
ARTICLE IN PRESS
0040-5809/$ - se

doi:10.1016/j.tp

�Correspond
E-mail addr
Theoretical Population Biology 66 (2004) 381–391

www.elsevier.com/locate/ytpbi
Polyploid and multilocus extensions of the Wahlund inequality

Noah A. Rosenberg�, Peter P. Calabrese

Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California,

1042 West 36th Place—DRB 289, Los Angeles, CA 90089, USA

Received 9 April 2003
Abstract

Wahlund’s inequality informally states that if a structured and an unstructured population have the same allele frequencies at a

locus, the structured population contains more homozygotes. We show that this inequality holds generally for ploidy level P, that is,

the structured population has more P-polyhomozygotes. Further, for M randomly chosen loci (MX2), the structured population is

also expected to contain more M-multihomozygotes than an unstructured population with the same single-locus homozygosities. The

extended inequalities suggest multilocus identity coefficients analogous to FST : Using microsatellite genotypes from human

populations, we demonstrate that the multilocus Wahlund inequality can explain a positive bias in ‘‘identity-in-state excess’’.

r 2004 Elsevier Inc. All rights reserved.
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The fundamental principle in the study of genetically
structured populations is the inequality of Wahlund
(1928). Informally, for any locus, this inequality states
that given structured and unstructured populations with
the same allele frequencies, the structured population
includes more homozygotes (Crow and Kimura, 1970, p.
54). An extreme case illustrates the result: if all of the
subgroups within the structured population are fixed for
different alleles, the structured population is fully
homozygous, whereas an unstructured Hardy–Weinberg
population that contains all of these alleles necessarily
contains heterozygotes. In the form of the F-quantities
of Wright (1951), much effort has been devoted to
measurement of this excess homozygosity in theoretical
population structure models, and to its estimation from
genetic data (Excoffier, 2001; Rousset, 2002; Weir and
Hill, 2002).

We show here that the Wahlund inequality extends to
ploidy levels P larger than 2. For PX2; at a given locus,
the P-polyhomozygosity is the fraction of individuals in a
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population who have P copies of the same allele. Indeed,
the proportion of P-polyhomozygotes is larger in a
structured population than in the corresponding un-
structured population.

More generally, the Wahlund inequality has a multi-
locus analogue for an arbitrary number of loci. Consider
a set of M loci that are genotypically unassociated within
subpopulations (loci for which single-locus genotypes
combine randomly into multilocus genotypes), and
structured and unstructured populations whose
corresponding single-locus homozygosities are equal
(for all M loci). Informally, the multilocus Wahlund
inequality states that the expected proportion of M-

multihomozygotes (homozygotes at all M loci) is
larger in the structured than in the unstructured
population. The expectation is taken over random
sets of M genotypically unassociated loci. Correspond-
ing inequalities apply for any ploidy PX2:We use M;P-

homozygosity to describe the proportion of the
population that for each of M loci, has P copies of the
same allele. Homozygosity is equivalent to 1; 2-homo-

zygosity, and 2; 2-homozygosity is abbreviated double

homozygosity.

www.elsevier.com/locate/ytpbi
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Previous treatments of Wahlund’s results (and exten-
sions to two loci) have quantified differences between
unstructured and structured populations whose allele
frequencies are equal (Sinnock, 1975), and have
explored their dynamics (Feldman and Christiansen,
1975; Christiansen, 1988). Here we focus on the sign of
these differences. After introducing notation in Section
1, in Sections 2 and 3 we prove the polyploid and
multilocus extensions of Wahlund’s inequality as con-
sequences of Hölder’s inequality. We then discuss
implications for identity coefficients and genotypic
associations in Section 4, providing examples of the
two-locus Wahlund inequality using genotypes from
human populations.
1. Notation

Suppose that locus m has Nm alleles, and that allele j

at locus m has frequency qimj in (infinitely large)
population i. As usual, qimj 2 ½0; 1� for all i, m, and j,
and

PNm
j¼1qimj ¼ 1 for all i and m. For ploidy level P, the

P-polyhomozygosity of locus m in population i is
HimðPÞ 2 ½0; 1�: For a set of M loci, the M ;P-homo-
zygosity of population i is HiðPÞ 2 ½0; 1�: Henceforth we
leave off the subscript P and use only Him and Hi; as the
ploidy should be clear from the context. Population i

and locus m satisfy Hardy–Weinberg proportions if
alleles at locus m combine randomly into sets of P

alleles. In particular, under Hardy–Weinberg propor-
tions,

Him ¼
XNm

j¼1

qP
imj : (1)

Loci 1; 2; . . . ;M are genotypically unassociated in
population i if single-locus genotypes combine randomly
into multilocus genotypes. In particular, genotypically
unassociated loci satisfy

Hi ¼
YM
m¼1

Him: (2)

Consider a set of (unstructured) populations i ¼

1; 2; . . . ; I in which loci m ¼ 1; 2; . . . ;M are genotypi-
cally unassociated. Loci need not satisfy Hardy–Wein-
berg proportions in any of these populations. Let S be a
structured population such that for i ¼ 1; 2; . . . ; I ; the
proportion of individuals in S drawn from population i

is f i 2 ð0; 1�; with
PI

i¼1 f i ¼ 1: Then

HSm ¼
XI

i¼1

f iHim; ð3Þ

HS ¼
XI

i¼1

f iHi: ð4Þ

Eq. (3) holds for all m.
Consider also an unstructured population V in which
each locus has the same P-polyhomozygosity as in the
structured population S. Loci in V need not satisfy
Hardy–Weinberg proportions, and allele frequencies at
a locus in V need not equal the corresponding
frequencies in S. The frequencies in V are only restricted
by the requirement that they be compatible with the P-
polyhomozygosity of the locus.

Assume that loci m ¼ 1; 2; . . . ;M are genotypically
unassociated in population V. In contrast to the
structured S, for which the M,P-homozygosity is a
weighted average of the M,P-homozygosities of the
component subpopulations, in the unstructured V, the
M,P-homozygosity is the product across loci of average
locus P-polyhomozygosities:

HVm ¼
XI

i¼1

f iHim ¼ HSm; ð5Þ

HV ¼
YM
m¼1

HVm: ð6Þ

Eq. (5) holds for all m.
Finally, consider a second unstructured population

T that for each locus has the same allele frequencies

as the structured population S. Assume that loci
1; 2; :::;M are genotypically unassociated in T. Also
assume that each locus satisfies Hardy–Weinberg
proportions in T. Then

qTmj ¼
XI

i¼1

f iqimj ; (7)

HTm ¼
XNm

j¼1

qP
Tmj ; (8)

HT ¼
YM
m¼1

HTm: (9)

Eq. (7) holds for all j and m and (8) holds for all m.
The motivation for introducing two distinct unstruc-

tured populations is as follows. Wahlund inequalities for
one locus relate P-polyhomozygosities of population S

and population T, whose allele frequencies correspond
to those in S. In contrast, Wahlund inequalities for
multiple loci relate M ;P-homozygosities of population
S and population V, whose P-polyhomozygosities
correspond to those in S.
2. Wahlund inequalities: one locus

We will need the following Hölder inequality (Beck-
enbach and Bellman, 1961, p. 68).

Theorem 1 (Hölder inequality). For a real number z41;
given two sequences of I nonnegative real numbers
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a1; a2; . . . ; aI and b1; b2; . . . ; bI ;XI

i¼1

az
i

 !1=z XI

i¼1

bz�

i

 !1=z�

X

XI

i¼1

aibi; (10)

where z�=z=ðz � 1Þ: Equality holds in (10) if and only if

there exists a constant c such that for all i, az
i ¼ cbz�

i :

The informal Wahlund inequality is that a structured
population has higher homozygosity than predicted by
its allele frequencies under the assumption that loci
satisfy Hardy–Weinberg proportions within subpopula-
tions, with equality if and only if all subpopulations
have the same allele frequencies. The following theorem
gives the formal statement.

Theorem 2 (Diploid Wahlund inequality). For M ¼ 1;
P ¼ 2 and any locus m, if the I component subpopulations

of S each satisfy Hardy–Weinberg proportions at locus m,
then

HSmXHTm; (11)

with equality if and only if for all j and any i1; i2; qi1mj ¼

qi2mj :

Proof. Consider a particular allele j. Applying Theorem
1 with z ¼ 2; ai ¼ qimj

ffiffiffiffi
f i

p
and bi ¼

ffiffiffiffi
f i

p
;

XI

i¼1

f iq
2
imjX

XI

i¼1

f iqimj

 !2

; (12)

with equality if and only if q1mj ¼ q2mj ¼ 	 	 	 ¼ qImj :
Summing (12) across alleles and applying (1), (3), (7),
and (8), both (11) and the equality condition fol-
low. &

Note that this proof verifies the stronger statement
that for each allele, the proportion of homozygotes for
that allele is greater in the structured population than in
the unstructured population, with equality if and only if
the allele has the same frequency in all subpopulations.

Theorem 2 also extends to P-polyhomozygotes, that
is, a structured population contains at least as many P-
polyhomozygotes as predicted by its allele frequencies
under the assumption of Hardy–Weinberg proportions
within subpopulations. The proof follows that of
Theorem 2, using z ¼ P; ai ¼ qimjf

1=P
i ; bi ¼ f

ðP�1Þ=P
i :

Theorem 3 (Poly-Wahlund inequality). For M ¼ 1;
PX2 and any locus m, if the I component subpopulations

of S each satisfy Hardy–Weinberg proportions at locus m,
then

HSmXHTm; (13)

with equality if and only if for all j and any i1; i2; qi1mj ¼

qi2mj :

Similarly to Theorem 2, Theorem 3 shows that for each
allele, the proportion of P-polyhomozygotes for that
allele is at least as large in the structured as in the
unstructured population, with equality if and only if the
allele has equal frequency in all subpopulations.
3. Wahlund inequalities: M loci

The extension of Theorem 2 to multiple loci is less
straightforward than its extension to polyploidy. Theo-
rem 2 guarantees that for any diploid locus that satisfies
Hardy–Weinberg proportions within subpopulations,
the structured population has higher homozygosity than
the corresponding unstructured population; Theorem 3
produces a similar conclusion for polyploid loci.
However, as demonstrated below, sets of M loci exist
for which a structured population has lower M;P-
homozygosity than the corresponding unstructured
population (in other words, HS can be smaller than
HV ). This remains true even if the restriction of
Hardy–Weinberg proportions within subpopulations is
imposed on the unstructured population (HS can be
smaller than HT ).

Consider a two-locus, two-subpopulation, diploid
case with f 1 ¼ f 2 ¼ 0:5: Suppose H11 ¼ H22 ¼ 1 and
H12 ¼ H21 ¼ 0:66: Then the double homozygosity HS is
ð0:5Þð1Þð0:66Þ þ ð0:5Þð0:66Þð1Þ ¼ 0:66; whereas HV is
½ð0:5Þð1Þ þ ð0:5Þð0:66Þ�2 ¼ 0:6889: To produce a scenario
with HSoHT ; we can further suppose that both loci
satisfy Hardy–Weinberg proportions in both subpopu-
lations, that both loci have three alleles, and that
ð1; 0; 0Þ; ð0:8; 0:1; 0:1Þ; ð0:8; 0:1; 0:1Þ; and ð1; 0; 0Þ represent
the allele frequency vectors of population 1 and locus 1,
population 1 and locus 2, population 2 and locus 1, and
population 2 and locus 2, respectively. We then obtain
HT ¼ ½0:92 þ 2ð0:05Þ2�2 ¼ 0:664225:

By appending M � 2 monomorphic loci to form a set
of M loci, this counterexample can be extended to
arbitrary MX2 and PX2: Setting H11 ¼ H22 ¼ 1 and
H12 ¼ H21 ¼ 0:8P þ 2ð0:1PÞ; we have HV ¼ ½ð1þ 0:8P þ

2ð0:1PÞÞ=2�2 and HS ¼ 0:8P þ 2ð0:1PÞ: If we assume that
all loci satisfy Hardy–Weinberg proportions in both
subpopulations and apply the allele frequencies from the
previous paragraph, HT ¼ ½0:9P þ 2ð0:05ÞP�2: It is then
straightforward to prove that for any PX2;
HV4HT4HS (for example, at P ¼ 6; HV � 0:40;
HT � 0:28; HS � 0:26).

Thus, the direct analogue of the Wahlund inequality,
claiming for any set of M loci greater M;P-homo-
zygosity in a structured population than in the
corresponding unstructured population, does not hold.
We will see however that a multilocus extension of the
Wahlund inequality does exist, in that the expectation of
M ;P-homozygosity taken over sets of M loci that are
genotypically unassociated in unstructured populations
is at least as large in the structured S as in the
unstructured V (and in T, if Hardy–Weinberg propor-
tions are satisfied in the subpopulations of S).
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Suppose that for population i, Hi1; Hi2; ..., HiM are
independently and identically distributed with mean mi

and variance s2i : Denote the mean P-polyhomozygosity
of a randomly chosen locus m, in populations S and V,
by m: That is,

m ¼ E½HSm� ¼ E½HVm� ¼
XI

i¼1

f iE½Him� ¼
XI

i¼1

f imi: (14)

The expectations and variances of HS and HV over sets
of M loci that are genotypically unassociated in
unstructured populations are (Appendix A)

E½HS� ¼
XI

i¼1

f im
M
i ¼ mS; (15)

E½HV � ¼
XI

i¼1

f imi

 !M

¼ mM ¼ mV ; (16)

Var½HS� ¼
XI

i¼1

f 2
i ½ðm

2
i þ s2i Þ

M
� ðm2i Þ

M
�; (17)

Var½HV � ¼ m2 þ
XI

i¼1

f 2
i s

2
i

 !M

� ðm2ÞM ; (18)

Cov½HS;HV � ¼
XI

i¼1

f i½ðmimþ f is
2
i Þ

M
� ðmimÞ

M
�: (19)

Theorem 4 (Multilocus Wahlund inequality). For MX2
and PX2;

E½HS�XE½HV �; (20)

with equality if and only if m1 ¼ m2 ¼ 	 	 	 ¼ mI :

The expectations are taken over sets of M loci that are
genotypically unassociated in unstructured populations.

Proof. Using (15) and (16), we wish to prove

XI

i¼1

f im
M
i X

XI

i¼1

f imi

 !M

: (21)

The truth of (21) follows from Theorem 1, using z ¼ M ;
ai ¼ mif

1=M
i ; and bi ¼ f

ðM�1Þ=M
i : Equality holds in (21) if

and only if for all i, ðmiÞ
M equals a constant c. &

Theorem 4 states that the expected M ;P-homozygos-
ity is larger in a structured population than is predicted
from its single-locus P-polyhomozygosities under the
assumption of no genotypic association within subpo-
pulations. Regarding individual loci, the theorem
requires only that their P-polyhomozygosities be speci-
fied and it imposes no requirements on allele frequencies
in the component subpopulations, other than that they
be compatible with the P-polyhomozygosities. In
particular, the loci need not satisfy Hardy–Weinberg
proportions within subpopulations in order for the
expected proportion of M;P-homozygotes to be larger
in population S than in population V.

If the loci do all satisfy Hardy–Weinberg proportions
in all component populations of S, however, we can also
relate HS and HT : Applying Theorem 3 to each locus
and multiplying across loci,

QM
m¼1 HSmX

QM
m¼1 HTm:

Using (5), (6), and (9), HVXHT : Taking expectations
over sets of M loci that are genotypically unassociated in
unstructured populations and using Theorem 4,
E½HS�XE½HV �XE½HT �: Explicit expansion of E½HT � is
difficult unless assumptions about allele frequency
distributions are made; nevertheless, it is still true that
a structured population is expected to contain more
M ;P-homozygotes than predicted from its allele fre-
quencies under Hardy–Weinberg proportions and ab-
sence of genotypic association within component
populations.
4. Applications

4.1. Identity coefficients

In the diploid case of a single locus, an important
quantity for the structured population S is the identity
coefficient FST (Wright, 1951; Excoffier, 2001; Rousset,
2002; Weir and Hill, 2002; Balding, 2003). For a random
locus, assuming Hardy–Weinberg proportions in the
diploid populations 1; 2; . . . ; I ; one formulation of FST is
as a measurement of the excess homozygosity in the
structured population S compared to the unstructured
population T whose allele frequencies equal those in S:

F ST ¼
HS � HT

1� HT

: (22)

Theorem 2 guarantees that F STX0; and the fact that
homozygosities are in [0,1] guarantees F ST 2 ½0; 1�:
Because homozygosity is the probability that two alleles
at a locus are identical in state, FST gives a normalized
measure of the excess identity in a structured population
compared to a corresponding unstructured population.

Theorem 3 suggests that the inequality 0pF STp1
applies for any ploidy level. Thus, it is sensible to discuss
higher order identity coefficients defined by the same eq.
(22). More precisely, F ST can be labeled FSTð2Þ as an
excess in the probability that two randomly chosen
alleles are identical in state. The coefficient F STðPÞ;
which, like FSTð2Þ; is in [0,1], then refers to the excess
probability that P randomly chosen alleles are identical
in state. Note that this quantity is sensible even if the
organism under consideration does not have ploidy P.
Under the infinitely many alleles mutation model, in
which each mutation produces a novel allele, F STðPÞ also
equals the excess probability that P randomly chosen
alleles are identical by descent.
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Theorem 4 also enables a multilocus analogue of FST :

FSV ðM ;PÞ ¼
E½HS� � E½HV �

1� E½HV �
: (23)

FSV ðM ;PÞ is the excess probability of M ;P-homozygosity
in the structured population S compared to the
unstructured population V: it is the excess probability
that at each of M randomly chosen genotypically
unassociated loci, P randomly chosen alleles are
identical in state.

For each i, suppose ni individuals are sampled from
population i and that m̂i estimates mi: If n ¼

PI
i¼1ni;

using (15) and (16), F SV ðM ;PÞ can be estimated by

F̂SV ðM ;PÞ ¼

PI
i¼1ðni=nÞm̂M

i � ½
PI

i¼1ðni=nÞm̂i�
M

1� ½
PI

i¼1ðni=nÞm̂i�
M

: (24)

4.2. Homozygosity and genotypic association

It is often of interest to measure differences between
frequencies of multilocus diploid genotypes and the
products of the frequencies of their constituent diploid
genotypes. These differences, or genotypic associations,
are related to gametic association, the difference between
the frequency of a multilocus haplotype and the product
of the frequencies of its constituent alleles. Linkage

disequilibrium refers to gametic association for two loci.
For closely linked loci, cotransmission of alleles at
neighboring loci from common ancestral haplotypes
causes gametic association (Nordborg and Tavaré, 2002,
for example). When pairs of haplotypes are joined to
form multilocus diploid genotypes, gametic association
gives rise to genotypic association.

Analogously to the occurrence of gametic association
in structured populations (Nei and Li, 1973; Ohta,
1982), genotypic association also occurs in structured
populations, even if component subpopulations have no
genotypic association. Because multilocus genotype
frequencies vary across the subpopulations, individual
genotypes at one or more loci provide information
about which subpopulation they belong to, and are thus
informative about the genotypes of the individual at the
other loci.

For the case of M ¼ 2; Ohta (1980) suggested that if
M loci are genotypically associated, then the proportion
of M-multihomozygotes will differ from the product of
the constituent single-locus homozygosities. Thus, for a
population i and a set of M loci, the difference DM

between M-multihomozygosity and the product of M

single-locus homozygosities—the ‘‘identity excess’’—is a
measure of genotypic association (an especially con-
venient one, if haplotype phase is not known):

DM ¼ Hi �
YM
i¼1

Him: (25)
By (2), if population i is unstructured and if the M loci
are genotypically unassociated, then DM ; termed here
the identity-in-state excess or IIS excess, equals zero.
For genotypically unassociated loci in a structured
population S, however, as shown by the multilocus
Wahlund inequality (Theorem 4) for any MX2; both
E½DM � and genotypic association coefficients that equal
DM divided by positive quantities (Ohta, 1980; Vitalis
and Couvet, 2001; Sabatti and Risch, 2002) have
positive expectation.

To illustrate this consequence of the multilocus
Wahlund inequality, we assemble structured popula-
tions from the generally unstructured human popula-
tions in the data set of Rosenberg et al. (2002). The data
set includes genotypes at 377 autosomal microsatellite
loci for 1056 individuals from 52 populations. Here we
use 375 of these loci, excluding D11S4463 and D20S201
because of uncertainty about their positions in the
genome.

For the multilocus Wahlund inequality to apply, loci
must be genotypically unassociated within component
subpopulations. Genotypic associations in an unstruc-
tured population, if present, are most likely to occur for
closely linked loci, producing negative correlation
coefficients between IIS excess statistics and genetic
distance (Hedrick and Thomson, 1986; Vitalis and
Couvet, 2001). Of 70,125 possible pairs of loci, 3395
include two loci that lie on the same chromosome. In
most of the populations, however, the genotypic
association statistic HR2 (Sabatti and Risch, 2002),
estimated for these 3395 pairs, showed little correlation
with genetic distance (Table 1). Karitiana and Surui had
the most strongly negative correlations, �0:065
(p ¼ 2� 10�4) and �0:055 (p ¼ 0:002), respectively.
Considering only the 228 pairs of loci separated by
distances of 10 cM or less, the most negative correlations
are farther from zero: �0:208 in Oroqen and �0:197 in
Karitiana. However, due to a smaller number of data
points, the p-values are larger: 0:005 and 0:003;
respectively.

These computations demonstrate that little genotypic
association is present within the individual populations.
Nevertheless, to ensure that any positive IIS excess
observed from data can be attributed to population
structure rather than to linkage, we restrict our attention
to the 66,730 pairs in which the loci lie on different
chromosomes.

We can construct structured populations by combin-
ing individuals from several populations in proportion
to sample sizes. Denote the sample size from population
i by ni and the total sample size for a collection of
populations by n. Then the contribution of population i

to the structured population is f i ¼ ni=n: Let him be the
observed proportion of homozygotes in population i for
a locus m, and let hiðm1;m2Þ

be the observed proportion of
double homozygotes for two loci, m1 and m2: Let
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Table 1

Correlation of genotypic association with genetic distance

Population Same chromosome p 10 cM

r p-value r p-value

N.A. Rosenberg, P.P. Calabrese / Theoretical Population Biology 66 (2004) 381–391386
diðm1;m2Þ
be the IIS excess for loci m1 and m2 in

population i, estimated by inserting hiðm1;m2Þ
; him1

; and
him2

into (25) (that is, diðm1;m2Þ
¼ hiðm1;m2Þ

� him1
him2

).
Finally, let wðxÞ ¼ 1 if x40; 1=2 if x ¼ 0; and 0 if xo0:
We can then compute the following quantities:
Bantu (Kenya) �.019 .332 �.052 .489

Mandenka .012 .494 .015 .820

Yoruba �.018 .311 .066 .326

San �.014 .506 .061 .453

1.
Mbuti Pygmy .012 .492 �.034 .625
m̂i ¼ h̄im—the mean over loci of the observed
proportion of homozygotes in population i.
Biaka Pygmy �.005 .760 �.043 .519
2.
Orcadian .022 .224 �.014 .838
ŝ2i ¼ dVar½him�—the variance over loci of the observed
proportion of homozygotes in population i.
Adygei .001 .956 �.144 .033
3.

Russian .019 .284 �.005 .942

Basque �.025 .144 �.005 .942

French .010 .549 .012 .858
n̂i ¼ h̄iðm1;m2Þ
—the mean over pairs of loci of the

observed proportion of double homozygotes in
population i.
Italian .022 .215 �.041 .558

Sardinian .009 .597 .012 .856

4.
Tuscan �.016 .400 �.095 .215
dVar½hiðm1;m2Þ
�—the variance over pairs of loci of the

observed proportion of double homozygotes in
population i.
Mozabite �.007 .687 .084 .209

Bedouin .005 .787 �.038 .570
5.

Druze �.024 .156 .007 .919
d̄iðm1;m2Þ
—the mean over pairs of loci of the observed

IIS excess in population i.

Palestinian �.003 .863 �.053 .424
6.

Balochi .018 .290 .017 .807
dVar½diðm1;m2Þ
�—the variance over pairs of loci of the

observed IIS excess in population i.

Brahui �.007 .689 .002 .975

Makrani �.023 .185 �.005 .938

7.
Sindhi �.014 .405 �.076 .258
w̄ðdiðm1;m2Þ
Þ—the fraction of pairs of loci with positive

IIS excess (plus half the fraction with IIS excess of zero).

Pathan �.002 .893 �.011 .866
8.

Burusho �.001 .944 �.039 .554

Hazara �.001 .965 .015 .824

Uygur .047 .014 �.042 .571

Kalash �.003 .861 .038 .569

Han .015 .390 �.028 .670

Han (N. China) �.032 .077 �.042 .550

Dai .011 .561 �.033 .653

Daur �.023 .216 .053 .463

Hezhen �.025 .185 �.014 .855

Lahu .010 .589 .061 .386

Miao .018 .338 �.046 .522

Oroqen �.002 .912 �.208 .005

She .055 .003 �.095 .183

Tujia .022 .230 .041 .554

Tu .004 .835 �.033 .650

Xibo .014 .469 �.017 .832

Yi .016 .380 �.012 .869

Mongola �.006 .753 .016 .829

Naxi �.005 .786 .046 .526

Cambodian .005 .768 .028 .692

Japanese .010 .561 �.031 .640

Yakut �.020 .252 .126 .059

Melanesian .000 .977 .041 .543

Papuan .007 .674 �.085 .203

Karitiana �.065 .0002 �.197 .003

Surui �.055 .002 �.069 .318

Colombian �.002 .908 .013 .851

Maya �.003 .865 .029 .659

Pima �.026 .133 �.010 .884

For locus pairs on the same chromosome and those separated by at

most 10 cM, r denotes the correlation coefficient between estimates of

HR2 and sex-averaged genetic distance (Weber and Broman, 2001).

For two loci, 1 and 2, HR2 (Sabatti and Risch, 2002) was estimated as

ðhið1;2Þ � hi1hi2Þ
2=½hi1ð1� hi1Þhi2ð1� hi2Þ�; where hi1; hi2; and hið1;2Þ;

respectively, denote the count estimates of homozygosity at loci 1

and 2 and the count estimate of double homozygosity. The estimate

was set to 1 if differing amounts of missing data for two loci in a pair

led to a value above 1. Pairs with a value of zero for the denominator

of the estimate were omitted from consideration. The p-values do not

account for multiple comparisons. Populations are grouped by region
w̄ðd̄
boot

iðm1;m2Þ
Þ—the fraction of bootstrap resamples from

the collection of values of diðm1;m2Þ
for which the mean

of the resampled quantities is positive (plus half the
fraction for which this mean equals zero).

For an unstructured population i, given m̂i and
assuming that loci are genotypically unassociated in
the population, the predicted mean across pairs of loci
of the proportion of double homozygotes is m̂2i ; and the
predicted mean across pairs of the IIS excess, d̄iðm1;m2Þ

; is
0. Although the distribution of diðm1;m2Þ

need not be
symmetric, w̄ðdiðm1;m2Þ

Þ is predicted to be near 1=2—
slightly less than 1/2 in most populations (Appendix B).
This prediction, together with the prediction d̄iðm1;m2Þ

¼

0; suggests that w̄ðd̄
boot

iðm1;m2Þ
Þ should not be near 1.

Observations for the individual populations generally
match these predictions (Table 2), with most popula-
tions having jd̄iðm1;m2Þ

jt10�3; w̄ðdiðm1;m2Þ
Þ � 1=2; and

w̄ðd̄
boot

iðm1;m2Þ
Þo0:95 (but see Appendix B).

For a structured population S comprised of I

unstructured populations, however, conditional on the
values of m̂i and f i; the predicted mean proportion of
double homozygotes is (assuming that loci are genoty-
pically unassociated in each component population)

n̂�i ¼
XI

i¼1

f im̂
2
i : (26)

Using (15) and (16) with M ¼ P ¼ 2; the mean predicted
IIS excess, which by Theorem 4 is positive, equals

d̄
�

Sðm1;m2Þ
¼
XI

i¼1

f im̂
2
i �

XI

i¼1

f im̂i

 !2

(27)
(Rosenberg et al., 2002).
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Table 2

Homozygosity and double homozygosity statistics for individual populations

Population Sample m̂i ŝ2i n̂i dVar½hiðm1 ;m2 Þ
� d̄iðm1 ;m2 Þ

dVar½diðm1 ;m2 Þ
� w̄ðdiðm1 ;m2 Þ

Þ w̄ðd̄
boot

iðm1 ;m2 Þ
Þ

size (�10�3) (�10�4) (�10�3)

Bantu (Kenya) 12 .228 .024 .052 5.47 �1.04 2.39 .433 .293

Mandenka 24 .231 .012 .053 2.77 �1:21 1.34 .459 .201

Yoruba 25 .223 .013 .050 2.67 1.28 1.24 .462 .786

San 7 .239 .032 .057 8.77 �0:32 4.19 .428 .519

Mbuti Pygmy 15 .232 .019 .054 4.35 �1:72 2.03 .427 .165

Biaka Pygmy 36 .229 .012 .052 2.39 0.34 0.98 .478 .640

Orcadian 16 .252 .019 .064 4.86 1.68 2.09 .458 .801

Adygei 17 .251 .015 .063 4.21 0.12 2.08 .454 .491

Russian 25 .250 .014 .062 3.42 1.51 1.51 .480 .824

Basque 24 .265 .013 .070 3.71 0.06 1.75 .481 .563

French 29 .252 .012 .064 2.89 1.18 1.25 .478 .839

Italian 14 .260 .021 .067 6.11 �1:80 2.89 .443 .173

Sardinian 28 .255 .011 .065 3.01 �0:94 1.39 .477 .292

Tuscan 8 .242 .029 .058 9.38 �0:41 5.33 .412 .371

Mozabite 30 .246 .010 .061 2.55 3.39 1.24 .480 .991

Bedouin 49 .272 .009 .075 2.37 8.40 0.86 .501 1

Druze 48 .277 .009 .077 2.40 7.37 0.95 .502 1

Palestinian 51 .258 .009 .067 2.06 4.15 0.77 .491 .999

Balochi 25 .289 .014 .084 4.53 7.05 1.91 .493 1

Brahui 25 .271 .013 .074 3.83 2.60 1.69 .485 .953

Makrani 25 .276 .012 .078 3.57 15.50 1.63 .500 1

Sindhi 25 .270 .013 .074 3.64 16.10 1.63 .505 1

Pathan 25 .280 .013 .081 3.92 24.87 1.74 .519 1

Burusho 25 .254 .013 .065 3.28 1.67 1.38 .475 .884

Hazara 25 .261 .012 .068 3.31 1.95 1.51 .488 .895

Uygur 10 .254 .026 .065 7.55 5.65 3.56 .442 .999

Kalash 25 .286 .018 .082 4.90 0.82 1.62 .487 .731

Han 35 .284 .016 .081 3.91 �2:57 1.20 .478 .033

Han (N. China) 10 .280 .032 .078 9.70 �1:48 3.71 .431 .311

Dai 10 .280 .031 .078 9.69 2.90 3.89 .454 .882

Daur 10 .274 .029 .075 9.51 1.60 4.35 .441 .737

Hezhen 10 .288 .034 .083 11.57 1.26 4.59 .449 .686

Lahu 10 .299 .032 .089 10.47 �1:25 3.93 .454 .304

Miao 10 .290 .030 .084 9.69 �3:85 3.73 .450 .043

Oroqen 10 .282 .032 .079 9.93 �2:04 3.99 .448 .199

She 9 .294 .033 .087 10.94 2.51 4.23 .452 .817

Tujia 10 .297 .032 .088 10.98 �1:52 4.43 .450 .273

Tu 10 .279 .032 .078 9.60 2.39 3.57 .446 .828

Xibo 9 .262 .033 .069 9.18 3.80 3.63 .448 .933

Yi 10 .276 .030 .076 9.37 2.56 3.98 .443 .854

Mongola 10 .274 .030 .075 8.94 3.56 3.73 .448 .938

Naxi 10 .284 .032 .080 9.67 1.74 3.57 .443 .703

Cambodian 11 .261 .027 .068 7.64 0.52 3.22 .435 .613

Japanese 32 .289 .017 .083 4.43 �0:40 1.35 .487 .432

Yakut 25 .282 .015 .080 4.28 1.04 1.62 .494 .677

Melanesian 22 .321 .034 .103 10.49 1.00 2.55 .471 .654

Papuan 17 .326 .025 .106 8.77 �1:24 2.75 .480 .263

Karitiana 24 .405 .043 .164 17.60 9.38 2.09 .508 1

Surui 21 .464 .057 .215 30.36 �1:16 2.68 .501 .268

Colombian 13 .383 .043 .147 17.96 5.15 3.71 .500 .981

Maya 25 .313 .019 .099 5.82 5.85 1.82 .498 1

Pima 25 .367 .033 .135 11.84 2.75 1.99 .496 .931

Calculations are based on 375 loci and 66,730 pairs of loci (66,676 in Tuscan and 66,728 in Yi, after excluding pairs for which every individual was

missing genotypes at one or both loci of the pair). w̄ðd̄
boot

iðm1 ;m2Þ
Þ was obtained using 1000 bootstrap resamples.

N.A. Rosenberg, P.P. Calabrese / Theoretical Population Biology 66 (2004) 381–391 387
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Table 3

Homozygosity and double homozygosity statistics for example structured populations

(Structured) population Sample size m̂i ŝ2i n̂i dVar½hiðm1 ;m2Þ
� (�10�3) d̄iðm1 ;m2Þ

(�10�4) dVar½diðm1 ;m2Þ
� (�10�3) w̄ðdiðm1 ;m2Þ

Þ w̄ðd̄
boot

iðm1 ;m2Þ
Þ

World 1056 .279 .005 .080 0.81 22.41 0.05 .620 1

.080 19.54

Africa+Oceania 158 .252 .007 .065 1.16 14.63 0.27 .523 1

.065 16.37

America 108 .384 .018 .150 6.49 27.06 0.60 .541 1

.150 25.73

‘‘Structured’’ 100 .297 .009 .096 2.66 75.37 0.63 .602 1

.097 78.65

Calculations are based on 375 loci and 66,730 pairs of loci. w̄ðd̄
boot

iðm1 ;m2Þ
Þ was obtained using 1000 bootstrap resamples. For n̂i and d̄iðm1 ;m2Þ

; the predicted
values based on (26) and (27) are given below the values observed in the data. From top to bottom, the four examples shown are structured

populations comprised of (1) the entire data of 52 populations, (2) the individuals from Africa and Oceania with each region treated as a

subpopulation, (3) the five populations from the Americas, and (4) four populations from separate continents (see Fig. 1).

N.A. Rosenberg, P.P. Calabrese / Theoretical Population Biology 66 (2004) 381–391388
(in (26) and (27), the asterisk is used to denote a
predicted rather than observed value). The quantity
w̄ðdSðm1;m2Þ

Þ is expected to be larger than 1/2, with

w̄ðd̄
boot

Sðm1;m2Þ
Þ close to 1.

As was true for the unstructured populations,
observations for example structured populations also
matched the predicted values (Table 3). In particular,
the predicted surplus of double homozygotes was
observed in the structured populations: unlike in the
unstructured populations, mean IIS excess values were
all positive. The structured populations generally had
d̄Sðm1;m2Þ

values larger than positive component IIS
excesses by factors of 5–20, with w̄ðd̄

boot

Sðm1;m2Þ
Þ values of

1. The distribution of dSðm1;m2Þ
values across loci in

structured populations was skewed to the right (Fig. 1),
with w̄ðdSðm1;m2Þ

Þ noticeably greater than 1/2 (Table 3).
5. Conclusions

We have extended the Wahlund inequality to show
that structured populations are expected to contain
more M ;P-homozygotes than corresponding unstruc-
tured populations. The extension enables definitions of
multilocus identity coefficients analogous to FST : More-
over, the multilocus Wahlund inequality suggests that
IIS excess statistics are expected to be positive in
structured populations, as was observed in examples
from human groups. Even in a species such as humans,
in which individuals are fairly closely related, the two-
locus Wahlund inequality generates a noticeable excess
of double homozygotes. Positively biased IIS excess is
also a property of closely linked loci (Hedrick and
Thomson, 1986; Ohta, 2000; Vitalis and Couvet, 2001);
thus, similarly to the multiple potential interpretations
of other association measures, positive IIS excess need
not be viewed as evidence of linkage when population
structure might provide an alternate explanation.
Appendix A

Here we derive (15)–(19). Using the independence of
the Him; the expectation of a product of two or more of
these random variables equals the product of the
expectations. Results (17)–(19) follow from Var½HS� ¼

E½H2
S� � E½HS�

2; Var½HV � ¼ E½H2
V � � E½HV �

2; and
Cov½HS;HV � ¼ E½HSHV � � E½HS�E½HV �:

E½HS� ¼ E
XI

i¼1

f i

YM
m¼1

Him

" #

¼
XI

i¼1

f iE
YM
m¼1

Him

 !

¼
XI

i¼1

f im
M
i ; ð28Þ
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YM
m¼1

XI

i¼1

f iHim
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¼
YM
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E
XI
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f iHim

 !
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XI
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 !M
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XI
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f i
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 !2
24 35
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YM
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Fig. 1. Frequency distribution of the IIS excess estimate diðm1 ;m2Þ

across 66,730 pairs of loci. For Surui, 20 IIS excess values fell outside

of ½�0:25; 0:25�; largely as a result of a particularly small sample size at

one specific locus (in general, sample size is the major determinant of

the variability across pairs in IIS excess).
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Appendix B

Suppose population i is unstructured and that loci 1
and 2 are genotypically unassociated in population i.
Consider a sample of size ni: If loci 1 and 2 have true
homozygosities Hi1 and Hi2; the probability that
the sample includes l1 homozygotes at locus 1, l2
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Table 4

Fractions of locus pairs with zero, one, and two of the two loci having

estimated homozygosity in ð0:5; 1�

Population 0 1 2

Bantu (Kenya) .916 .082 .002

Mandenka .963 .037 o.001

Yoruba .963 .037 o.001

San .866 .130 .005

Mbuti Pygmy .942 .057 o.001

Biaka Pygmy .974 .026 o.001

Orcadian .937 .062 o.001

Adygei .953 .047 o.001

Russian .947 .052 o.001

Basque .942 .057 o.001

French .958 .042 o.001

Italian .891 .106 .003

Sardinian .979 .021 o.001

Tuscan .916 .082 .002

Mozabite .979 .021 o.001

Bedouin .963 .037 o.001

Druze .973 .027 o.001

Palestinian .979 .021 o.001

Balochi .910 .088 .002

Brahui .953 .047 o.001

Makrani .932 .067 .001

Sindhi .948 .052 o.001

Pathan .927 .072 .001

Burusho .948 .052 o.001

Hazara .947 .052 o.001

Uygur .927 .072 .001

Kalash .866 .129 .005

Han .901 .096 .002

Han (N. China) .832 .161 .007

Dai .861 .134 .005

Daur .891 .106 .003

Hezhen .813 .178 .009

Lahu .813 .178 .010

Miao .861 .134 .005

Oroqen .846 .148 .006

She .779 .208 .013

Tujia .808 .182 .010

Tu .831 .161 .008

Xibo .827 .166 .008

Yi .847 .147 .006

Mongola .881 .115 .003

Naxi .817 .174 .009

Cambodian .836 .157 .007

Japanese .875 .121 .004

Yakut .932 .067 .001

Melanesian .714 .262 .024

Papuan .779 .208 .013

Karitiana .530 .397 .073

Surui .382 .473 .145

Colombian .602 .348 .050

Maya .847 .147 .006

Pima .683 .287 .030
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homozygotes at locus 2, and l12 double homozygotes
(0pl12pminðl1; l2Þpni), is

Rl1l2l12 ¼
ni

l1

� �
H

l1
i1ð1� Hi1Þ

ni�l1

�
ni

l2

� �
H

l2
i2ð1� Hi2Þ

ni�l2

l1
l12

� �
ni�l1
l2�l12

� �
ni
l2

� � :

The ratio of binomial coefficients gives the probability
that the l1 homozygotes at locus 1 and the l2
homozygotes at locus 2 overlap in exactly l12 indivi-
duals.

Because dið1;2Þ ¼ l12=ni � ðl1=niÞðl2=niÞ; dið1;2Þ40 if
l124l1l2=ni: Thus, taking into account all possible
sample configurations ðl1; l2; l12Þ; given ni; Hi1; and Hi2;

E½wðdið1;2ÞÞ� ¼
Xni

l1¼0

Xni

l2¼0

�
1

2
Rl1l2g þ

Xminðl1;l2Þ

l12¼dge

Rl1l2l12

" #
; (33)

where g ¼ l1l2=ni: In the summation, Rl1l2g is set to zero
if g is not an integer.

For small sample sizes, with Hi1;Hi2 2 ½0; 0:5�; as was
true of most locus pairs in most populations (Table 4),
E½wðdið1;2ÞÞ� was usually in ½0:4; 0:5� (Fig. 2). Thus, (33)
predicts that in unstructured populations with the
homozygosities and sample sizes typical of the Rosen-
berg et al. (2002) data, the proportion of pairs of
genotypically unassociated loci with positive estimated
IIS excess will be slightly smaller than 1/2. This
prediction was generally satisfied (Table 2). In the
instances when it was not satisfied, three main factors
were responsible.

First, as the fraction of locus pairs with one
homozygosity in ½0; 0:5� and the other in ð0:5; 1�
increases, the effect of sampling is to inflate E½wðdið1;2ÞÞ�

(Fig. 2). Thus, Surui, Karitiana, and Colombian,
comparatively homozygous Native American popula-
tions with relatively large numbers of such pairs (Table
4), were among the groups with the highest values of
w̄ðdiðm1;m2Þ

Þ:
Second, as sample size increases, the effect of

sampling on E½wðdið1;2ÞÞ� is reduced, as can be seen by
comparing at different sample sizes the proportion
of possible values ðHi1;Hi2Þ for which
E½wðdið1;2Þ�e½0:49; 0:51� (Fig. 3). Thus, populations with
larger samples tended to produce values of w̄ðdiðm1;m2Þ

Þ

nearer 1/2, with the correlation coefficient between
sample size and jw̄ðdiðm1;m2Þ

Þ � 1=2j equaling �0:747
(po10�4).

Finally, population structure inflates values of the IIS
excess, so that structured populations are likely to have
more locus pairs with diðm1;m2Þ

40: Thus, populations of
the Middle East and Central/South Asia with noticeable
levels of population structure, as reflected in hetero-
geneous individual ancestry (Rosenberg et al., 2002,
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Fig. 2. E½wðdið1;2ÞÞ�; computed from (33) with ni ¼ 10 (left), ni ¼ 25

(right). From lightest to darkest, the shades represent values of

E½wðdið1;2ÞÞ� in ½0; 0:3Þ; ½0:3; 0:35Þ; ½0:35; 0:4Þ; ½0:4; 0:45Þ; ½0:45; 0:5Þ; f0:5g;
ð0:5; 0:55�; ð0:55; 0:6�; ð0:6; 0:65�; ð0:65; 0:7�; and ð0:7; 1�: The shades

corresponding to ½0:45; 0:5Þ and ð0:5; 0:55� occupy most of the area in

both plots.
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Fig. 3. E½wðdið1;2ÞÞ�; computed from (33) with ni ¼ 10 (left), ni ¼ 25

(right). This figure is based on exactly the same values of E½wðdið1;2ÞÞ� as

Fig. 2, the only difference being that the central shade, covering a

substantial portion of both the left and right plots, represents

½0:49; 0:51� instead of f0:5g (also, its neighboring shades represent

½0:45; 0:49Þ and ð0:51; 0:55� instead of ½0:45; 0:5Þ and ð0:5; 0:55�).
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Fig. 2) were among those with the highest values of
w̄ðdiðm1;m2Þ

Þ: In these groups, population structure also led
to large values of d̄iðm1;m2Þ

and w̄ðd̄
boot

iðm1;m2Þ
Þ: If other

influences on IIS excess can be ruled out, these
observations suggest the possibility of using properties
of the IIS excess between unlinked loci as test statistics
for the hypothesis that a population is unstructured.
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