
1465

q 2003 The Society for the Study of Evolution. All rights reserved.

Evolution, 57(7), 2003, pp. 1465–1477

THE SHAPES OF NEUTRAL GENE GENEALOGIES IN TWO SPECIES: PROBABILITIES
OF MONOPHYLY, PARAPHYLY, AND POLYPHYLY IN A COALESCENT MODEL
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Abstract. The genealogies of samples of orthologous regions from multiple species can be classified by their shapes.
Using a neutral coalescent model of two species, I give exact probabilities of each of four possible genealogical
shapes: reciprocal monophyly, two types of paraphyly, and polyphyly. After the divergence that forms two species,
each of which has population size N, polyphyly is the most likely genealogical shape for the lineages of the two
species. At ;1.300N generations after divergence, paraphyly becomes most likely, and reciprocal monophyly becomes
most likely at ;1.665N generations. For a given species, the time at which 99% of its loci acquire monophyletic
genealogies is ;5.298N generations, assuming all loci in its sister species are monophyletic. The probability that all
lineages of two species are reciprocally monophyletic given that a sample from the two species has a reciprocally
monophyletic genealogy increases rapidly with sample size, as does the probability that the most recent common
ancestor (MRCA) for a sample is also the MRCA for all lineages from the two species. The results have potential
applications for the testing of evolutionary hypotheses.
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The genealogy for all copies of a particular genomic region
in a particular species can be classified into one of two cat-
egories. Either the lineages are monophyletic, that is, they
comprise all the extant descendants of their most recent com-
mon ancestor (MRCA), or they are not monophyletic. The
latter scenario, equivalently, requires that lineages of one or
more additional species also descend from this MRCA.

Consider all copies of orthologous regions in an ordered
pair of species, (A, B). The genealogy of these lineages can
be placed into one of four categories: C1, the lineages of
each species are separately monophyletic; C2, the lineages
of species A are monophyletic, and the lineages of species B
are not monophyletic; C3, the lineages of species B are mono-
phyletic, and the lineages of species A are not monophyletic;
and C4, Neither the lineages of species A nor the lineages of
species B are monophyletic.

These scenarios (Fig. 1) can also be labeled monophyly of
A and B or reciprocal monophyly, paraphyly of B with respect
to A, paraphyly of A with respect to B, and polyphyly of A
and B, respectively. The lineages of species A, for example,
are monophyletic in C1 and C2, paraphyletic with respect to
B in C3, and polyphyletic with respect to B in C4. In this
article these terms are used to describe both a set of lineages
and the unique genealogy for the set of lineages; for example,
a species is described as monophyletic if the genealogy of
all of its lineages is monophyletic. When referring to a locus,
the terms implicitly describe the genealogy of all copies of
the locus in a species. Two genealogies are identical if and
only if they have both the same branching order and the same
times of branching.

Typically, random pairs of species have reciprocally mono-
phyletic genealogies at nearly all of their orthologous loci.
However, the lineages of two closely related species are often
not reciprocally monophyletic (Takahata and Nei 1985; Nei-
gel and Avise 1986; Palumbi et al. 2001; Hudson and Coyne
2002). For true biological species that have not exchanged
migrants, lack of reciprocal monophyly requires many lin-

eages ancestral to extant lineages to have been present in
ancestral species. These ancestral lineages must have coa-
lesced in an order that included more than one interspecific
coalescence (Fig. 1ii–iv). Because recently diverged pairs of
species might be represented by multiple ancestral lineages
at their times of divergence, their genealogies can have many
interspecific coalescences and, thus, might not show recip-
rocal monophyly.

Probabilities of genealogical shapes for two species have
been studied in various population structure models for sam-
ples of size 2 (Tajima 1983; Takahata and Nei 1985; Takahata
and Slatkin 1990; Wakeley 2000). Some more general cases
are treated in simulations (Neigel and Avise 1986; Hudson
and Coyne 2002) and in a few theoretical results (Brown
1994; Rosenberg 2002). Here I allow samples of arbitrary
size from unstructured species and obtain exact probabilities
of each of the four genealogical shapes for the lineages of
the two species. Because only the shapes of genealogies are
studied, underlying relationships masked by stochastic dif-
ferences in the numbers of mutations that accumulate along
different lineages are not considered. This issue has been
treated in related circumstances (Hey 1991; Clark 1997;
Wakeley and Hey 1997).

I first review models used in the calculations. The main
results, namely the probabilities of the four genealogical
shapes, are presented in equations (14)–(17). The properties
of these probabilities are then explored in detail.

THE COALESCENT MODEL: ONE SPECIES

I assume a neutral coalescent model to describe the ge-
nealogy of the lineages of each of two species (Nordborg
2001). For each species, n lineages, each of which is identified
by a distinctive label, are sampled in the present, and the
model provides a probability distribution on the set of pos-
sible genealogies for these lineages. Going backward in time,
the coalescent model has two components: a model that spec-
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FIG. 1. The four types of genealogies possible for the lineages of
species A and B. (i) Monophyly of A and B. (ii) Paraphyly of B
with respect to A. (iii). Paraphyly of A with respect to B. (iv) Po-
lyphyly of A and B.

ifies the distributions of waiting times until coalescence and
a model that specifies coalescence probabilities for pairs of
lineages. The latter is the Yule model (see next section). The
waiting time until coalescence of n to n 2 1 lineages is
exponentially distributed with mean n(n 2 1)/2 coalescences
per unit of time. A useful result under the coalescent model
is given by Tavaré (1984, eq. 6.1): if gnj(T) is the probability
that the n lineages derive from j lineages that existed T co-
alescent time units in the past, then

n k2j(2k 2 1)(21) j n(k21) [k]2k(k21)T/2g (T ) 5 e , (1)Onj j!(k 2 j)!nk5j (k)

where a(k) 5 a(a 1 1)· · ·(a 1 k 2 1) and a[k] 5 a(a 2 1)· · ·(a
2 k 1 1) for k $ 1, with a(0) 5 a[0] 5 1. Except when 1 #
j # n, gnj(T) 5 0. Note that gnj(0) 5 dnj, where dnj is Kro-
necker’s delta. The limiting case of n 5 ` yields (Tavaré
1984, eq. 6.3):

` k2j(2k 2 1)(21) j(k21)2k(k21)T/2g (T ) 5 e . (2)O`j j!(k 2 j)!k5j

For a population of constant size N lineages, in which the
variance of the number of offspring produced by an individual
equals one, T coalescent units equals TN generations. For
models that have different values of this parameter or that
incorporate any of various types of more complex reproduc-
tive behavior, equations (1) and (2) still hold, but a different
scaling of coalescent units into units of absolute time is used
(Nordborg 2001). Thus, results that follow can be applied for
diverse evolutionary models within species, only with chang-
es of scale to the time parameters. I allow two species to
experience different amounts of coalescent time during the
same period of absolute time; in the constant-size model, this
assumption corresponds to different population sizes for the
two species.

Although approximations can assist in the computation
(Griffiths 1984), equations (1) and (2) can be difficult to
evaluate numerically for small positive values of T, especially

for large n and j. As T increases, however, the number of
ancestral lineages is likely quite small, so that gnj(T) is neg-
ligible for all but very small values of j. In this article, gnj(T)
is only evaluated for T $ 0.1, where evaluation is straight-
forward (and for T 5 0, where it is trivial). The following
assumption, which has no impact on the first several decimal
places of results shown, is also made: gnj(T) 5 0 if T $ 0.1,
n $ 90, and j $ 50, or if T $ 1, n $ 20, and j $ 10.

THE YULE MODEL

In the coalescent model, at any time in the past, all pairs
of lineages have equal probabilities of being the next pair to
coalesce. The choice of which lineages coalesce is indepen-
dent of when the coalescence occurs. This rule specifies a
uniform probability distribution on the set of possible se-
quences of coalescences, and has been termed the Markov
model or Yule model (Yule 1924; Aldous 2001); the sequence
of coalescences, from n lineages to the MRCA of the lineages,
is a ‘‘random-joining sequence’’ (Maddison and Slatkin
1991). The Yule model has been used to describe the branch-
ing tree not only for lineages within species, but also for
species themselves (Harding 1971; Slowinski and Guyer
1989; Maddison and Slatkin 1991; Brown 1994; Aldous
2001; Steel and McKenzie 2001).

Sequences of Coalescences

The set of possible sequences of coalescences for n line-
ages is equivalent to the set of labeled histories for n taxa.
Stated precisely, two genealogies have the same labeled his-
tory if and only if they have the same coalescences in the
same temporal order. Under the Yule model, each of the
possible sequences of coalescences has the same probability
of being the labeled history for a random genealogy. The
number of possible labeled histories for n lineages is obtained

from the fact that there are choices for the two most
n1 22

recent lineages to coalesce, choices for the next co-
n 2 11 22

alescence, and so forth. The total number of labeled histories,
Hn, equals (Edwards 1970):

n n 2 1 3 2 n!(n 2 1)!
H 5 · · · 5 . (3)n n211 21 2 1 21 2 22 2 2 2

More generally, the number of sequences of coalescences that
reduce n lineages to k lineages is

n n 2 1 k 1 2 k 1 1
I 5 · · ·n,k 1 21 2 1 21 22 2 2 2

n!(n 2 1)!
5 . (4)n2k2 k!(k 2 1)!

As a special case, In,1 5 Hn.

The Interweaving of Two Sequences of Coalescences

Suppose that a particular sequence S1 of s1 coalescences
occurs for a set of s1 1 1 lineages, and that a particular
sequence S2 of s2 coalescences occurs for a different set of
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FIG. 2. Notation for the divergence model. Lineages ancestral to
a sample are drawn more darkly than non-ancestral lineages. In this
example, NA 5 5, rA 5 2, mA 5 2, qA 5 1; NB 5 5, rB 5 3, mB 5
3, qB 5 2. Times TA and TB are measured in coalescent units and
refer to the same period of absolute time.

s2 1 1 lineages. The number of sequences of s1 1 s2 coa-
lescences that include both S1 and S2 as subsequences is of

interest. There are ways to choose which positions
s 1 s1 21 2s1

in a sequence of length s1 1 s2 are occupied by the subse-
quence S1. Once these positions are chosen, the subsequence
S1 fills them in a unique way, with its first coalescence in
the first position chosen, its second coalescence in the second
position, and so forth. The subsequence S2 fills the remaining
positions in a unique way. Thus, the number of ways that s1
and s2 coalescences can be ‘‘interwoven,’’ preserving the
order of coalescence in each subset is:

s 1 s1 2W (s , s ) 5 . (5)2 1 2 1 2s1

Sequences of Coalescences for Subsamples

Consider n lineages that have a randomly chosen labeled
history, and a random subsample consisting of j of these
lineages. If Z1(T) and Z2(T) respectively denote the numbers
of lineages ancestral to the sample and the subsample at time
T coalescent units before the present, then (eq. 2.3 of Saun-
ders et al. 1984)

S(l , l , n, j) 5 Pr[Z (T ) 5 l z Z (T ) 5 l ; n, j]2 1 2 2 1 1

l n 2 l n 1 l1 1 21 21 21 2l j 2 l n2 2 nl ( j 1 l )2 15 . (6)
(n 1 l )l j2 1n j 1 l11 21 2j j

The limit as n → `, is (Griffiths and Tavaré, 2003):

l j11 21 2l l2 2 l ( j 1 l )2 1S(l , l , `, j) 5 . (7)2 1 l j1j 1 l11 2j

The probability that the MRCA of the subsample is identical
to the MRCA of the sample is (eq. 3.1 of Saunders et al.
1984; see also Sanderson 1996)

Pr[min{T : Z (T ) 5 1} 5 min{T : Z (T ) 5 1}]2 1

j 2 1 n 1 1
5 . (8)

j 1 1 n 2 1

THEORY: TWO SPECIES

Here I consider probabilities of genealogical shapes in a
divergence model. At time t years in the past, a species evolv-
ing according to the coalescent model diverges into two spe-
cies, A and B, each of which also evolves by the coalescent
model (Fig. 2). For species A and B, TA and TB coalescent
time units have elapsed since the divergence, respectively.
Total population sizes in the present are NA and NB; the an-
cestral population size need not be specified. Samples from
species A and B have sizes rA and rB. Both species are assumed
to have the same generation time.

Probabilities of Monophyly, Paraphyly, and Polyphyly

Let X denote the classification of the rA 1 rB sampled
lineages (either C1, C2, C3, or C4) and let ZA(T) and ZB(T)
denote the numbers of lineages ancestral to species A and B,
respectively, at time T coalescent units in the past. Suppose
the rA and rB lineages of species A and B have qA and qB

ancestral lineages at the time of divergence. This event has
probability (TA) (TB).g gr ,q r ,qA A B B

To have X 5 C1, the MRCA for the qA 1 qB ancestral
lineages must separate the genealogy of the lineages into two
species-specific subgenealogies. Using equation (3), andHqA

sequences of coalescences can monophyletically join theHqB

lineages of species A and B, respectively. Using equation (5),
each pair of sequences—one for species A and one for species
B—can be interwoven in W2(qA 2 1, qB 2 1) ways. There
are possible sequences of coalescences. We obtainHq 1qA B

(Brown 1994):

Pr[X 5 C1 z Z (T ) 5 q , Z (T ) 5 q ]A A A B B B

H H W (q 2 1, q 2 1)q q 2 A BA B5
Hq 1qA B

2
5 . (9)

q 1 qA B (q 1 q 2 1)A B1 2qA

This equation solves the recursion for the quantity C(qA, qB)
of Hudson and Coyne (2002) and for the quantity 1 2 (qA,A,BF2
qB, 0) of Rosenberg (2002).

To compute conditional probabilities that the qA 1 qB lin-
eages fall into the other categories, we first need the con-
ditional probability that the lineages of species A are mono-
phyletic, that is, the probability that X 5 C1 or X 5 C2. Let
Ek be the event that the qA lineages of species A are mono-
phyletic and that the most recent interspecific coalescence
occurs when k lineages ancestral to the lineages of species
B are present (1 # k # qB). The number of sequences that
coalesce qA lineages to one lineage is . The number ofHqA
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sequences that coalesce qB lineages to k lineages is . TheIq ,kB

number of ways to interweave a sequence of coalescences
from species A and one from species B is W2(qA 2 1, qB 2
k). There are k choices for the lineage from species B that
participates in the coalescence with the MRCA of species A,
and there are Hk21 ways to coalesce the last k 2 1 lineages.
Thus, we have

H I W (q 2 1, q 2 k) kHq q ,k 2 A B k21A BPr(E ) 5k Hq 1qA B

qB2k1 2k
5 . (10)

q 1 q q 1 q 2 1A B A BqB1 21 2q kA

A combinatorial identity (Appendix 1) facilitates computa-
tion of the probability of E, the event that the qA lineages of
species A are monophyletic:

qBk1 2q q kB B2
Pr(E ) 5 Pr(E ) 5O Ok

k51 k51q 1 q q 1 q 2 1A B A BqB1 2 1 2q kA

2 q 1 qA B5 . (11)
q (q 1 1)A Aq 1 qA B1 2qA

This result simplifies a calculation of Brown (1994, eq. 12)
and gives the closed-form solution for the quantity C*(qA,
qB) of Hudson and Coyne (2002). The probability of F, the
event that the qB lineages of species B are monophyletic, is
computed analogously. We now obtain

Pr[X 5 C2 z Z (T ) 5 q , Z (T ) 5 q ]A A A B B B

5 Pr(E ) 2 Pr[X 5 C1 z Z (T ) 5 q , Z (T ) 5 q ]A A A B B B

2 (2q 1 q )(q 2 1)A B B5 . (12)
q (q 1 1)(q 1 q 2 1)A A A Bq 1 qA B1 2qA

A similar expression gives the conditional probability of X
5 C3, and the conditional probability of X 5 C4 is one minus
the sum of the other three probabilities. This probability can
also be obtained as follows:

Pr[X 5 C4 z Z (T ) 5 q , Z (T ) 5 q ]A A A B B B

5 1 2 Pr(E ) 2 Pr(F ) 1 Pr(E ù F )

2 q 1 q q 1 q 1A B A B5 1 2 1 2 .[ ]q (q 1 1) q (q 1 1) q 1 q 2 1A A B B A Bq 1 qA B1 2qA

(13)

Finally, summing over possible values of qA and qB, the un-
conditional probabilities are

r rA B

Pr(X 5 C1) 5 g (T )g (T )O O r ,q A r ,q BA A B B
q 51 q 51A B

2
3 (14)

q 1 qA B (q 1 q 2 1)A B1 2qA

r rA B

Pr(X 5 C2) 5 g (T )g (T )O O r ,q A r ,q BA A B B
q 51 q 51A B

2 (2q 1 q )(q 2 1)A B B3 (15)
q (q 1 1)(q 1 q 2 1)A A A Bq 1 qA B1 2qA

r rA B

Pr(X 5 C3) 5 g (T )g (T )O O r ,q A r ,q BA A B B
q 51 q 51A B

2 (q 1 2q )(q 2 1)A B A3 (16)
q (q 1 1)(q 1 q 2 1)B B A Bq 1 qA B1 2qA

r rA B

Pr(X 5 C4) 5 g (T )g (T )O O r ,q A r ,q BA A B B
q 51 q 51A B

 2 q 1 q q 1 qA B A B3 1 2 1[q (q 1 1) q (q 1 1) A A B Bq 1 qA B 1 2qA

1 2 . (17)]q 1 q 2 1 A B



Appendix 2 discusses an alternate derivation of (14). Note
that if TA 5 TB 5 0, then qA 5 rA, qB 5 rB, and the uncon-
ditional probabilities reduce to equations (9), (12), and (13).
The probabilities of monophyly, paraphyly, and polyphyly
given by (14)–(17) exhibit complex dependencies on the four
parameters. It is convenient to first consider the effects of
the times TA and TB, and then the effects of the sample sizes
rA and rB.

Effects of Time

Suppose that TA and TB increase so that TB/TA is always
equal to a constant K. This constant allows coalescent time
to elapse at different rates in the two species. In the constant
population size model, TB/TA 5 K corresponds to NB/NA 5
1/K.

As observed by Neigel and Avise (1986), at their time of
divergence, a sample from a pair of species is likely to show
polyphyly. As time progresses, paraphyly becomes more like-
ly, and eventually, reciprocal monophyly is most likely. In
the limit as time approaches `, reciprocal monophyly has
probability one. This intuitive result holds for all values of
the sample sizes, as long as they are more than one, and
regardless of the value of K. (If one of the sample sizes equals
one, polyphyly and one type of paraphyly are impossible, so
that the transition proceeds from a paraphyly stage to a mono-
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FIG. 3. Probabilities of the four types of genealogies as functions of time, obtained from equations (14)–(17). (i) rA 5 rB 5 3, TB 5
TA. (ii) rA 5 rB 5 3, TB 5 TA/2. (iii) rA 5 30, rB 5 3, TB 5 TA. (iv) rA 5 30, rB 5 3, TB 5 TA/2. (v) rA 5 rB 5 30, TB 5 TA. (vi) rA 5
rB 5 30, TB 5 TA/2.

phyly stage; if both samples have size one, I use the con-
vention that reciprocal monophyly is guaranteed from time
0.)

Thus, in Figure 3, which shows (14)–(17) as functions of
time, various parameter values produce the same qualitative
limiting behavior. This result is explained by considering the
numbers of lineages ancestral to the sample at the time of
divergence. For small times TA and TB, many lineages an-
cestral to the sample are present at divergence. In the an-
cestral species these likely coalesce in such a way as to pro-
duce polyphyly. As time since divergence becomes large,
sufficient time exists for all lineages to coalesce within spe-
cies. At the time of divergence, likely only one lineage per

species remains, and monophyly is achieved for the lineages
of each species. In passing from the stage in which neither
species is monophyletic to the stage in which monophyly
occurs in both species, an intermediate stage is encountered
in which it is likely that the lineages of only one of the species
are monophyletic.

Sample sizes affect this phenomenon in that for larger sam-
ple sizes, more time must elapse before the transition between
stages occurs. A comparison of Figures 3i and 3v shows that
increases in sample size do not have a great impact on these
transition times.

Asymmetry in sample sizes and rates of coalescence, al-
though it does not affect the general behavior, causes the two
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FIG. 4. Probabilities of the four types of genealogies as functions
of sample size, obtained from equations (14)–(17). For all graphs,
both species had the same sample size, that is, rA 5 rB. (i) TA 5
TB 5 2. (ii) TA 5 2, TB 5 0.2. (iii) TA 5 TB 5 0.2.

types of paraphyly to have different probabilities. If time
elapses more rapidly in one species, the lineages of that spe-
cies reach monophyly more rapidly; the species that has ex-
perienced fewer coalescent units in the same amount of ab-
solute time is the one that is more likely to exhibit paraphyly.
Similarly, if coalescence occurs at the same rate in both spe-
cies, the species that has a smaller sample is likely to achieve
monophyly faster, and the lineages of the other species are
more likely to be paraphyletic. This difference between the
two probabilities of paraphyly can be substantial (Figs. 3ii,
iii, iv, vi); it depends more on relative speed of coalescence
than on relative sample sizes (compare the difference between
Figs. 3iii and 3iv to that between Figs. 3ii and vi).

Effects of Sample Size

As in other genealogical phenomena, the effect on (14)–
(17) of increasing sample size is less profound than the effect
of increasing time. Increases in sample size shift the time at
which paraphyly has highest probability (cf. Figs. 3i, v), but
only slightly. The probabilities of the four types of geneal-
ogies approach their large-sample limits rapidly (Fig. 4), re-
gardless of which type of genealogy is ultimately the most
likely.

Rapid convergence in sample size results from the fact that
as lineages are added to a sample, they add ancestral lineages
at a much slower rate. If we consider ancestors to a sample
at T coalescent units in the past, adding lineages to the sample
is unlikely to increase the number of ancestors if T is large.
We can determine sample sizes r such that the distribution
of the number of ancestral lineages at time T given a sample
of size r is close to the large-sample limiting distribution.
As the distribution of the number of ancestral lineages con-
verges with increases in sample size, so too do the proba-
bilities of monophyly, paraphyly, and polyphyly.

A previous argument (Rosenberg 2002, table 3) can be
used to identify sample sizes at which probabilities of mono-
phyly, paraphyly, and polyphyly approach their limiting val-
ues. The sample size r is chosen large enough in each species
so that the mean number of ancestral lineages given a sample
of size r differs from the corresponding mean for an infinite
sample size by less than a specified tolerance. As can be seen
by comparing Figures 4i and 4iii, if times are larger, sample
sizes required for nearing the limit are smaller.

Order of the Probabilities

The parameter space can be partitioned based on the rel-
ative order of the probabilities of the four types of geneal-
ogies. Suppose rA 5 rB 5 r and TA 5 TB 5 T. The probabilities
of the two types of paraphyly are equal, so they are grouped
into one category. The parameter space can contain as many
as six regions, corresponding to the six orderings of the prob-
abilities of monophyly, paraphyly, and polyphyly. The fact
that evolution proceeds from polyphyly to paraphyly to
monophyly suggests that the orderings Pr(monophyly) .
Pr(polyphyly) . Pr(paraphyly) and Pr(polyphyly) . Pr(mono-
phyly) . Pr(paraphyly), should never be observed. Indeed
they are not seen.
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FIG. 5. Partition of the parameter space based on the ordering of
the probabilities of monophyly, paraphyly, and polyphyly computed
from equations (14)–(17). Time was assumed to have elapsed at
the same rate for both species. (i) rA 5 rB. The sum of the proba-
bilities of the two types of paraphyly was used for the probability
of paraphyly. (ii) rB 5 1. In this case only one type of paraphyly
is possible and polyphyly is not possible.

Transition times between different orderings of the prob-
abilities are values of T for which two of Pr(X 5 C1), Pr(X
5 C2) 1 Pr(X 5 C3), and Pr(X 5 C4), as given by (14)–
(17), are equal (Fig. 5). The three equations that must be
solved are polynomials in e2T. For samples of size r these
polynomials have degree r(r 2 1). With r 5 2, exact solutions
to the quadratic equations give the transition times: Pr(X 5
C2) 1 Pr(X 5 C3) 5 Pr(X 5 C4) is solved by ln(4/3) ø
0.2877; ln[(2 1 )/3] ø 0.3942 solves Pr(X 5 C1) 5 Pr(XÏ6
5 C4), and ln[(4 1 )/3] ø 0.5904 solves Pr(X 5 C1) 5Ï2
Pr(X 5 C2) 1 Pr(X 5 C3). For larger r, transition times are
larger, and the equations can be solved numerically. Even
for small sample sizes, the transition times between orderings
are close to their (approximate) limiting values of 1.29989,
1.44026, and 1.66536 (computed using ` for r).

Figure 5ii shows transition times for the case in which the
sample from species B has size 1. This case arises because
it is useful to consider whether lineages of a species are
monophyletic or paraphyletic with respect to a monophyletic
sister species. Because polyphyly and one type of paraphyly
are not possible if rB 5 1, only the transition that occurs
when Pr(X 5 C1) 5 Pr(X 5 C3) 5 1/2 must be considered.
For rA 5 2, the transition time is ln(4/3) ø 0.2877. For larger
samples the transition time can be obtained numerically, and
the large-sample limit is about 1.32663.

Genealogy of All Lineages in the Two Species

The genealogy for the sample of lineages provides infor-
mation about the genealogy for all lineages in the two species.
A polyphyletic sample indicates that the genealogy for the
species is polyphyletic; a monophyletic sample suggests but
does not guarantee monophyly for the species. Using X for
the classification of the sample genealogy as before, and Y
for that of the genealogy of all lineages from the two species,
Pr(Y z X) is of interest. For six of 16 combinations (X, Y), the
sample configuration excludes the species configuration.

The rA and rB sampled lineages have qA and qB ancestral
lineages at the time of divergence, the species population
sizes are NA and NB, and the numbers of lineages ancestral
to species at the time of divergence are mA and mB (Fig. 2).
Using equation (6), this configuration of ancestral lineages,
denoted G, has probability (TA) S(qA, mA, NA, rA)gN ,mA A

(TB) S(qB, mB, NB, rB). Here I show the probability thatgN ,mB B

the lineages of both species have monophyletic genealogies
given that their samples are monophyletic. Bayes’s theorem
yields

Pr(Y 5 C1 z X 5 C1, G)

Pr(Y 5 C1 z G) Pr(X 5 C1 z Y 5 C1, G)
5 . (18)

Pr(X 5 C1 z G)

Because the sampled lineages form a subset of the whole set
of lineages, Pr(X 5 C1 z Y 5 C1, G) 5 1. Pr(X 5 C1 z G)
and Pr(Y 5 C1 z G) are computed using equation (9). Summing
over lineage configurations, the desired probability is

N N m mA B A B

Pr(Y 5 C1 z X 5 C1) 5 g (T )O O O O N ,m AA A
m 51 m 51 q 51 q 51A B A B

3 S(q , m , N , r ) g (T )A A A A N ,m BB B

3 S(q , m , N , r )B B B B

q 1 qA B (q 1 q 2 1)A B1 2qA

3 . (19)
m 1 mA B (m 1 m 2 1)A B1 2mA

If coalescent time elapses at the same rate in both species,
for large time since divergence, monophyly of the sample
indicates that monophyly of all lineages from the two species
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FIG. 6. Probability of reciprocal monophyly of two species given
reciprocal monophyly of their samples, computed using equation
(19). Results are similar as long as population sizes are large com-
pared to sample sizes; thus, infinite population sizes were used for
both species. (i) rB 5 rA. (ii) rB 5 1.

is likely (Fig. 6). For shorter times, monophyly of a larger
sample gives considerably more evidence that two species
are reciprocally monophyletic than does monophyly of a
smaller sample (Fig. 6i). If only one lineage is sampled from
species B, however, the probability of monophyly for species
A given monophyly of the sample increases very slowly with
sample size (Fig. 6ii; see also Nordborg 1998).

Most Recent Common Ancestor of All Lineages
in the Two Species

It is of interest to know whether the MRCA of a sample
is identical to the MRCA of all lineages from the two species.
Let Zsample(T) and Zspecies(T) denote the numbers of lineages
ancestral to the sample and to all lineages of the two species
at time T coalescent units in the past. By summing over all
lineage configurations the conditional probability that sample

and species MRCAs are identical (eq. 8) times the probability
of the lineage configuration, we obtain

Pr[min{T : Z (T ) 5 1} 5 min{T : Z (T ) 5 1}]sample species

N N m mA B A B

5 g (T ) S(q , m , N , r )O O O O N ,m A A A A AA A
m 51 m 51 q 51 q 51A B A B

3 g (T )S(q , m , N , r )N ,m B B B B BB B

(q 1 q 2 1) (m 1 m 1 1)A B A B3 . (20)
(q 1 q 1 1) (m 1 m 2 1)A B A B

For equal sample sizes and equal rates of coalescence, the
probability that the sample MRCA is the species MRCA ap-
proaches one as time increases (Fig. 7i). At time 0, with rA

5 rB 5 r and infinite population size, the result reduces to
equation (8), or (2r 2 1)/(2r 1 1). For large values of time,
the sample and the species each likely have one lineage per
species at the time of divergence, so the genealogy of the
sample necessarily includes this lineage. The probability in-
creases monotonically, so that for larger samples, it is more
likely that the sample MRCA is the same as the species
MRCA.

The case in which one of the species has only one sampled
lineage is somewhat different (Fig. 7ii). Again, at time 0,
equation (8) provides the desired probability. Also, for suf-
ficiently large times, the sample and species each have one
ancestral lineage, which necessarily coincides. However, a
range of intermediate times exists during which the proba-
bility is smaller than the initial value of rA/(rA 1 2). In this
range, the ancestry of the sample is usually reduced to a small
number of lineages so that the (qA 1 qB 2 1)/(qA 1 qB 1 1)
term, or qA/(qA 1 2), is relatively small. The number of lin-
eages ancestral to the species remains large enough that the
(mA 1 mB 1 1)/(mA 1 mB 2 1) term, or (mA 1 2)/mA, is
fairly close to one. Thus, in this range, the product of the
two terms is usually smaller than the initial value.

Whole-Genome Monophyly

For two closely related species, equations (14)–(17) can
predict the fractions of their genomes that are monophyletic,
paraphyletic, and polyphyletic. For example, as the proba-
bility of monophyly for one region, (14) gives the expected
fraction of a genome that is monophyletic.

Only about 1.665 coalescent units (1.665N generations in
the constant population size model) are needed before recip-
rocal monophyly is the most likely type of genealogy for two
species. The time until most of their genomes are monophy-
letic is considerably longer (Table 1). The time until a certain
fraction of the genome of species A is expected to be mono-
phyletic depends only weakly on its sister species. Assuming
that the sister species to A is monophyletic only reduces the
time to monophyly of A by 0.6–0.8 coalescent units.

Using simulations with finite sample sizes, Hudson and
Coyne (2002) obtained results for the time until reciprocal
monophyly that are similar to the values in Table 1 (second
row of their table 1). Corresponding values of the time until
monophyly of species A in Table 1 and in Hudson and Coyne
(2002, table 1) differ slightly, however: I assume species A
has a sister species that contains one lineage that eventually
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FIG. 7. Probability that the most recent common ancestor (MRCA)
for a sample from two species is the same as the MRCA for all
lineages in the two species, computed using equation (20). Results
are similar as long as population sizes are large compared to sample
sizes; thus, infinite population sizes were used for both species. (i)
rA 5 rB. (ii) rB 5 1.

TABLE 1. Waiting times until monophyly. (12 a) is the waiting21M1
time after divergence until 100 (1 2 a)% of the genome of species
A is expected to be monophyletic, assuming species B is mono-
phyletic. (1 2 a) is the corresponding time, assuming species21M2
A and B have the same parameters. Times, measured in coalescent
units, are obtained by solving equation (14) for TA, assuming Pr (X
5 C1) 5 1 2 a. For , rB 5 1 and the value of TB does not21M1
matter. For , rB 5 rA and TB 5 TA. For both columns, rA 5 `.21M2

a M (1 2 a)21
1 M (1 2 a)21

2

0.50
0.10
0.05
0.01
0.001
1024

1025

1026

1027

1.327
2.994
3.794
5.298
7.601
9.903

12.206
14.509
16.811

1.903
3.662
4.369
5.989
8.294

10.597
12.899
15.202
17.504

coalesces with the lineages of species A, whereas Hudson
and Coyne (2002) study the time until monophyly of species
A without allowing interspecific coalescences (see also Ar-
bogast et al. 2002). Note that Hudson and Coyne (2002)
considered 2N lineages per species but scaled time in units
of N generations; thus, times in their table must be divided
by two to be directly comparable with those here.

Given a number a, we can also determine the time until a
whole genome is monophyletic with probability 1 2 a. This
calculation assumes neutrality of the whole genome; thus,
nonmonophyletic regions that persist after this length of time
are candidates for targets of natural selection (see Discus-
sion). Let M1(T) be calculated from (14), using rA 5 `, rB

5 1, TA 5 T, and TB arbitrary. This gives the probability of
monophyly of a region in species A, assuming that species
B is monophyletic. The calculations are analogous for M2(T),

the probability of reciprocal monophyly of a region, using
rA 5 rB 5 `, TA 5 TB 5 T. Two sites in a genome that are
separated by sufficient distance l have independent geneal-
ogies. Thus, a genome of total length C base pairs can be
loosely approximated by u disjoint subunits, each of length
l (C 5 ul), such that each pair of subunits is independent and
such that no recombination occurs within any subunit. The
probability of monophyly for any subunit is M1(T). To de-
termine Ta so that the whole genome is monophyletic with
probability 1 2 a after time Ta, we must solve

u1 2 a 5 [M (T )] .1 a (21)

If is the inverse function of M1 (Table 1), the solution21M1
is

21 1/u 21 2a/uT 5 M [(1 2 a) ] ø M (e ).a 1 1 (22)

As an example, consider two genomes of length 3000 me-
gabases (Mb) in which sites separated by 0.2 Mb have in-
dependent genealogies. These genomes have u 5 15, 000,
and the time until both genomes are fully reciprocally mono-
phyletic with probability 0.95 is (0.9999966), or 13.97221M2
coalescent units. The bottom row of table 1 of Hudson and
Coyne (2002) contains a similar computation.

DISCUSSION

Equations (14)–(17) give the closed-form probabilities of
the four types of genealogies under the coalescent two-spe-
cies divergence model, superseding recursively defined so-
lutions of Hudson and Coyne (2002) and Rosenberg (2002).
Note, however, that (14) disagrees with the probability of
monophyly suggested by Palumbi et al. (2001, eq. 1) for NB

5 ` and qB 5 1. Unlike (14) and the approaches of Hudson
and Coyne (2002) and Rosenberg (2002), Palumbi et al.
(2001) assumed qA 5 1, or that monophyly of species A
requires all lineages of species A to coalesce more recently
than divergence. Because monophyly of A is also possible
for qA . 1 if the ancestral lineages of species A coalesce
intraspecifically, the formula of Palumbi et al. (2001) can be
regarded as an underestimate of the probability of monophyly
of A. The discrepancy between (14) and equation (1) of Pal-
umbi et al. (2001) is largest at small divergence times, for
which qA . 1 is a likely possibility.



1474 NOAH A. ROSENBERG

Figures 3 and 4 confirm the stronger dependence of (14)–
(17) on divergence times compared to sample sizes. For two
recently diverged species, however, Figures 6 and 7 show that
sample size noticeably affects the relationship between the ge-
nealogy of the sample and that of the species. For very small
samples, one should be cautious not to equate reciprocal mono-
phyly of a sample with reciprocal monophyly of the two species.

The concepts of monophyly, paraphyly, and polyphyly of
lineages have frequently been employed in molecular ecology
and phylogeography (Neigel and Avise 1986; Palumbi et al.
2001). Probabilities that sampled lineages exhibit monophy-
ly, paraphyly, or polyphyly can be used in studies both of
the history of a species as a whole (Wakeley and Hey 1997;
Hudson and Coyne 2002) and of roles played in evolution
by individual genes (Wang et al. 1999; Ting et al. 2000). In
various contexts, the formulas here can assist in designing
studies, making predictions, and interpreting data.

Paraphyly and Divergence Times

Because paraphyletic genealogies are most frequent for
only a short period of time (Fig. 5i), observed dominance of
paraphyly in multilocus datasets suggests that species lie in
this intermediate period since divergence. If both types of
paraphyly have similar frequencies and if paraphyletic ge-
nealogies occur more often than monophyletic and polyphy-
letic genealogies, the species are likely in the narrow band
of time from ;1.3 to 1.7 coalescent units since divergence
(;1.3N to 1.7N generations, in the constant population size
model).

Moreover, an observation that the frequencies of both types
of paraphyly are about the same indicates that coalescence
occurs at similar rates in the two species, whereas differences
between the two frequencies provide evidence for a difference
in coalescence rates. The species that experiences coales-
cence more slowly is more likely to be paraphyletic (Figs.
3ii, 3vi, 4ii). If constant population size is assumed, the spe-
cies that has more paraphyly also has a larger population
size.

Symmetric and Asymmetric Samples

Reasonably small samples are sufficient to characterize
shapes of most two-species genealogies. Sample sizes that
can be used to achieve desired precision in the number of
ancestral lineages, and corresponding precision in genealog-
ical shape probabilities, can be obtained from Rosenberg
(2002, table 3).

A large sample from one species together with only a single
lineage from the other provides much less information than
moderate but similar sample sizes from both species. In Fig-
ure 6, if one species has sample size 1, increasing the sample
size from the other species helps only minimally toward cor-
rect inference that the lineages of that species are monophy-
letic. By contrast, if both species have similar sample sizes,
few lineages are needed to almost guarantee that sample
monophyly implies species monophyly. Inferences about
MRCAs behave similarly: caution is warranted in inference
about the time to the MRCA of two closely related groups,
when one group has a small sample size and the other does
not. This comment especially applies to recent divergences,

in which the MRCA of an asymmetric sample has consid-
erable probability of differing from the species MRCA (Fig.
7ii).

These problems of asymmetric samples parallel results on
the concordance of gene trees and species trees (Rosenberg
2002). If three species are studied by sampling many lineages
for the two species that are predicted to be sister species, but
only one lineage from the predicted outgroup species, the
analysis will tend to place the predicted outgroup as the out-
group, even if this is not correct. By contrast, symmetric
sampling less frequently leads to this erroneous inference.

Mitochondrial and Nuclear DNA

Recent studies investigate relationships between shapes of
genealogies of mitochondrial DNA and those of nuclear DNA
(Moore 1995; Palumbi et al. 2001). Under neutrality, with
equal offspring distributions for diploid males and females,
coalescence time elapses four times as fast for mitochondrial
DNA as for nuclear DNA. As can be observed from Figures
3, 5, and 6, the behavior of gene genealogies can be quite
different at time 4T (mitochondrial DNA) compared to time
T (nuclear DNA).

For example, if three coalescent units have elapsed for
mitochondria, in Figure 3iii, mitochondrial DNA has mono-
phyly probability over 0.8. Nuclear loci in the same organism,
however, having only experienced 0.75 coalescent units, have
monophyly probability under 0.1. Using Figure 5i and large
samples, mitochondrial and nuclear loci reside in the lower
partition of the parameter space until T ø 0.325, when par-
aphyly becomes more likely than polyphyly for mitochon-
drial DNA, but not for nuclear loci. The two types remain
in separate partitions until T ø 1.665, when both types are
likely to be monophyletic.

Unusual Genealogical Shapes and Selection

Deviations from predictions of the neutral model here can
help identify loci undergoing various forms of selection. Se-
lected loci may be more or less likely than neutral loci to
have reciprocally monophyletic genealogies. Balancing se-
lection or selection for diversity increases the probability that
many ancestral lineages per species persist into the distant
past (Ioerger et al. 1990; Takahata and Nei 1990), decreasing
the probability of monophyly. Loci that were under selection
during species divergence or that have been involved in main-
tenance of differences between species might be more likely
to be monophyletic in at least one of the species, because
the MRCA of extant lineages in that species might be a novel
mutant that lived around the time of divergence (Hey 1994;
Wang et al. 1999; Ting et al. 2000).

Tests of genealogical shape have been devised in various
contexts. Species trees are compared with the Yule model or
other phylogenetic models, and agreement of inferred shapes
of species trees with model predictions is taken as evidence
for mechanisms of evolution that underlie the models (Slow-
inski and Guyer 1989; Mooers and Heard 1997; Aldous 2001;
Harcourt-Brown et al. 2001). If the tree for a set of species
has an improbable shape, special properties of those species
are used to explain the anomaly. Within a species, statistics
based on shapes of gene genealogies predicted by the neutral
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coalescent are used to test if evolution of particular genes
has occurred consistently with neutrality (Kreitman 2000).
For genes that do not fit the model, the nature of the deviation
assists in characterizing the alternative mode of evolution
acting on the gene.

Corresponding tests might be derived for multispecies gene
genealogies (Hey 1994; Palumbi et al. 2001). If divergence
was ancient enough that the monophyly probability is near
one, genomic regions that are observed to not be monophy-
letic might be under balancing selection. If divergence was
recent enough that the probability of monophyly is near zero,
then regions observed to be monophyletic might have been
important in species divergences. As polymorphism data ac-
cumulate, a genomic approach may help to determine how
many genes experience these types of selection.

Conclusions

In this article the probabilities of monophyly, paraphyly,
and polyphyly have been computed under a coalescent model.
The approach also enabled calculation of the probability that
the lineages of two species are reciprocally monophyletic
given that a sample has this property. Times at which the
dominant genealogical shape transits from polyphyly to par-
aphyly or from paraphyly to monophyly have been obtained.

Note that genealogies have been discussed without concern
for the fact that in practice they are estimated from DNA
polymorphism data. The importance to the analysis of the
shapes of genealogies makes it desirable to determine these
shapes probabilistically. Recombination also has not been
considered; the numerical results apply strictly only to re-
gions in which no recombination has occurred. Genomes of
organisms with low recombination rates may contain many
such regions.

Similar formulas to those here might be obtained for more
than two species. Many more types of genealogical shapes
are then possible, including shapes in which the gene ge-
nealogy and species tree disagree. The larger number of pos-
sible shapes of gene genealogies can make analysis of gene
tree shape cumbersome. It might be best to divide trees of
many species into overlapping subsets of a few species each
and then analyze genealogical shape in each subset. The re-
sults here are also based on simple models of within-species
evolution; advances might treat more complex models of the
divergence process (Teshima and Tajima 2002) and of pop-
ulation structure after divergence.
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APPENDIX 1
To simplify equation (11), identity 1 is needed. To prove identity

1, we need identities 2 and 3. Identity 2 is proven by induction on

n, using 5 n!/[k!(n 2 k)!]. Identity 3 follows from identity 2
n1 2k

by induction on n:

Identity 1: For positive integers m and n,

n
k1 2n k n(m 1 n)

5 . (A1)O
m(m 1 1)k50 m 1 n 2 11 2k

Identity 2: For positive integers m and n,
n m 2 1 1 k m 1 n

5 . (A2)O 1 2 1 2k nk50

Identity 3: For positive integers m and n,
n m 2 1 1 k m 1 n 2 1n(m 1 n)

k 5 . (A3)O 1 2 1 2m 1 1k nk50

Proof of Identity 1: We substitute l 5 n 2 k:

n
k1 2n kO

k50 m 1 n 2 11 2k

n n! (m 1 n 2 1 2 k)!
5 kO

(n 2 k)!(m 1 n 2 1)!k50

n (m 2 1) !n! (m 1 n 2 1 2 k)!
5 kO

(m 1 n 2 1)! (m 2 1)! (n 2 k)!k50

n1 (m 2 1) 1 (n 2 k)
5 kO 1 2n 2 kk50m 1 n 2 11 2n

n n1 m 2 1 1 l m 2 1 1 l
5 n 2 l . (A4)O O1 2 1 2[ ]l ll50 l50m 1 n 2 11 2n

The proof is completed by applying identities 2 and 3. Identity 1
generalizes identity 4.10 of Gould (1972).

APPENDIX 2

A previous derivation of the probability of reciprocal monophyly
(eq. 14) was given in terms of a recursive function (Rosenberg
2002, eq. 10). Here I give a closed-form expression for that function,
which enables closed-form solution of other results in Rosenberg
(2002) and Takahata (1989).

(a, b, c) (Rosenberg 2002, eq. 21) is the probability that inA,BFk
coalescing from a configuration that includes a lineages of species
A, b lineages of species B, and c lineages of species C down to k
total lineages, an interspecific coalescence occurs and the most re-
cent interspecific coalescence links species A and B. The closed-
form solution for is obtained using a counting approach. Sup-A,BFk
pose that a, b, and c are all positive, and suppose that there are x,
y, and z ancestors of the a, b, and c lineages, respectively, when
one of the x lineages and one of the y lineages engage in the most
recent interspecific coalescence. The remaining x 1 y 1 z 2 1
lineages can coalesce to k lineages in any order.

Using equation (4), there are Ia,x sequences that can coalesce a
lineages to x lineages. Similarly there are Ib,y ways to coalesce b
lineages to y lineages and Ic,z ways to coalesce c lineages to z
lineages. The total number of sequences that coalesce a to x, b to
y, and c to z is Ia,xIb,yIc,zW3(a 2 x, b 2 y, c 2 z), where W3 is the
number of ways of interweaving three sequences of coalescences.
Analogously to equation (5), W3 is the trinomial coefficient

a 2 x 1 b 2 y 1 c 2 z
W (a 2 x, b 2 y, c 2 z) 53 1 2a 2 x, b 2 y, c 2 z

(a 2 x 1 b 2 y 1 c 2 z)!
5 . (A5)

(a 2 x)! (b 2 y)! (c 2 z)!

There are xy ways to choose the two lineages that are the most
recent to coalesce interspecifically. Finally there are Ix1y1z21,k ways
to coalesce the x 1 y 1 z 2 1 remaining lineages to k lineages.
Thus, there are Ia,xIb,yIc,zW3(a 2 x, b 2 y, c 2 z)xyIx1y1z21,k sequences
of coalescences that have the desired properties.

The most recent interspecific coalescence occurs when there are
at least k 1 1 lineages, so x 1 y 1 z $ k 1 1. Also, 1 # x # a,
1 # y # b, and 1 # z # c. Using the allowable values of (x, y, z),
the number of sequences of coalescences that satisfy the require-
ments is

a b c

I I I W (a 2 x, b 2 y, c 2 z)xyI . (A6)O O O a,x b,y c,z 3 x1y1z21,k
x5max(1,k112b2c) y5max(1,k112x2c) z5max(1,k112x2y)
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The number of possible sequences of coalescences is Ia1b1c,k. The result is simplified using equations (4) and (A5):

a b c I I Ia,x b,y c,zA,BF (a, b, c) 5 W (a 2 x, b 2 y, c 2 z)xyIO O Ok 3 x1y1z2I,kIx5max(1,k112b2c) y5max(1,k112x2c) z5max(1,k112x2y) a1b1c,k

a b c x 1 y 1 z1 21 21 2 1 2a b c 2x y z x, y, z a 1 b 1 c 2(xy) z
5 . (A7)O O O 2abc (x 1 y 1 z) (x 1 y 1 z 2 1)x5max(1,k112b2c,1) y5max(1,k112x2c) z5max(1,k112x2y) a 1 b 1 c a 1 b 1 c1 2 1 2x 1 y 1 z a, b, c

If c 5 0, the calculation is analogous and simpler.
a b I Ia,x b,yA,BF (a, b, 0) 5 W (a 2 x, b 2 y)xyIO Ok 2 x1y21,kIx5max(1,k112b) y5max(1,k112x) a1b,k

a b x 1 y1 21 2 1 2a b 2x y x a 1 b 2(xy)
5 . (A8)O O 2ab (x 1 y) (x 1 y 2 1)x5max(1,k112b) y5max(1,k112x) a 1 b a 1 b1 2 1 2x 1 y a

It is straightforward to show that (A7) gives the same numerical values as equation 21 of Rosenberg (2002).


