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SUMMARY

Outbreaks of infectious disease can be con/rmed by identifying clusters of DNA /ngerprints among
bacterial isolates from infected individuals. This procedure makes assumptions about the underlying
properties of the genetic marker used for /ngerprinting. In particular, it requires that each /ngerprint
changes su2ciently slowly within an individual that isolates from separate individuals infected by
the same strain will exhibit similar or identical /ngerprints. We propose a model for the probability
that an individual’s /ngerprint will change over a given period of time. We use this model together
with published data in order to estimate the /ngerprint change rate for IS6110 in human tuberculosis,
obtaining a value of 0.0139 changes per copy per year. Although we focus on insertion sequences (IS),
our method applies to other /ngerprinting techniques such as pulsed-/eld gel electrophoresis (PFGE).
We suggest sampling intervals that produce the least error in estimates of the /ngerprint change rate,
as well as sample sizes that achieve speci/ed levels of error in the estimate. Copyright ? 2001 John
Wiley & Sons, Ltd.

1. INTRODUCTION

Molecular technology for the identi/cation of pathogenic strains has recently revealed impor-
tant patterns of strain variation in infectious diseases such as tuberculosis [1; 2], salmonella
[3; 4] and rice blight [5; 6]. Known as DNA /ngerprints, molecular signatures of pathogenic
strains are usually based on restriction fragment length polymorphisms. For instance, the
technique of pulsed-/eld gel electrophoresis (PFGE) involves digesting a genome with a rare-
cutting restriction enzyme and separating the fragments using appropriate conditions [7–9].
Another commonly used method for generating /ngerprints utilizes the variation produced by
insertion sequence (IS) elements in the genome of the pathogenic agents. With time, IS ele-
ments can shift locations, replicate into other genomic positions, and can be excised from the
genome. Collectively, we refer to these changes in the number and positions of IS elements
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Table I. A representative list of IS elements used for /ngerprinting in molecular epidemiology.

Organism Insertion sequence(s) Reference

Bordetella spp. IS1001 [27]
Lactobacillus helveticus ISL2 [28]
Mycobacterium tuberculosis IS6110 [1; 2; 10]
Mycoplasma incognitus IS-like elements [29]
Salmonella spp. IS200 [30; 3; 4]
Shigella spp. IS1 and IS2 [31]
Streptomyces spp. IS1629 [32]
Xanthomonas oryzae IS1112 [5]
Yersinia spp. IS200-like element [33]

as transposition events. Polymorphism among strains results from variation in the number
of elements, or the copy number, and their positions in the genome of the pathogen. Since
they facilitate a relatively rapid and straightforward assessment of genotypes among strains
of an infectious agent, IS elements are convenient genetic markers. Indeed, much recent re-
search eJort has been devoted to the identi/cation and characterization of IS elements for
/ngerprinting a variety of bacterial pathogens (Table I).
Once IS elements have been identi/ed for a pathogen of interest, studies can utilize IS-based

polymorphisms to investigate potential epidemics [10]. The relatedness of /ngerprint genotypes
can be used as a supplement to conventional epidemiological techniques, such as contact
tracing based on socio-demographic data, as a method of clustering infected individuals [1; 2].
At the population level, if a set of identi/ed strains share the same or similar /ngerprints, it is
inferred that they derive from the same source, and that an outbreak of recent origin may be
responsible. Clusters of related /ngerprints are used in tuberculosis research, for example, since
it is important to know the extent to which newly identi/ed cases derive from reactivation
of latent infections, compared to the amount due to recent disease transmission originating
at a common source [2; 11–13]. This information can then be used to direct programmes
for the control of the disease: should control strategies attempt to target modes of disease
transmission or should they limit the reactivation of latent infections?
The use of molecular data to make assessments about whether a sample of isolates implies

the existence of an epidemic requires fairly precise knowledge of the rate at which /ngerprints
change [14–16]. If the DNA marker changes very rapidly, isolates derived from the same
source will be strongly diJerentiated, and without proper knowledge of the /ngerprint change
rate, the severity of outbreaks may be underestimated. If the marker changes very slowly,
however, little variation in /ngerprints will be observed, and knowledge of the change rate is
necessary in order to avoid overestimation of the magnitude of an outbreak. With a slowly
changing marker, if the observed polymorphism is great, the variation is likely to be old, and
the disease is probably endemic at low frequency in the population. It is therefore crucial to
verify that the /ngerprint change rate of a marker is neither too high nor too low for use in
molecular epidemiology.
Empirical estimates of transposition rates have been made for IS elements IS1, 2, 3, 4, 5,

30, 150 and 186 in Escherichia coli [17]. Using a linear regression model and assuming that
strains of all copy numbers undergo the same rate of change, Naas et al. [17] arrived at an

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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estimate of 0.08 changes (gain or loss of bands) per year per culture, which, when divided
by a typical copy number of 10, gives 0.008 changes per transposable element per culture
per year. Although this method is eJective, it can be improved by taking into account the
copy number associated with each strain, since it is known that high-copy strains change more
rapidly than low-copy strains (for example, see references [18; 16]).
Relatively fast changes in /ngerprint patterns based on IS6110 have been observed in

Mycobacterium tuberculosis [19; 16], from which preliminary estimates of /ngerprint change
rates can be calculated. De Boer et al. [14] used survival analysis – modelling the survival
of the identity of /ngerprints over time as a process of exponential decay – to estimate the
rate of IS-based /ngerprint changes. Using IS6110 data, they concluded that the half-life of
an individual /ngerprint was 3.2 years. The 95 per cent con/dence interval for this /gure
corresponds to a rate of 0.0138–0.0330 changes per element per year if we assume that a
typical copy number is 10. This method is useful, but it can be improved by taking copy
number into account and by using sample intervals more e2ciently. In their Figure 1, de
Boer et al. [14] con/rm that high copy strains tend to change faster than low copy strains,
demonstrating that copy number could be incorporated in order to provide information about
the /ngerprint change rate. Additionally, actual sampling times could potentially be used in
place of discretized values.
We propose here a systematic procedure for quantifying rates of /ngerprint change, which

incorporates the fact that strains of diJerent copy number change at diJerent rates. We distin-
guish transposition rates and .ngerprint change rates. Transposition rates are usually reported
in units of events per cell division in cultured bacteria [20]. We suggest a related but alter-
native parameter that is more directly applicable to epidemiological situations that involve
within-host dynamics of pathogen populations. Fingerprint change rates describe the rate at
which each band in a DNA /ngerprint changes over time and they subsume all pathogen
population processes within an individual [21; 22] that may aJect the genetic identi/cation
of isolates. A /ngerprint change within a host or culture results from a transposition event
followed by replacement of a pre-existing strain by the transposed strain. We assume in our
model that a /ngerprint of an isolate indicates the presence of only a single strain within an
individual; as /ngerprinting techniques mature so that the relative frequencies of bacteria of
multiple strains in an individual can be measured and understanding of within-host processes
improves, our procedure should be revisited.
In this article, we propose an e2cient method for estimating the rate of change of IS-

based /ngerprints. We also suggest how to optimize experimental design to extract maximal
information about transposition rates from a full genetic data set.

2. OPTIMAL ESTIMATION OF CHANGE RATES

2.1. A model for changes in IS .ngerprints

We model the number N (t) of /ngerprint changes in a given individual during time interval t
as a Poisson process, with the rate of the process proportional to the individual’s copy num-
ber k. This model assumes that copies mutate independently of each other and that diJerences
among strains in the ability to proliferate and replace competing strains are not systematically
related to copy number. We let � be the rate of the process when the copy number is 1; that

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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Table II. The likelihood of /ngerprint outcomes. The /ngerprint for each typed individual
behaves as a Bernoulli trial with parameter based on the copy number, the interval between
/ngerprints and the /ngerprint change rate. First partial derivatives of lnf, which are used

in the derivation of optimal sampling intervals, are also given.

g f(g; k; t|�) @
@� lnf(g; k; t|�)

0 1− w(k; t; �)= e−(k�)t −kt
1 w(k; t; �)= 1− e−(k�)t kte−k�t =(1− e−k�t)

is, � is the instantaneous /ngerprint change rate measured in units of changes per copy per
unit time (we use years for the time unit). Because transposition events are assumed to be
independent of one another, the instantaneous rate of change of a k-copy strain is k�. Thus,
for changes that do not aJect copy number, the probability of j changes occurring in a k-copy
strain over a time-span t would be

Pr[N (t)= j]=
(k�t) je−k�t

j!
(1)

However, experimental methods do not usually permit the exact number of transposition events
that took place during the time period between two /ngerprints. Therefore, we group all
possible changes into a single class. This also circumvents the problem that k� changes after
the /rst change in copy number. We de/ne w(k; t; �) to be the probability of at least one
change occurring in the /ngerprint of a k-copy strain during time t:

w(k; t; �)=Pr[N (t)¿1]=1− e−k�t (2)

We let G be a Bernoulli trial which takes the value 1 with probability Pr[N (t)¿1]. Table II
indicates the likelihood function f of the measurements k and t for a single individual, together
with the observation g of the random variable G, conditioned on the unknown parameter �.
Although we use a speci/c model to estimate the rate of /ngerprint change, the method can

readily be modi/ed to implement diJerent models. For instance, we can include regulation
of transposition [23]; one way to model this phenomenon is to set the transposition function
w(k; t; �) such that events become less likely as copy numbers increase beyond a certain value.
Further parameters specifying the nature of additional features must then be jointly estimated.

2.2. Estimating the .ngerprint change rate

Each isolate (individual), i, where i=1; : : : ; n, and where n is the total number of isolates
examined, is /ngerprinted at two times that are separated by an intervening length of time
ti. Let ki be the copy number of strain i in the initial /ngerprint. By the time of the sec-
ond /ngerprinting, a change may have occurred in the /ngerprint. This change represents a
mutation in the IS elements of one pathogen followed by the replacement of the infectious
strain by these mutant pathogens. We do not allow the possibility of multiple distinguishable
/ngerprints from a single isolate.
For each isolate, we measure three quantities: the observation or whether or not a change

occurred (g); the copy number initially associated with the strain (k), and the time interval
between the two samplings of the same isolate (t). The ith observation is associated with a
vector (gi; ki; ti).

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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Figure 1. The log-likelihood curve (LnL) for the parameter �, using data from Niemann et al. [15].

The likelihood of the observed data set, in which the /ngerprint change rate � is unknown,
is

Lik(�)=
n∏
i=1
f(gi; ki; ti|�) (3)

Maximizing this likelihood with respect to � gives rise to the maximum likelihood estimate
(MLE), �̂, of the /ngerprint change rate.

Niemann et al. (reference [15], Table I) report a sample consisting of n=56 cases, us-
ing IS6110 in Mycobacterium tuberculosis, of the appropriate nature for the application of
our method. Numerical maximization of the likelihood of these data yields an estimate of
�̂=0:0139 per element per year for the /ngerprint change rate of IS6110. We show the likeli-
hood curve for these data in Figure 1. The curve is well-behaved, in that it has a single peak.
An approximate standard deviation of the MLE, which derives from the asymptotic normality
of maximum likelihood estimators, is

s�̂=

(
n∑
i=1

(kiti)2e−ki �̂ti

1− e−ki �̂ti

)− 1
2

(4)

as discussed in the Appendix A. For the data set from Niemann et al. [15], a 95 per cent
con/dence interval for the MLE is (0.0028, 0.0251).
We note that the 95 per cent con/dence interval of the /ngerprint change rate derived

from the estimates of de Boer et al. [14] is of comparable magnitude to ours. However, the
greater e2ciency of maximum likelihood methods together with our incorporation of copy
number information into our mutation model allows us to achieve similar precision using a
substantially smaller data set.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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2.3. Optimal sampling

We suggest two ways in which the sampling protocol may be improved to address the preci-
sion of the maximum likelihood estimator. First, if the sampling time interval is chosen at the
discretion of the experimenter, as may be the case for pathogens in laboratory or domesticated
animals, we can /nd the optimal time yielding the least error in the estimate. Second, we /nd
the sample size required to achieve a particular desired level of precision.
The variance of the maximum likelihood estimator, (s2

�̂
), depends on copy numbers, sam-

pling intervals, and the estimator of the /ngerprint change rate, �̂. By minimizing s2
�̂

with
respect to the sampling interval t, we can /nd the optimal sampling interval for a strain with
a given copy number. In Appendix A, we show that this optimal sampling interval is given
approximately by

topt(k; �̂)=
�

k�̂
(5)

where � is a constant whose value is approximately 1.5936. In this way, the optimal sampling
time for each individual, associated with a strain of a given copy number, can be determined.
When we later consider the sample sizes required for particular levels of precision, we must
take into account the entire distribution of copy numbers rather than assuming a single copy
number.
In order to check that the approximations involved in determining the optimal sampling

interval are reasonable, we simulated samples of strains undergoing the stochastic transposition
process described in Section 2.1. For each simulated sample, we used a given copy number
(5, 10 or 15) for every strain, a particular sampling interval, and a sample size of 56, identical
to that of Niemann et al. [15]. We used the value �0 = 0:0139 for the /ngerprint change rate.
The MLE was calculated for each simulated sample, and 10 000 replicates were simulated
for each combination of copy number and sampling interval. The standard deviation of the
distribution of the MLE was computed over these replicates for each combination. Figure 2
shows the simulated standard deviations under diJerent sampling intervals.
The optimal sampling intervals for copy numbers k=5, 10 and 15 are, respectively, 22.93,

11.46 and 7.64 years. In separate simulations, we used these times to calculate the simulated
optimal standard deviations, which can be compared to the theoretical value. Note that when
using topt, the theoretical standard deviation of MLEs (4) is independent of copy number.
Thus, with a given sample size, the minimum possible standard deviation should be equal for
all copy numbers, with a given sample size. The simulated values are presented in Table III,
and they lie close to the predicted values.
Figure 2 shows that the standard deviations are high when the sampling interval is much

lower than the optimal sampling interval, and that they decrease as the sampling interval ap-
proaches topt. When the sampling interval is substantially higher than the optimal interval,
occasionally the /ngerprints of all individuals in the sample change during the time interval.
If all the /ngerprints change, the likelihood function is maximized when � is the maximum
of the allowed domain. We therefore do not report the irregular and high standard deviations
for sampling intervals beyond the optimum. We also note that the longest time interval (10
years) used in Figure 2 is beyond limits of feasibility in empirical studies.
We now consider the sample size required to achieve a desired precision. The analysis of

optimal sampling intervals above requires that the time of second sampling can be controlled.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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Figure 2. Standard deviations of simulated MLEs. Sample size n=56; �=0:0139;
10 000 replicates for each sampling time interval=copy-number. Solid line: k =15 copies;

dot-dashed: k =10 copies; dashed: k =5 copies.

Table III. Simulated standard deviations, assuming �=0:0139, calculated from 10 000
replicates for each copy number. The theoretical standard deviation for �=0:0139, n=56

and any copy number is 0.002308.

Copies topt Simulated SD

5 22.93 0.00246
10 11.46 0.00245
15 7.64 0.00248

Because this will not always be the case, as with human diseases in which patients are
sampled during hospital visits, we also examine the situation in which distributions of sampling
intervals and copy numbers are given, and we ask what sample size is required in order to
ascertain the change rate to a speci/ed level of con/dence. That is, we /nd the relationship
between sample size and standard deviation of MLEs when empirical copy numbers and
sampling time intervals are used. We again take advantage of a simulation approach, similar
to that used above. The method is as follows.
The size of each simulated sample is taken from the set {40; 50; 60; : : : ; 190}. Each isolate

is associated with a copy number drawn from a prespeci/ed distribution of copy numbers,
and a sampling interval drawn independently from a distribution of times. The empirical
copy number distribution used here is taken from the set of /ngerprints presented in Tanaka

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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Figure 3. Standard deviation (SD) of MLE of /ngerprint change rate as a function of sample size (n).
For each sample size 100 000 replicates were simulated.

et al. [24]. The empirical distribution of sampling intervals is taken from Niemann et al.
[15]. With �=0:0139, we simulate the stochastic process described above, for each isolate.
The MLE of the /ngerprint change rate is calculated from the sample. For each sample size,
100 000 replicates were simulated, and the standard deviation of the MLEs calculated over
these replicates.
Figure 3 plots the resulting standard deviations as a function of sample size. Thus, for

example, for the standard deviation to be as low as 0.004, which is 29 per cent of the
underlying value of �, a sample size of n=150 is required. We note that a more de-
tailed consideration of this issue as a cost-bene/t problem can yield a preferred sample
size.

3. DISCUSSION

This article proposes an e2cient method for estimating the rate of DNA /ngerprint changes;
the e2ciency of the method stems from the fact that it makes use of the information con-
tained in copy numbers and sampling times. In addition, we suggest ways of improving the
experimental design by optimizing the sampling interval or increasing the sample size appro-
priately.
We note that the optimal sampling interval and s�̂ depend in interesting ways on the value

of the /ngerprint change rate and the copy numbers of the genotyped strains. For any copy
number, at the optimal sampling interval, the fraction of /ngerprints which have changed is
approximately 0.7968, as given by the equation w(k; t; �) = 1−e−k�topt = 1−e−k�(�=k�̂) � 1−e−�.
The optimal sampling interval topt decreases as the copy number (k) increases. Since high-
copy strains change faster than low-copy strains, it takes less time before this optimal fraction

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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of /ngerprints with high copy number have changed. A sampling protocol for estimating
/ngerprint change rates might therefore focus on high-copy individuals, since it takes less
time for them to produce more precise rate estimates.
The optimal sampling interval also decreases as �̂ increases. This relationship derives from

the fact that higher transposition rates lead to faster changes and it takes less time for the
optimal fraction of /ngerprints to have changed.
The optimal sampling interval for IS elements will generally be very high, even when the

/ngerprint change rate is larger than that used in this study. For example, even with extreme
values of k = 30 and �=0:05, topt is about one year. Our study of the data of Niemann et al.
[15] leads us to suggest that if diJerent families of IS elements have relatively similar rates
of change, long sampling intervals should also be used to measure /ngerprint change rates
for other IS elements besides IS6110.
For time-pressured epidemiological applications, we have identi/ed a trade-oJ between

obtaining /ngerprint change rates quickly and obtaining them with precision. Our analysis
suggests that if the goal of an experiment is to estimate the /ngerprint change rate precisely,
one should wait as long as practical considerations allow before taking the second sample. In
practice, the maximal allowable time generally will not exceed the optimal sampling interval.
However, a less precise estimate can be produced in a short amount of time, though we
recommend intervals of at least one year when possible.
This approach is reasonable, as indicated by the rapid decay in the standard deviation in

�̂ with respect to topt, as the optimal value is approached, especially when copy numbers are
high (Figure 2). When long time intervals are available to researchers, the sampling interval
can be decided on the basis of individual /ngerprint scores, so that the second /ngerprints of
diJerent individuals are taken at diJerent times.
The modelling framework we have used assumes a fairly simple transposition process. Ex-

tensions could incorporate, for example, regulation of transposition (or copy number control),
temporally heterogeneous transposition rates, within-host selective sweeps dependent on copy
number, or multiple transpositions with diJerent transposition rates. The speci/c nature of
the transposition process provides an equation for the probability, w, of a change during the
sampling interval. With more complicated expressions for w, the rest of our method can pro-
ceed in the same way, by maximizing the likelihood of observations and then minimizing the
sampling variance with respect to time.
If multiple parameters are jointly estimated, as would occur if for instance regulation were

incorporated, the analysis would utilize analogous multidimensional results from maximum
likelihood theory (see reference [25], for example). An optimality condition on the sampling
interval can be obtained by minimizing an appropriate function of the variances of the para-
meters [26].
Extensions of the analysis are also possible with respect to the sampling regime; con/dence

intervals on the rate estimate can be decreased if individuals are /ngerprinted more than twice.
Thus, an optimal sampling scheme can be devised to identify multiple times at which to screen
individuals.
Our methods can be generalized to molecular markers other than insertion sequences, for

which diJerent expressions for w can be proposed. Using a model for how changes take place
over time, parameters representing the rate of change can be optimally inferred. With pulsed-
/eld gel electrophoresis (PFGE), which is commonly used in molecular epidemiology for the
purpose of genetic /ngerprinting, our method can be applied directly without modi/cation.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2409–2420
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Assuming that new restriction sites do not appear, the estimated parameter will be the rate of
change of each existing restriction site (in units of changes per site per year).
A useful consequence of the precise estimation of /ngerprint change rates is that if more

than a single family of IS elements have been characterized for a given bacterial pathogen,
the most informative element for epidemiology can be selected for further use as a marker.
For a marker to be useful in epidemiology, its rate of change must be commensurate with
the rate at which the disease spreads. The exact criteria for commensurability remain to be
determined.

4. CONCLUSIONS

We propose the following paradigm for the estimation of /ngerprint change rates. Suit-
able individuals should be identi/ed and /ngerprinted at a /rst time (‘time zero’). Based
on the most recent estimate of the /ngerprint change rate (which we provide here for M.
tuberculosis=IS6110) and the copy numbers of the individuals, we recommend times at which
those individuals should be /ngerprinted a second time in order to minimize the variance of
the re-estimated /ngerprint change rate. If there is a practical upper limit on the time at which
the second /ngerprinting can occur, we recommend sample sizes that give a prespeci/ed level
of con/dence about the rate. With the complete data set the likelihood method outlined in
this paper may be used to compute the rate of change (maximizing equation (3) with respect
to �), with a con/dence interval calculated from asymptotic results (using (4) as the standard
deviation of the MLE).
It is important to note that a precise estimate of the /ngerprint change rate in itself, while

useful for understanding properties of the transpositions, is of primary interest for detection
and control of epidemics. This change rate can also be incorporated in models treating epi-
demiology and genetics of the pathogen simultaneously, such as that of Tanaka et al. [24],
in which a modestly precise estimate is adequate. Future studies of /ngerprint change rates
should also take into account the precision required for cost-e2cient genotyping.

APPENDIX A: DERIVATION OF OPTIMAL SAMPLING INTERVALS

The large sample distribution of the maximum likelihood estimator �̂ has an approximate
variance of

s2
�̂
=

1∑
I(ki; ti; �̂)

(A1)

where

I(ki; ti; �)=E

[(
@
@�

ln(f(gi; ki; ti; �))
)2]

(A2)

(see, for example, reference [34]). Since maximum likelihood estimators are asymptotically
normally distributed, an approximate 95 per cent con/dence interval for �̂ is (�̂− 1:96s�̂; �̂+
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1:96s�̂). In order to derive the optimal sampling interval for a given copy number k (let ki= k
for all i) assume that ti= t for all i. Then for a sample of size n

s2
�̂
=

1

nI(k; t; �̂)
: (A3)

By maximizing I with respect to t, we can /nd the time interval for a given copy number
that minimizes the variance of the MLE. Using Table II and after some algebra, we obtain

I(k; t; �)=
(kt)2e−k�t

1− e−k�t
: (A4)

Now consider t such that @I
@t =0. Restricting the domain of parameters to �¿0; k¿0 and

t¿0, it can be shown that the optimal sampling interval, topt, is the non-zero solution of

1− e−k�̂t − k�̂t
2

=0: (A5)

The form of this transcendental expression suggests the solution topt = �=(k�̂), where � is
the non-zero constant which satis/es 1 − e−� − �=2=0. Numerically solving this equation,
�� 1:593624: It can easily be shown that �=(k�̂) is the only non-zero solution and that it
maximizes rather than minimizes I(k; t; �̂).
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