRCA of S smaller than that of S5.
Using Theorem 3.1, the number of ways that r lineages can coalesce to 2 lineages is
I,,»; for 2 <i <, the number of ways that r lineages can coalesce to i lineages is I,.;;
for 1 < j < n—2r, the number of ways that n — 2r lineages can coalesce to j lineages
is Iy_2, j. By Theorem 3.9, the number of ways of interweaving these sequences of
r—2,r—iand n—2r— j coalescences is W,_2 ,_; ,—2,—j. Counting the number of
ways that the remaining lineages can coalesce so that S5 is the label set for an induced
subgenealogy follows the same argument as in Figure 2.
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In order to have Z1Z, = 1, both §1 and S> must be label sets for subgenealogies. Without
loss of generality, suppose that the time of the MRCA of S is less than that of S,.
P[Z,Z; = 1] can be determined by counting the fraction of coalescence sequences for
which §; and S are the label sets for induced subgenealogies (Figure 3). At the time
just less than that of the MRCA of S|, the r lineages with labels in S, have coalesced
to i lineages (2 < i < r), and the n — 2r lineages with labels in X \ {S; US,} have
coalesced to j lineages (1 < j < n—2r). The next coalescence produces the r-pronged
node for which §; is the label set of the induced subgenealogy. At the time just less
than that of the MRCA of S, the remaining i lineages ancestral to S, have coalesced
to 2 lineages, and the remaining j + 1 lineages ancestral to X \ S, have coalesced to [
lineages (1 <1 < j). The next coalescence produces the r-pronged node for which S is
the induced subgenealogy. Finally, the remaining / + 1 lineages ancestral to X coalesce
to 1 lineage. The total number of possible coalescence sequences for all n lineages with
labels in X is H,. Using Theorem 3.1, Corollary 3.2 and Theorems 3.8 and 3.9,

ron=2r Jj+l
Y Lolily2r, jWr 2 r—in—2r—j ¥ Li2ljr1,1Wiz2, jr1—1Hj11
=2 j=1 =1

]P)[lez _ ] _ i=2 j=

H,

Simplifying this expression and using Equation 4.11,

()
E{ ) z,,z,,/]
b,b!
b #b

r n=2rj+1 . L .. .
S22 Y () () (T (T ()
T (=)

Sequentially applying Lemmas 4.1, 4.2, and 4.3 to sum over indices /, j and i,

- () 77| = 2(5r— 11r3—2n+8nr2)n
PR T 2+ 1)2@2r— D) (2r 4 1)’

b,b’
b'#b

and the result follows from Equation 4.10.

Case 2. r =n/2. In this case, a genealogy can have either zero or two r-pronged nodes,
so that Z;, = 1 for either zero or two values of b. Consequently, the sum in Equation 4.10
can have either no terms equal to 1, or exactly two terms equal to 1:

(7)

(7)

E[ Zbe/:| = 2]P’|: ZpZyr = 2] .
b,b! b,b!
bl#b bl#b

A genealogy can have two distinct sets each with r = n/2 labels and each with MRCA
at an r-pronged node if and only if the two sets are disjoint and both r-pronged nodes
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3
2.7
2.4
2.1 \
1.8
1.5

12 X
0.9 X
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n=50 —— 4
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—

S

0.3 S—
0

Variance of the number of r-pronged nodes

\’\Q\Q\‘/\“F—F—&“H—O—H“‘O—O—O“O—O—O—o‘go—o—"

2 5 10 15 20 25 30 35 40 45 49
Number of descendants (r)

Figure 4: The variance V (n, r) of the number of r-pronged nodes for n = 50.
are immediately descended from the root. By Theorem 3.7, the probability of having
two such nodes is 1/(n — 1). Therefore, using Equation 4.10,

_2n r(r+1)—2n 2
V(n’r)_r(r—i-l) r(r+1) n—1’

and the result follows using n = 2r.

Case 3. r > n/2. In this case, at most one set of r labels can be the label set of an
induced subgenealogy, so that for any distinct b, b’, Z,Z;,, = 0. The result then follows
from Equation 4.10. |

Corollary 4.5. [18] In a genealogy for n > 5 lineages, the mean number of cherries is
n/3 and the variance of the number of cherries is 2n/45.

Corollary 4.6. In a genealogy for n > 7 lineages, the mean number of pitchforks is n/6
and the variance of the number of pitchforks is 23n/420.

Remark 4.7. For a given n, the mean number of r-pronged nodes is largest for r = 2,
and declines monotonically as r increases. The variance, however, exhibits a more
complicated pattern. Figure 4 displays a typical example, namely n = 50. The global
maximum of V (50, r) occurs at r = 3 rather than at r = 2, and the decline after » = 3 is
interrupted by a small peak at r = 50/2 = 25. The following theorem summarizes the
general shape of V (n, r) as a function of r.
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Theorem 4.8. For a fixed n > 15 as well as for n = 11, 13, as r ranges over integers
Sfrom 2 to n— 1, (i) the four highest values of V (n, r) are, from greatest to smallest, at
r=3,4,2, and 5; (ii) for 3<r<n-2,V(n,r) > V(n,r+ 1), unless n is even and
r+1=n/2, in which case V(n,r) <V(n,r+1).

Proof. We will need the following six inequalities, each of which is straightforward to
prove from Equations 4.6-4.8 using elementary methods.

(a) Forintegersn,rwithn >3 and2 <r<n—1,Va(n,r) > Vi(n,r) > V3(n, r).
(b) Forintegers n, r withn >3 and3 <r<n-—1,Vi(n,r) > Vi(n,r+1).

(c) For positive n, Vi(n, 3) > Vi(n,4) > Vi(n,2) > Vi(n,5).

(d) For even integers n > 12,V (n, 5) > Vo(n, n/2).

(e) Forintegersn, r withn > 10andn/2 <r<n—1,V3(n,r) > V3(n, r+1).
(f) Foreven integers n > 16, Va(n,n/2) > Vi(n,n/2 —1).

Using (b) and (c), Vi has its four highest values at 3,4, 2, and 5, respectively. For
n>11,V(n,5) =Vi(n,5). By (a) and (b), Vi(n, 5) > V3(n, r) for all integers n, r with
n>11,n/2 <r < n. Applying (d), it follows that for n > 11, (i) holds.

Using (a) and (b), Vi (n, [n/2—11) > Va(n, |n/2+1]). Forn >3,V (n,r) =Vi(n, r)
for2<r<[n/2—1] and V(n,r) = Va(n,r) for [n/24+ 1] <r <n-—1. Applying
(a), (b), and (e), (ii) holds for odd n > 10. For even n it must also be verified that
V(n,r) <V(n,r+1) for r+ 1 = n/2; this follows from (f), but only for n > 16. |

Remark 4.9. The theorem shows that for large enough 7, the variance follows a particu-
lar pattern as a function of r. For very large r, the variance approaches 2n/r?, provided
n remains larger than 2r (2.5n/r? if n = 2r). For large n, starting with r =2,V (n, r) /n
follows the sequence 2/45,23/420,8/175,2/55,610/21021,171/7280.... At small
n (n < 14), however, the behavior of the variance function can differ from that specified
by the theorem (Figure 5).

5. The Number of r-Caterpillars

The mean and variance of the number of r-pronged nodes can be used to obtain the
mean and variance of the number of subgenealogies with any given unlabeled topology.
Theorem 5.1 gives the general formulas for an arbitrary unlabeled topology T; the case
of a pectinate 7, is considered in Corollary 5.2, and the properties of the variance func-
tion are then explored in Theorem 5.4. Theorem 4.4, Theorem 5.1, and Corollary 5.2
can all be considered generalizations of the formulas of [18] for the mean and variance
of the number of cherries.

Theorem 5.1. In a genealogy with n > 3 lineages, if 2 <r <n—1and T, is an un-
labeled topology with r leaves, (i) the mean number of nodes that have induced sub-
genealogy T,, Mt.(n,r), is Q(T,)M(n, r), and (ii) the variance of the number of nodes
that have induced subgenealogy T,, Vr.(n, r), is

Vr.(n, r) = Q(T)[1 — Q(T) M (n, r) + Q(T,)*V (n, r).
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Figure 5: The variance V (n, r) of the number of r-pronged nodes for n = 4 through 16.
Forn=3, V(3,2)=0.

Proof. Let Y, be the indicator variable for whether there is some internal node of the
genealogy for which both (a) Sy, is the label set of its induced subgenealogy, and (b) this
induced subgenealogy has unlabeled topology 7. The number of nodes whose induced
subgenealogies have unlabeled topology 7} is

()
y=Y,.
b=1

Note that if Z, = 0, then ¥}, = 0. Applying Theorem 3.5, if Z;, = 1, then ¥;, = 1 with
probability O(T}).

(i) The mean number of nodes that have induced subgenealogy T is

()
My, (n,r) =E[Y] = ) P[Z, =0]E[Y,|Z, = 0]+ PZ, = 1] E[}|Z, = 1]
b=
()
=) O(T)P[Z, =1]
h=1

(ii) Using the conditional variance formula [28, p. 138] with the fact that a Bernoulli
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random variable with parameter Q(7,.) has variance Q(T;)[1 — Q(T})],

Vr.(n, r) = Var[Y] = E[Var[Y|Z]] + Var|E[Y|Z]]
— E(Q(T,)[1 - O(T,)|2) + Varl(T})7]

= Q(T)[1 - Q(T)|M(n, r) + Q(T;)* V (n, 7). i
Corollary 5.2. In a genealogy with n > 3 lineages, if 2 < r < n— 1, then (i) the mean
number of r-caterpillars, Mo (n, r), is

271y
(r+1)1"

and (ii) the variance of the number of r-caterpillars, Vg (n, r), is

2 n[2r = 1) 2r+ 1) (r+ D!+ 27 2(—= 1177 +5)]

Vica(n,r) = (r+1)122r—1)(2r+1) ¥ r<n/2,
27 n[(2r—1 D' +2"3r(r> — 14r 49

Vet r) = £ )((rri 1))!2—(|—2r— 1r)(r 2 if r=n/2,

V3cat(n7 r) = 2r71n[(r+1)!_2r71n] lf r>n/2.

(r+1)12 ’
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Proof. Applying Corollary 3.6, Q(T,) = 2"~2/(r — 1)! if T, is pectinate. Inserting this
quantity along with the values of M(n, r) and V (n, r) from Theorem 4.4 into Theorem
5.1, the result follows. [ |

Remark 5.3. Similarly to the case of r-pronged nodes, the mean number of r-caterpillars
is largest for r = 2, and the variance is largest at r = 3. Figure 6 displays V.4 (50, r) as a
function of r. In the case of caterpillars, unlike the r-pronged node case, the monotonic
decline in variance after » = 3 is not interrupted at r = n/2, as is demonstrated in the
following theorem.

Theorem 5.4. Forafixedn > 11 as well as forn==6,7,9, 10, as r ranges over integers
from 2 to n— 1, (i) the four highest values of V.4 (n, r) are from greatest to smallest, at
r=3,2,4,and5; (ii) for 3<r<n—2,Veu(n,r) > Ve (n, r+1).

Proof. The cases of n =6,7,9, 10 can be verified from Corollary 5.2 (ii) by direct com-
putation. For n > 11 the proof follows from the following six inequalities: (a), (b), and
(e) are easily proven from the corresponding statements in the proof of Theorem 5.4,
and (c), (d) and (f) are straightforward using elementary methods.

(a) Forintegersn, r withn >3 and2 <r<n-—1, Vacu(n, 7) > Vicar(n, 1) > Vaear (n, 1),
(b) Forintegers n, r withn >3 and 3 <r <n—1, Vigg(n, r) > Viea(n, r+1),

(c) For positive n, Vieg(n,3) > Vicar(n, 2) > View (n, 4) > Vica(n, 5),

(d) For even integers n > 12, Vieg(n,5) > Vaca(n, n/2),
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(e) Forintegers n, r withn > 10and n/2 <r <n—1, Vacy(n,r) > Vaeu(n, r+ 1),
(f) For even integers n > 8, Vaear(n,n/2) < Vieg(n,n/2 —1).

The proof of (i) uses (a), (b), (c), and (d), and follows that of Theorem 4.8 (i), except
that the positions of Vi (2, r) and Vi (4, r) are reversed. The proof of (ii) uses (a),
(b), (e) and (f) and follows that of Theorem 4.8 (ii), except that the direction of (f)
guarantees Veg (n, r) > Voge(n, r+ 1) at r+ 1 = n/2 for even n. |

Remark 5.5. For large r relative to n, a genealogy is likely to contain at most one r-
caterpillar, and V., approaches M. For large n, with r > 2, V.4 (n, r) /n follows the se-
quence 2/45,23/420,67/1575,364 /19305, 28466/4729725,823/526500. . .. At small
n (n < 8), however, as in the case of r-pronged nodes, the behavior of the variance can
differ from that specified by the theorem (Figure 7).

It is interesting to compare the mean and variance of the number of 7-pronged nodes
with those of the number of r-caterpillars. For r =2 and r = 3, an r-pronged node is
necessarily a caterpillar, and the numbers of r-pronged nodes and r-caterpillars in a
genealogy are equal. For r > 4, an r-pronged node need not be an r-caterpillar, and
consequently, the mean number of r-caterpillars is strictly less than the mean number
of r-pronged nodes. For r > 4, as can be verified by elementary comparison of the
formulas in Theorem 4.4 and Corollary 5.2, the variance of the number of r-caterpillars
is strictly less than the variance of the number of r-pronged nodes, with two exceptions:
for (n, r) = (6, 4), both variances equal 6/25, and for (n, r) = (7, 4), the variance of the
number of caterpillars equals 56/225, while the variance of the number of r-pronged
nodes equals only 21/100.

Summing over all r, each internal node is r-pronged for one value of r, and the mean
total number of r-pronged nodes (not counting the root) is Y"~1 2n/[r(r+1)] =n—2,
as it should. The mean number of caterpillars — internal nodes (not counting the root)
that are r-caterpillars for some r — is ):;‘;21 2"~1n/(r+1)!. As a fraction of n, this sum
has a large-n limit of (e> — 5)/4 ~ 0.59726; thus, for large Yule-generated genealogies,
on average ~ 60% of subgenealogies are pectinate.
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