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Abstract

Wahlund’s inequality informally states that if a structured and an unstructured population have the same allele frequencies at a
locus, the structured population contains more homozygotes. We show that this inequality holds generally for ploidy level P, that is,
the structured population has more P-polyhomozygotes. Further, for M randomly chosen loci (M >2), the structured population is
also expected to contain more M-multihomozygotes than an unstructured population with the same single-locus homozygosities. The
extended inequalities suggest multilocus identity coefficients analogous to Fgr. Using microsatellite genotypes from human
populations, we demonstrate that the multilocus Wahlund inequality can explain a positive bias in “identity-in-state excess”.
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The fundamental principle in the study of genetically
structured populations is the inequality of Wahlund
(1928). Informally, for any locus, this inequality states
that given structured and unstructured populations with
the same allele frequencies, the structured population
includes more homozygotes (Crow and Kimura, 1970, p.
54). An extreme case illustrates the result: if all of the
subgroups within the structured population are fixed for
different alleles, the structured population is fully
homozygous, whereas an unstructured Hardy—Weinberg
population that contains all of these alleles necessarily
contains heterozygotes. In the form of the F-quantities
of Wright (1951), much effort has been devoted to
measurement of this excess homozygosity in theoretical
population structure models, and to its estimation from
genetic data (Excoffier, 2001; Rousset, 2002; Weir and
Hill, 2002).

We show here that the Wahlund inequality extends to
ploidy levels P larger than 2. For P>2, at a given locus,
the P-polyhomozygosity is the fraction of individuals in a

*Corresponding author. Fax: +213-740-2437.
E-mail address: noahr@usc.edu (N.A. Rosenberg).

0040-5809/$ - see front matter © 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.tpb.2004.07.001

population who have P copies of the same allele. Indeed,
the proportion of P-polyhomozygotes is larger in a
structured population than in the corresponding un-
structured population.

More generally, the Wahlund inequality has a multi-
locus analogue for an arbitrary number of loci. Consider
a set of M loci that are genotypically unassociated within
subpopulations (loci for which single-locus genotypes
combine randomly into multilocus genotypes), and
structured and unstructured populations whose
corresponding single-locus homozygosities are equal
(for all M loci). Informally, the multilocus Wahlund
inequality states that the expected proportion of M-
multihomozygotes (homozygotes at all M loci) is
larger in the structured than in the unstructured
population. The expectation is taken over random
sets of M genotypically unassociated loci. Correspond-
ing inequalities apply for any ploidy P>2. We use M, P-
homozygosity to describe the proportion of the
population that for each of M loci, has P copies of the
same allele. Homozygosity is equivalent to 1,2-homo-
zygosity, and 2,2-homozygosity is abbreviated double
homozygosity.
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Previous treatments of Wahlund’s results (and exten-
sions to two loci) have quantified differences between
unstructured and structured populations whose allele
frequencies are equal (Sinnock, 1975), and have
explored their dynamics (Feldman and Christiansen,
1975; Christiansen, 1988). Here we focus on the sign of
these differences. After introducing notation in Section
1, in Sections 2 and 3 we prove the polyploid and
multilocus extensions of Wahlund’s inequality as con-
sequences of Holder’s inequality. We then discuss
implications for identity coefficients and genotypic
associations in Section 4, providing examples of the
two-locus Wahlund inequality using genotypes from
human populations.

1. Notation

Suppose that locus m has N,, alleles, and that allele ;
at locus m has frequency ¢, in (infinitely large)
population 7. As usual, g;,; € [0,1] for all i, m, and j,
and Zj]\i’”lqim, = | for all i and m. For ploidy level P, the
P-polyhomozygosity of locus m in population i is
H;yp) €[0,1]. For a set of M loci, the M, P-homo-
zygosity of population i is Hyp € [0, 1]. Henceforth we
leave off the subscript P and use only H;,, and H;, as the
ploidy should be clear from the context. Population i
and locus m satisfy Hardy—Weinberg proportions if
alleles at locus m combine randomly into sets of P
alleles. In particular, under Hardy—Weinberg propor-
tions,

Nm

j=1
Loci 1,2,...,M are genotypically unassociated in
population i if single-locus genotypes combine randomly
into multilocus genotypes. In particular, genotypically
unassociated loci satisfy

M
H; = Ul Hipn. ()

Consider a set of (unstructured) populations i=
1,2,...,1 in which loci m=1,2,..., M are genotypi-
cally unassociated. Loci need not satisfy Hardy—Wein-
berg proportions in any of these populations. Let S be a
structured population such that for i=1,2,...,1, the
proportion of individuals in S drawn from population i
is f; € (0,1], with S=L_, f, = 1. Then

1

HSm = Z fjHirm (3)
i=1
1

Hs= > fH, 4)
i=1

Eq. (3) holds for all m.

Consider also an unstructured population V' in which
each locus has the same P-polyhomozygosity as in the
structured population S. Loci in V need not satisfy
Hardy—Weinberg proportions, and allele frequencies at
a locus in V need not equal the corresponding
frequencies in S. The frequencies in V" are only restricted
by the requirement that they be compatible with the P-
polyhomozygosity of the locus.

Assume that loci m=1,2,..., M are genotypically
unassociated in population V. In contrast to the
structured S, for which the M,P-homozygosity is a
weighted average of the M,P-homozygosities of the
component subpopulations, in the unstructured V, the
M,P-homozygosity is the product across loci of average
locus P-polyhomozygosities:

1
- A1 im — ms
HVm Z f H;, = HS (5)

i=1

M
Hy =[] Hvm. (6)
m=1
Eq. (5) holds for all m.

Finally, consider a second unstructured population
T that for each locus has the same allele frequencies
as the structured population S. Assume that loci
1,2,...,M are genotypically unassociated in 7. Also
assume that each locus satisfies Hardy—Weinberg
proportions in 7. Then

1
Armj = Zfi%‘m/a (7)
i=1
Nm
HTm = Z qup“mja (8)
j=1
M
HT = H HTm- (9)

m=1

Eq. (7) holds for all j and m and (8) holds for all m.

The motivation for introducing two distinct unstruc-
tured populations is as follows. Wahlund inequalities for
one locus relate P-polyhomozygosities of population S
and population T, whose allele frequencies correspond
to those in S. In contrast, Wahlund inequalities for
multiple loci relate M, P-homozygosities of population
S and population ¥V, whose P-polyhomozygosities
correspond to those in S.

2. Wahlund inequalities: one locus

We will need the following Holder inequality (Beck-
enbach and Bellman, 1961, p. 68).

Theorem 1 (Holder inequality). For a real number z> 1,
given two sequences of I nonnegative real numbers
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..,ar and by, by, ..., by,

ap, dp, .

I 1/z I 1/z*
(Z a§> <Z b;?*) > aiby, (10)
i=1 i=1

i=1

where z*=z/(z — 1). Equality holds in (10) if and only if
there exists a constant ¢ such that for all i, a; = cb; .

The informal Wahlund inequality is that a structured
population has higher homozygosity than predicted by
its allele frequencies under the assumption that loci
satisfy Hardy—Weinberg proportions within subpopula-
tions, with equality if and only if all subpopulations
have the same allele frequencies. The following theorem
gives the formal statement.

Theorem 2 (Diploid Wahlund inequality). For M =1,
P =2 and any locus m, if the I component subpopulations
of S each satisfy Hardy—Weinberg proportions at locus m,
then

HSm>HTma (11)
with equality if and only if for all j and any iy, i2, q; ,,; =
qizmj'

Proof. Consider a particular allele j. Applying Theorem
1l withz=2, a; = qim./\/JTz‘ and b; = \/f;

2
I I
Zfﬂiy? (Z fi%’mj) > (12)
i=1 i=1

with equality if and only if ¢y, = ¢, = -+ = qpy-
Summing (12) across alleles and applying (1), (3), (7),
and (8), both (11) and the equality condition fol-
low. O

Note that this proof verifies the stronger statement
that for each allele, the proportion of homozygotes for
that allele is greater in the structured population than in
the unstructured population, with equality if and only if
the allele has the same frequency in all subpopulations.

Theorem 2 also extends to P-polyhomozygotes, that
is, a structured population contains at least as many P-
polyhomozygotes as predicted by its allele frequencies
under the assumption of Hardy—Weinberg proportions
within subpopulations. The proof follows that of
Theorem 2, using z = P, a; = q,-m]f;/P, b; =f§P_l)/P.

Theorem 3 (Poly-Wahlund inequality). For M =1,
P>=2 and any locus m, if the I component subpopulations
of S each satisfy Hardy—Weinberg proportions at locus m,
then

HSm ZHTma (13)

with equality if and only if for all j and any iy, i, q;,,,; =

qizmj'
Similarly to Theorem 2, Theorem 3 shows that for each

allele, the proportion of P-polyhomozygotes for that
allele is at least as large in the structured as in the

unstructured population, with equality if and only if the
allele has equal frequency in all subpopulations.

3. Wahlund inequalities: M loci

The extension of Theorem 2 to multiple loci is less
straightforward than its extension to polyploidy. Theo-
rem 2 guarantees that for any diploid locus that satisfies
Hardy—Weinberg proportions within subpopulations,
the structured population has higher homozygosity than
the corresponding unstructured population; Theorem 3
produces a similar conclusion for polyploid loci.
However, as demonstrated below, sets of M loci exist
for which a structured population has lower M, P-
homozygosity than the corresponding unstructured
population (in other words, Hg can be smaller than
Hy). This remains true even if the restriction of
Hardy—Weinberg proportions within subpopulations is
imposed on the unstructured population (Hg can be
smaller than Hr).

Consider a two-locus, two-subpopulation, diploid
case with f| =f, =0.5. Suppose H;; = H» =1 and
H, = Hy; = 0.66. Then the double homozygosity Hy is
(0.5)(1)(0.66) + (0.5)(0.66)(1) = 0.66, whereas Hy is
[(0.5)(1) + (0.5)(0.66)]> = 0.6889. To produce a scenario
with Hg< Hp, we can further suppose that both loci
satisfy Hardy—Weinberg proportions in both subpopu-
lations, that both loci have three alleles, and that
(1,0,0),(0.8,0.1,0.1), (0.8,0.1,0.1), and (1, 0, 0) represent
the allele frequency vectors of population 1 and locus 1,
population 1 and locus 2, population 2 and locus 1, and
population 2 and locus 2, respectively. We then obtain
Hp =1[0.97 +2(0.05)*]* = 0.664225.

By appending M — 2 monomorphic loci to form a set
of M loci, this counterexample can be extended to
arbitrary M >2 and P>2. Setting H;; = Hy» = 1 and
Hiy = Hy = 0.87 4+2(0.17), we have Hy = [(1 4+ 0.8° +
2(0.17))/2)* and Hg = 0.87 4 2(0.1%). If we assume that
all loci satisfy Hardy—Weinberg proportions in both
subpopulations and apply the allele frequencies from the
previous paragraph, Hy = [0.9” + 2(0.05)"]*. It is then
straightforward to prove that for any P>=2,
Hy>Hpr>Hg (for example, at P=6, Hy ~ 0.40,
Hy ~0.28, Hg ~ 0.26).

Thus, the direct analogue of the Wahlund inequality,
claiming for any set of M loci greater M, P-homo-
zygosity in a structured population than in the
corresponding unstructured population, does not hold.
We will see however that a multilocus extension of the
Wahlund inequality does exist, in that the expectation of
M, P-homozygosity taken over sets of M loci that are
genotypically unassociated in unstructured populations
is at least as large in the structured S as in the
unstructured V (and in 7, if Hardy—Weinberg propor-
tions are satisfied in the subpopulations of S).
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Suppose that for population i, H;, Hp, ..., H;y are
independently and identically distributed with mean g;
and variance ¢?. Denote the mean P-polyhomozygosity
of a randomly chosen locus m, in populations S and V,
by u. That is,

I I
p=EHsy) = E[Hy) =Y fiElHim]=>_ fu. (14)
i=1 i=1
The expectations and variances of Hg and Hj over sets
of M loci that are genotypically unassociated in
unstructured populations are (Appendix A)

1
E[Hs] =) fin!" = s, (15)
i=1
I M
FH vl = (Z fi”i) =u™ = py, (16)
i=1
1
Var[Hs] =Y f71( + o)™ = )], (17)
i=1
I M
Var[Hy] = (l‘z +> f ?6?) — ), (18)
i=1

Cov[Hs, Hy]1=>_ flun+/o)™" = w19
i=1

Theorem 4 (Multilocus Wahlund inequality). For M >2
and P>=2,

E[Hs]=E[Hy], (20)
with equality if and only if u, =, = -+ = yy.

The expectations are taken over sets of M loci that are
genotypically unassociated in unstructured populations.

Proof. Using (15) and (16), we wish to prove

I I M
Zfiﬂ?l?(Zfi/Ji) . 21
i=1 i=1

The truth of (21) follows from Theorem 1, using z = M,
ai = w1, and b; = Y VM Equality holds in (21) if
and only if for all i, (,ui)M equals a constant ¢. [

Theorem 4 states that the expected M, P-homozygos-
ity is larger in a structured population than is predicted
from its single-locus P-polyhomozygosities under the
assumption of no genotypic association within subpo-
pulations. Regarding individual loci, the theorem
requires only that their P-polyhomozygosities be speci-
fied and it imposes no requirements on allele frequencies
in the component subpopulations, other than that they
be compatible with the P-polyhomozygosities. In
particular, the loci need not satisfy Hardy—Weinberg

proportions within subpopulations in order for the
expected proportion of M, P-homozygotes to be larger
in population S than in population V.

If the loci do all satisfy Hardy—Weinberg proportions
in all component populations of S, however, we can also
relate Hg and Hy. Applying Theorem 3 to each locus
and multiplying across loci, H%:l H 5,7121_[3;1:1 Hry,.
Using (5), (6), and (9), Hy = H 7. Taking expectations
over sets of M loci that are genotypically unassociated in
unstructured populations and using Theorem 4,
E[Hs]|=E[Hy]=E[Hr]. Explicit expansion of E[Hr] is
difficult unless assumptions about allele frequency
distributions are made; nevertheless, it is still true that
a structured population is expected to contain more
M, P-homozygotes than predicted from its allele fre-
quencies under Hardy—Weinberg proportions and ab-
sence of genotypic association within component
populations.

4. Applications
4.1. Identity coefficients

In the diploid case of a single locus, an important
quantity for the structured population S is the identity
coefficient Fgr (Wright, 1951; Excoffier, 2001; Rousset,
2002; Weir and Hill, 2002; Balding, 2003). For a random
locus, assuming Hardy—Weinberg proportions in the
diploid populations 1,2, ..., I, one formulation of Fgr is
as a measurement of the excess homozygosity in the
structured population S compared to the unstructured
population 7 whose allele frequencies equal those in S:

Fgp=-3—""7T (22)

Theorem 2 guarantees that Fgr>0, and the fact that
homozygosities are in [0,1] guarantees Fgr € [0, 1].
Because homozygosity is the probability that two alleles
at a locus are identical in state, Fgr gives a normalized
measure of the excess identity in a structured population
compared to a corresponding unstructured population.

Theorem 3 suggests that the inequality 0< Fgr<1
applies for any ploidy level. Thus, it is sensible to discuss
higher order identity coefficients defined by the same eq.
(22). More precisely, Fsr can be labeled Fgrp) as an
excess in the probability that fwo randomly chosen
alleles are identical in state. The coefficient Fgr(p),
which, like Fgr(), is in [0,1], then refers to the excess
probability that P randomly chosen alleles are identical
in state. Note that this quantity is sensible even if the
organism under consideration does not have ploidy P.
Under the infinitely many alleles mutation model, in
which each mutation produces a novel allele, Fs7(p) also
equals the excess probability that P randomly chosen
alleles are identical by descent.



N.A. Rosenberg, P.P. Calabrese | Theoretical Population Biology 66 (2004) 381-391 385

Theorem 4 also enables a multilocus analogue of Fgr:

E[Hs] ~ E[H ]

T~ EH)] ()

Fsyoup) =
Fsyu,p) is the excess probability of M, P-homozygosity
in the structured population S compared to the
unstructured population V: it is the excess probability
that at each of M randomly chosen genotypically
unassociated loci, P randomly chosen alleles are
identical in state.

For each i, suppose n; individuals are sampled from
population 7 and that f; estimates y,;. If n= Zleni,
using (15) and (16), Fsyu,p) can be estimated by

Soi O/ = [/ mi]
1= [0 (/]

Esyonp = 24

4.2. Homozygosity and genotypic association

It is often of interest to measure differences between
frequencies of multilocus diploid genotypes and the
products of the frequencies of their constituent diploid
genotypes. These differences, or genotypic associations,
are related to gametic association, the difference between
the frequency of a multilocus haplotype and the product
of the frequencies of its constituent alleles. Linkage
disequilibrium refers to gametic association for two loci.
For closely linked loci, cotransmission of alleles at
neighboring loci from common ancestral haplotypes
causes gametic association (Nordborg and Tavaré, 2002,
for example). When pairs of haplotypes are joined to
form multilocus diploid genotypes, gametic association
gives rise to genotypic association.

Analogously to the occurrence of gametic association
in structured populations (Nei and Li, 1973; Ohta,
1982), genotypic association also occurs in structured
populations, even if component subpopulations have no
genotypic association. Because multilocus genotype
frequencies vary across the subpopulations, individual
genotypes at one or more loci provide information
about which subpopulation they belong to, and are thus
informative about the genotypes of the individual at the
other loci.

For the case of M = 2, Ohta (1980) suggested that if
M loci are genotypically associated, then the proportion
of M-multihomozygotes will differ from the product of
the constituent single-locus homozygosities. Thus, for a
population i and a set of M loci, the difference Ay
between M-multihomozygosity and the product of M
single-locus homozygosities—the “‘identity excess”—is a
measure of genotypic association (an especially con-
venient one, if haplotype phase is not known):

M
AM =Hi_HHim- (25)
i=1

=

By (2), if population i is unstructured and if the M loci
are genotypically unassociated, then Ay, termed here
the identity-in-state excess or IIS excess, equals zero.
For genotypically unassociated loci in a structured
population S, however, as shown by the multilocus
Wahlund inequality (Theorem 4) for any M >2, both
E[Ajs] and genotypic association coefficients that equal
Ay divided by positive quantities (Ohta, 1980; Vitalis
and Couvet, 2001; Sabatti and Risch, 2002) have
positive expectation.

To illustrate this consequence of the multilocus
Wahlund inequality, we assemble structured popula-
tions from the generally unstructured human popula-
tions in the data set of Rosenberg et al. (2002). The data
set includes genotypes at 377 autosomal microsatellite
loci for 1056 individuals from 52 populations. Here we
use 375 of these loci, excluding D11S4463 and D20S201
because of uncertainty about their positions in the
genome.

For the multilocus Wahlund inequality to apply, loci
must be genotypically unassociated within component
subpopulations. Genotypic associations in an unstruc-
tured population, if present, are most likely to occur for
closely linked loci, producing negative correlation
coefficients between IIS excess statistics and genetic
distance (Hedrick and Thomson, 1986; Vitalis and
Couvet, 2001). Of 70,125 possible pairs of loci, 3395
include two loci that lie on the same chromosome. In
most of the populations, however, the genotypic
association statistic HR’> (Sabatti and Risch, 2002),
estimated for these 3395 pairs, showed little correlation
with genetic distance (Table 1). Karitiana and Surui had
the most strongly negative correlations, —0.065
(p=2x10"% and —0.055 (p =0.002), respectively.
Considering only the 228 pairs of loci separated by
distances of 10 cM or less, the most negative correlations
are farther from zero: —0.208 in Oroqgen and —0.197 in
Karitiana. However, due to a smaller number of data
points, the p-values are larger: 0.005 and 0.003,
respectively.

These computations demonstrate that little genotypic
association is present within the individual populations.
Nevertheless, to ensure that any positive IIS excess
observed from data can be attributed to population
structure rather than to linkage, we restrict our attention
to the 66,730 pairs in which the loci lie on different
chromosomes.

We can construct structured populations by combin-
ing individuals from several populations in proportion
to sample sizes. Denote the sample size from population
i by n; and the total sample size for a collection of
populations by n. Then the contribution of population i
to the structured population is f; = n;/n. Let h;, be the
observed proportion of homozygotes in population i for
a locus m, and let A, my) be the observed proportion of
double homozygotes for two loci, m; and my. Let
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Oigm;my) be the IIS excess for loci m; and my in
population i, estimated by inserting A, my), him,>» and
him2 into (25) (that iS, 5i(m1,m2) = h,’(ml,mz) — himlhim2)-
Finally, let y(x) =1 if x>0, 1/2 if x = 0, and 0 if x<0.
We can then compute the following quantities:

1. ;= hsn—the mean over loci of the observed
proportion of homozygotes in population .

2. ‘2 = Var[h,m] —the variance over loci of the observed
proportlon of homozygotes in population i.

3.9, = ﬁi(ml,mz)—the mean over pairs of loci of the
observed proportion of double homozygotes in
population 7.

4. Var[hign, my)]—the variance over pairs of loci of the
observed proportion of double homozygotes in
population i.

5. 5i(ml,,,72)—the mean over pairs of loci of the observed
IIS excess in population i.

6. Var[0jin, my]—the variance over pairs of loci of the
observed IIS excess in population i.

7. 7(digm, my)—the fraction of pairs of loci with positive
IIS excess (plus half the fraction with IIS excess of zero).

8. 7(5,((:;)1[ ma)) —the fraction of bootstrap resamples from
the collection of values of 64, m,) for which the mean
of the resampled quantities is positive (plus half the
fraction for which this mean equals zero).

For an unstructured population 7, given j; and
assuming that loci are genotypically unassociated in
the population, the predicted mean across pairs of loci
of the proportion of double homozygotes is [1%, and the
predicted mean across pairs of the IIS excess, 5,»(,,11’,,,2), is
0. Although the distribution of d;4,, m,) need not be
symmetric, 7(0iom,m,) is predicted to be near 1/2—
slightly less than 1/2 in most populations (Appendix B).
This prediction, together with the prediction 5,(,,11 ) =
0, suggests that X(é,(m my) should not be near 1.
Observations for the 1nd1v1dua1 populations generally
match these predictions (Table 2), with most popula-
tlon(s).ol having |5,(,,,l | S107 3 (Oitmy my)) ~ 1/2, and
/{(51(m| my)) <0.95 (but see Appendix B).

For a structured population S comprised of 1
unstructured populations, however, conditional on the
values of [i; and f,, the predicted mean proportion of
double homozygotes is (assuming that loci are genoty-
pically unassociated in each component population)

1
=) Jild. (26)
i=1

Using (15) and (16) with M = P = 2, the mean predicted
IIS excess, which by Theorem 4 is positive, equals

Zf#l

S(ml Jmy) T

I 2
> Sl 27)
i=1

Table 1
Correlation of genotypic association with genetic distance
Population Same chromosome < 10cM

r p-value r p-value
Bantu (Kenya) —.019 332 —.052 489
Mandenka 012 494 015 .820
Yoruba —.018 311 .066 .326
San —.014 .506 .061 453
Mbuti Pygmy 012 492 —.034 625
Biaka Pygmy —.005 .760 —.043 519
Orcadian .022 224 —.014 .838
Adygei .001 956 —.144 .033
Russian .019 .284 —.005 942
Basque —.025 144 —.005 942
French .010 .549 012 .858
ITtalian 022 215 —.041 .558
Sardinian .009 597 012 .856
Tuscan —.016 400 —.095 215
Mozabite —.007 .687 .084 .209
Bedouin .005 787 —.038 .570
Druze —.024 156 .007 919
Palestinian —.003 .863 —.053 424
Balochi 018 .290 .017 .807
Brahui —.007 .689 .002 975
Makrani —.023 .185 —.005 938
Sindhi —.014 405 —.076 258
Pathan —.002 893 —.011 .866
Burusho —.001 944 —.039 .554
Hazara —.001 965 015 .824
Uygur .047 .014 —.042 571
Kalash —.003 .861 .038 .569
Han .015 .390 —.028 .670
Han (N. China) —.032 077 —.042 .550
Dai 011 .561 —.033 .653
Daur —.023 216 .053 463
Hezhen —.025 185 —.014 .855
Lahu .010 .589 .061 .386
Miao 018 338 —.046 522
Orogen —.002 912 —.208 .005
She .055 .003 —.095 183
Tujia .022 .230 .041 .554
Tu .004 .835 —.033 .650
Xibo 014 469 —.017 .832
Yi 016 .380 —.012 .869
Mongola —.006 753 .016 .829
Naxi —.005 786 .046 .526
Cambodian .005 768 028 .692
Japanese .010 561 —.031 .640
Yakut —.020 252 126 .059
Melanesian .000 977 .041 .543
Papuan .007 .674 —.085 203
Karitiana —.065 .0002 —.197 .003
Surui —.055 .002 —.069 318
Colombian —.002 908 .013 .851
Maya —.003 .865 .029 .659
Pima —.026 133 —.010 .884

For locus pairs on the same chromosome and those separated by at
most 10cM, r denotes the correlation coefficient between estimates of
HR? and sex-averaged genetic distance (Weber and Broman, 2001).
For two loci, 1 and 2, HR? (Sabatti and Risch, 2002) was estimated as
(hiap) — hinho) JTha (1 — hi)hp(1 — hp)], where i, hp, and hiq ),
respectively, denote the count estimates of homozygosity at loci 1
and 2 and the count estimate of double homozygosity. The estimate
was set to 1 if differing amounts of missing data for two loci in a pair
led to a value above 1. Pairs with a value of zero for the denominator
of the estimate were omitted from consideration. The p-values do not
account for multiple comparisons. Populations are grouped by region
(Rosenberg et al., 2002).
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Table 2
Homozygosity and double homozygosity statistics for individual populations
Population Sample i 5_’? N \//a\r[ Biton ) iy ) \7a\r[5"ml ] iy my)) ( 5?(‘]’:" )
size (x1073) (x107% (x1073)
Bantu (Kenya) 12 228 .024 .052 5.47 —1.04 2.39 433 293
Mandenka 24 231 .012 .053 2.77 —1.21 1.34 459 201
Yoruba 25 223 .013 .050 2.67 1.28 1.24 462 786
San 7 239 .032 .057 8.77 —0.32 4.19 428 S19
Mbuti Pygmy 15 232 .019 .054 4.35 —-1.72 2.03 427 165
Biaka Pygmy 36 229 012 .052 2.39 0.34 0.98 478 .640
Orcadian 16 252 .019 .064 4.86 1.68 2.09 458 .801
Adygei 17 251 .015 .063 4.21 0.12 2.08 454 491
Russian 25 .250 .014 .062 3.42 1.51 1.51 480 .824
Basque 24 265 .013 .070 3.71 0.06 1.75 481 .563
French 29 252 .012 .064 2.89 1.18 1.25 478 .839
Italian 14 .260 .021 .067 6.11 —1.80 2.89 443 173
Sardinian 28 255 011 .065 3.01 —0.94 1.39 477 292
Tuscan 8 242 .029 .058 9.38 —0.41 5.33 412 371
Mozabite 30 246 .010 .061 2.55 3.39 1.24 480 991
Bedouin 49 272 .009 .075 2.37 8.40 0.86 .501 1
Druze 48 277 .009 .077 2.40 7.37 0.95 .502 1
Palestinian 51 258 .009 .067 2.06 4.15 0.77 491 999
Balochi 25 .289 .014 .084 4.53 7.05 1.91 493 1
Brahui 25 271 .013 074 3.83 2.60 1.69 485 953
Makrani 25 276 012 .078 3.57 15.50 1.63 .500 1
Sindhi 25 270 .013 .074 3.64 16.10 1.63 .505 1
Pathan 25 .280 013 .081 3.92 24.87 1.74 519 1
Burusho 25 254 013 .065 3.28 1.67 1.38 475 .884
Hazara 25 2601 012 .068 3.31 1.95 1.51 488 .895
Uygur 10 254 .026 .065 7.55 5.65 3.56 442 999
Kalash 25 .286 .018 .082 4.90 0.82 1.62 487 131
Han 35 284 .016 .081 391 —2.57 1.20 478 .033
Han (N. China) 10 .280 .032 .078 9.70 —1.48 3.71 431 311
Dai 10 280 .031 .078 9.69 2.90 3.89 454 882
Daur 10 274 .029 .075 9.51 1.60 4.35 441 137
Hezhen 10 288 .034 .083 11.57 1.26 4.59 449 .686
Lahu 10 299 .032 .089 10.47 —1.25 393 454 .304
Miao 10 .290 .030 .084 9.69 —3.85 3.73 450 .043
Orogen 10 282 .032 .079 9.93 —2.04 3.99 448 199
She 9 294 .033 .087 10.94 2.51 4.23 452 817
Tujia 10 297 .032 .088 10.98 —1.52 443 450 273
Tu 10 279 .032 .078 9.60 2.39 3.57 446 .828
Xibo 9 262 .033 .069 9.18 3.80 3.63 448 933
Yi 10 276 .030 .076 9.37 2.56 3.98 443 854
Mongola 10 274 .030 .075 8.94 3.56 3.73 448 938
Naxi 10 284 .032 .080 9.67 1.74 3.57 443 703
Cambodian 11 .261 .027 .068 7.64 0.52 322 435 613
Japanese 32 289 .017 .083 4.43 —0.40 1.35 487 432
Yakut 25 282 .015 .080 4.28 1.04 1.62 494 677
Melanesian 22 321 .034 103 10.49 1.00 2.55 471 .654
Papuan 17 326 .025 .106 8.77 —1.24 2.75 480 263
Karitiana 24 405 .043 164 17.60 9.38 2.09 .508 1
Surui 21 464 .057 215 30.36 —1.16 2.68 .501 268
Colombian 13 383 .043 147 17.96 5.15 3.71 .500 981
Maya 25 313 .019 .099 5.82 5.85 1.82 498 1
Pima 25 367 .033 135 11.84 2.75 1.99 496 931

Calculations are based on 375 loci and 66,730 pairs of loci (66,676 in Tuscan and 66,728 in Yi, after excluding pairs for which every individual was

missing genotypes at one or both loci of the pair). 7:(5?((,7:,’:,,,12)) was obtained using 1000 bootstrap resamples.
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Table 3

Homozygosity and double homozygosity statistics for example structured populations

(Structured) population Sample size fi; &2 Vi

i @[lli(ml,mz)] (X 10_3) 5”(”“,"12) (X 1074) V5‘[5[(ml,mg)] (X 10_3) Z(éi(”’l~"72)) Z(gi)(?:f,mz))

World 1056 279 .005 .080 0.81 22.41 0.05 .620 1

.080 19.54
Africa + Oceania 158 252 .007 .065 1.16 14.63 0.27 523 1

.065 16.37
America 108 384 .018 .150 6.49 27.06 0.60 541 1

150 25.73
“Structured” 100 297 .009 .096 2.66 75.37 0.63 .602 1

.097 78.65

Calculations are based on 375 loci and 66,730 pairs of loci. )Z(Sﬁ(;::’mz)

) was obtained using 1000 bootstrap resamples. For ¥; and 51-(,,”‘,,,2), the predicted

values based on (26) and (27) are given below the values observed in the data. From top to bottom, the four examples shown are structured
populations comprised of (1) the entire data of 52 populations, (2) the individuals from Africa and Oceania with each region treated as a
subpopulation, (3) the five populations from the Americas, and (4) four populations from separate continents (see Fig. 1).

(in (26) and (27), the asterisk is used to denote a
predicted rather than observed value). The quantity
1(Osom,my)) 1s expected to be larger than 1/2, with
;2(51;?;’1’"12)) close to 1.

As was true for the unstructured populations,
observations for example structured populations also
matched the predicted values (Table 3). In particular,
the predicted surplus of double homozygotes was
observed in the structured populations: unlike in the
unstructured populations, mean IIS excess values were
all positive. The structured populations generally had
Ss(ml,mz) values larger than positivg:bwctomponent I1S
excesses by factors of 5-20, with Z(éS(ml,mz)) values of
1. The distribution of ds¢u,m,) values across loci in
structured populations was skewed to the right (Fig. 1),
with 7(ds(n,,m,)) noticeably greater than 1/2 (Table 3).

5. Conclusions

We have extended the Wahlund inequality to show
that structured populations are expected to contain
more M, P-homozygotes than corresponding unstruc-
tured populations. The extension enables definitions of
multilocus identity coefficients analogous to Fgr. More-
over, the multilocus Wahlund inequality suggests that
IIS excess statistics are expected to be positive in
structured populations, as was observed in examples
from human groups. Even in a species such as humans,
in which individuals are fairly closely related, the two-
locus Wahlund inequality generates a noticeable excess
of double homozygotes. Positively biased IIS excess is
also a property of closely linked loci (Hedrick and
Thomson, 1986; Ohta, 2000; Vitalis and Couvet, 2001);
thus, similarly to the multiple potential interpretations
of other association measures, positive IIS excess need
not be viewed as evidence of linkage when population
structure might provide an alternate explanation.

Appendix A

Here we derive (15)—(19). Using the independence of
the H;,, the expectation of a product of two or more of
these random variables equals the product of the
expectations. Results (17)—(19) follow from Var[Hg] =
E[H3] — E[Hs]’,  Var[Hy]=E[H}]—E[H/], and
Cov[Hs, Hy] = E[HsHy] — E[Hs]E[H y].

M
F[Hs] = E [Z i1l H,-m]

i=1 m=1

=> fu, (28)

M 1
E[H ] = [E[H Zf,-H,»m]

I M
()
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Fig. 1. Frequency distribution of the IIS excess estimate &g, m,)
across 66,730 pairs of loci. For Surui, 20 IIS excess values fell outside
of [—0.25,0.25], largely as a result of a particularly small sample size at
one specific locus (in general, sample size is the major determinant of
the variability across pairs in IIS excess).
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Appendix B

Suppose population i is unstructured and that loci 1
and 2 are genotypically unassociated in population i.
Consider a sample of size n;. If loci 1 and 2 have true
homozygosities H; and Hp, the probability that
the sample includes /; homozygotes at locus 1, I,
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homozygotes at locus 2, and [/ double homozygotes
O<lp< min(ly, b)<n), is

n; e
R, = <11')Hfi(1 — Hy)"h

() (25)
x (’Z)Hﬁ%(l — Hpyih AR (ng"” .
3
The ratio of binomial coefficients gives the probability
that the /, homozygotes at locus 1 and the I,
homozygotes at locus 2 overlap in exactly /j, indivi-
duals.

Because (3,‘(],2) = l]z/l’li — (l]/l’l,‘)(lg/l’l,‘), (3,'(1,2)>0 if
ly2>11l,/n;. Thus, taking into account all possible
sample configurations (/;, /5, /1»), given n;, H;;, and Hj,

n; n; 1 min(/y,/5)
Elx@iaa)l =) > |=5Rum+ Y Rynip|. (33)
11=0 1,=0 l12=M

where y = /1/,/n;. In the summation, Ry, is set to zero
if 7 is not an integer.

For small sample sizes, with H;;, Hj; € [0,0.5], as was
true of most locus pairs in most populations (Table 4),
E[x(di1,2))] was usually in [0.4,0.5] (Fig. 2). Thus, (33)
predicts that in unstructured populations with the
homozygosities and sample sizes typical of the Rosen-
berg et al. (2002) data, the proportion of pairs of
genotypically unassociated loci with positive estimated
IIS excess will be slightly smaller than 1/2. This
prediction was generally satisfied (Table 2). In the
instances when it was not satisfied, three main factors
were responsible.

First, as the fraction of locus pairs with one
homozygosity in [0,0.5] and the other in (0.5,1]
increases, the effect of sampling is to inflate E[y(d,1,2))]
(Fig. 2). Thus, Surui, Karitiana, and Colombian,
comparatively homozygous Native American popula-
tions with relatively large numbers of such pairs (Table
4), were among the groups with the highest values of
Z(éi(ml,mz))~

Second, as sample size increases, the effect of
sampling on [E[y(d;1,2))] is reduced, as can be seen by
comparing at different sample sizes the proportion
of possible values (H;1,Hp) for which
E[x(6i1,2)]¢[0.49,0.51] (Fig. 3). Thus, populations with
larger samples tended to produce values of 7(Siou,m,))
nearer 1/2, with the correlation coefficient between
sample size and |7(dim,my)) — 1/2| equaling —0.747
(p<107%.

Finally, population structure inflates values of the IIS
excess, so that structured populations are likely to have
more locus pairs with ;g my,) >0. Thus, populations of
the Middle East and Central/South Asia with noticeable
levels of population structure, as reflected in hetero-
geneous individual ancestry (Rosenberg et al., 2002,

Table 4
Fractions of locus pairs with zero, one, and two of the two loci having
estimated homozygosity in (0.5, 1]

Population 0 1 2
Bantu (Kenya) 916 .082 .002
Mandenka 963 .037 <.001
Yoruba 963 .037 <.001
San .866 130 .005
Mbuti Pygmy 942 .057 <.001
Biaka Pygmy 974 .026 <.001
Orcadian 937 .062 <.001
Adygei 953 .047 <.001
Russian .947 .052 <.001
Basque 942 .057 <.001
French 958 .042 <.001
Italian .891 .106 .003
Sardinian 979 .021 <.001
Tuscan 916 .082 .002
Mozabite 979 .021 <.001
Bedouin .963 .037 <.001
Druze 973 .027 <.001
Palestinian 979 .021 <.001
Balochi 910 .088 .002
Brahui 953 .047 <.001
Makrani 932 .067 .001
Sindhi .948 .052 <.001
Pathan 927 .072 .001
Burusho 948 .052 <.001
Hazara 947 .052 <.001
Uygur 927 .072 .001
Kalash .866 129 .005
Han 901 .096 .002
Han (N. China) .832 161 .007
Dai .861 134 .005
Daur .891 .106 .003
Hezhen .813 178 .009
Lahu 813 178 .010
Miao .861 134 .005
Orogen .846 .148 .006
She 179 .208 013
Tujia .808 182 .010
Tu 831 161 .008
Xibo .827 .166 .008
Yi .847 147 .006
Mongola .881 115 .003
Naxi 817 174 .009
Cambodian .836 157 .007
Japanese 875 121 .004
Yakut 932 .067 .001
Melanesian 714 262 .024
Papuan 779 208 .013
Karitiana .530 .397 .073
Surui .382 473 145
Colombian .602 .348 .050
Maya .847 147 .006
Pima .683 287 .030
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Fig. 2. E[x(di12)], computed from (33) with n; = 10 (left), n; = 25
(right). From lightest to darkest, the shades represent values of
E[x(di1,2)] in [0,0.3), [0.3,0.35), [0.35,0.4), [0.4,0.45), [0.45,0.5), {0.5},
(0.5,0.55], (0.55,0.6], (0.6,0.65], (0.65,0.7], and (0.7,1]. The shades
corresponding to [0.45,0.5) and (0.5, 0.55] occupy most of the area in
both plots.
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Fig. 3. E[x(di12)], computed from (33) with n; = 10 (left), n; = 25
(right). This figure is based on exactly the same values of E[x(di1,2))] as
Fig. 2, the only difference being that the central shade, covering a
substantial portion of both the left and right plots, represents
[0.49,0.51] instead of {0.5} (also, its neighboring shades represent
[0.45,0.49) and (0.51,0.55] instead of [0.45,0.5) and (0.5,0.55]).

Fig. 2) were among those with the highest values of
7(Si(my my))- In these groups, population igucture also led
to large values Of &jpm my and )(((3,(,,11 my)- If other
influences on IIS excess can be ruled out, these
observations suggest the possibility of using properties
of the IIS excess between unlinked loci as test statistics

for the hypothesis that a population is unstructured.
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