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ABSTRACT

When a microsatellite locus is duplicated in a diploid organism, a single pair of PCR primers may
amplify as many as four distinct alleles. To study the evolution of a duplicated microsatellite, we consider a
coalescent model with symmetric stepwise mutation. Conditional on the time of duplication and a
mutation rate, both in a model of completely unlinked loci and in a model of completely linked loci, we
compute the probabilities for a sampled diploid individual to amplify one, two, three, or four distinct
alleles with one pair of microsatellite PCR primers. These probabilities are then studied to examine the
nature of their dependence on the duplication time and the mutation rate. The mutation rate is observed
to have a stronger effect than the duplication time on the four probabilities, and the unlinked and linked
cases are seen to behave similarly. Our results can be useful for helping to interpret genetic variation at
microsatellite loci in species with a very recent history of gene and genome duplication.

ENE and genome duplications are important mech-
anisms for evolving genetic novelty (OHNO 1970;
LyncH and CoNERY 2000; ZHANG 2003). This funda-
mental role of duplication in the evolutionary process
has led to the development of a variety of population-
genetic models that utilize genetic polymorphisms in
duplicated genes for understanding the evolutionary his-
tories of duplicated gene families (WaLsH 2003; INNAN
2004). For example, these models have been used to
study the process by which “concerted evolution” through
gene conversion influences the similarities and differ-
ences among recently duplicated genes (INNAN 2002,
2003; TesHIMA and INNAN 2004), as well as the way in
which “subfunctionalization” through specialization of
duplicate copies of a gene after duplication can lead to
preservation in a genome of two or more paralogs
(LyncH and Force 2000; WARD and DurreTrT 2004).
Microsatellites, short and tandemly repetitive sequences
that are widely dispersed in a variety of genomes, are
among the most important genetic markers used by pop-
ulation and evolutionary biologists, due to their high
variability in copy number (ELLEGREN 2004). Micro-
satellite variation has long been studied using stepwise
mutation models (GOLDSTEIN et al. 1995; SLATKIN 1995;
Zuivotovsky and FELDMAN 1995), which specify the
probabilities of various types of change in copy number
for the basic repeated unit (OnTA and KiMUra 1973;
CALABRESE and SAINUDIIN 2005). The simplest of these
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models assumes that the mutation rate is independent
of copy number, that mutations alter copy number only
by one unit, and that increases and decreases in copy
number are equally likely. A variety of properties of micro-
satellite loci evolving according to this symmetric step-
wise mutation model have been investigated, including
the pairwise allele size difference between two randomly
chosen alleles (PRiTCcHARD and FELDMAN 1996; NIELSEN
1997; BLuM et al. 2004), the within-population variance
of the allele size distribution (ZHIVOTOVSKY and FELDMAN
1995; BLuMm et al. 2004), the expected homozygosity
(OuTA and KiMURA 1973; KiMMEL and CHAKRABORTY
1996; PriTcHARD and FELDMAN 1996; NIELSEN 1997),
and the probability that two alleles identical in size are
identical by descent (EsToup et al. 2002).

Duplicated microsatellites have been known since
shortly after the discovery of microsatellite loci, and they
have been useful particularly in Y-chromosomal studies
in humans (MATHIAS et al. 1994; BALARESQUE et al. 2007).
However, despite the extensive history of studies both of
gene duplication and of microsatellites as genetic mar-
kers, only recently have these two topics been combined
in studies that use microsatellites as a tool for investi-
gating genetic duplication (DAVID et al. 2003; ANTUNES
et al. 2006) . Microsatellites, due to their large amount of
variability, have the potential to be informative about
duplication. As microsatellites are typically genotyped
using PCR primers that amplify all segments of a ge-
nome that have the primers as flanking regions, PCR
primers applied in a diploid individual to a microsatel-
lite that lies in a duplicated autosomal region of the ge-
nome will amplify four genomic fragments. Because of the
rapid changes that occur in microsatellite copy numbers
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over time, these four fragments may contain as many as
four distinct copy number variants. Thus, the occur-
rence of three or four distinct alleles at a microsatellite
locus, given a single set of PCR primers in a single
diploid individual, can provide information about recent
duplication of the region containing the microsatellite.
This phenomenon suggests the potential of micro-
satellites as selectively neutral markers for studying gene
and genome duplication.

To understand the effects that duplication may have
on microsatellite variation, in this article, we develop a
simple coalescent model that we use to explore the pro-
perties of duplicated microsatellites. Under the symme-
tric stepwise mutation model, we deduce the probability
distribution of the number of distinct alleles that will be
observed in one diploid individual at a duplicated micro-
satellite, conditional on a known genealogy, duplication
time, and mutation rate, assuming that the duplication
event predates the most recent common ancestor for
the two allelic copies of each paralog. Randomness in
the genealogy is then incorporated into the analysis by
considering the distribution of genealogies both under
amodel in which the two paralogs are completely linked
and using one in which they are completely unlinked.
The effects of the model parameters—the duplication
time and the mutation rate—are then evaluated using
both numerical computation and a simulation-based
approach.

THEORY

Definitions: Several concepts used in our analysis are
illustrated in Figure 1, and notation is described in
Table 1. For a microsatellite locus and a node of a
genealogical tree, we refer to the number of copies of
the repeated unit at that node as the “allele state” of the
node. Terminal nodes are labeled from left to right as r;
and internal nodes are labeled as «;, ordered sequen-
tially on the basis of their relative time back from the
present. If i <j, then a;.t < a;.t; if a;.t = a;.t, then iand j
are annotated according to their relative position from
the left side of the diagram. As an example of the
notation, consider Figure 1d, which has four terminal
nodes 1y, 1, 13, 1, and three internal nodes a;, a, as. The
allele state of terminal node 7 is 7.s = 2, the time
backward from the presentis 7.t = 0, and the number of
descendant nodes (not including the node itself) is
1.0 = 0. For the ancestral node a;, suppose a@;.s =4 and
a;.t = 0.6. From Figure 1d we can see that a,.0 = 2.
Because the absolute difference in allele state between
node g and node 7 is |a.s — r.s| = 2, assuming that
mutations occur only through changes of +1 or —1
repeat unit, at least two mutation events must have
happened along the branch connecting the two nodes.

Unlinked paralogs: Our aim in this section is to com-
pute the probability distribution of the number of dis-
tinct alleles that will be observed in a single diploid

a
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F1Gure 1.—Notation for trees. Trees with sample sizes rang-
ing from 1 to 4 are shown. When the sample size is 1, 2, or 3,
only one unlabeled, rooted, binary topology is possible, as
shown in a—c. If the sample size is 4, two tree topologies
are possible (d and e). Two downward mutations are indi-
cated in d.

individual for a duplicated microsatellite locus. The com-
putation assumes that mutation follows the symmetric
stepwise mutation model, that is, that microsatellite
mutations occur by a single repeat unit, that mutations
by +1 and by —1 unit are equally likely, and that the
combined per-generation mutation rate for both types
of mutations, ., is independent of the current number
of repeats. Figure 1a shows the simplest scenario, involv-
ing a single ancestral node and a single descendant
node. Define the allele state difference between a; and
n as d = |n.s — a;.s] and the branch length as ¢ = a;.t—
7... Following Equation 34 of WEHRHAHN (1975) and
Equation 3 of WiLsoN and BALDING (1998), under the
symmetric stepwise mutation model, the probability
that the descendant node 7, has allele state ;.5 is

7*)/2 Z t6/4 2k+d B

49/2
Kk + d) 1,(10/2).

(1)

This equation results from summing the Poisson prob-
ability of 2k + d mutations over all possible values of &,
where k is the number of +1 mutations that are can-
celed by equally many —1 mutations. In (1), I, denotes
the dth-order modified Bessel function of the first
kind (GrapSHTEYN and Ryzhik 1980). For simplicity,
P(r.s]a.s,t,0) is denoted in the following derivations
as V(n — a1, t), where rn and a; represent r.s and a.s
(Table 1).

We now determine the probability distribution of the
number of distinct alleles in an individual at a dupli-
cated locus. Because both paralogs will be amplified by
the same primers, this number can range from one to
four, unlike in the case of a nonduplicated locus, for
which itis either one or two. For now, we assume that the

P(r.s|la.s,t,0)
=0
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TABLE 1
Notation
Symbol Quantity represented
n Number of alleles amplified (equal to twice

the number of haploid genomes sampled,
and equal to four throughout article).

N Haploid effective population size [or scaling
constant for the neutral coalescent model
(NorDBORG 2001)].

W Combined mutation rate for mutations
of +1 and —1 repeat unit.

0 Mutation rate parameter, § = 2NVu.

q A node of a tree, with three attributes:

an allele state, a time (measured backward
from the present), and a number of
descendant terminal nodes extant in the
present. These attributes are denoted g¢.s,
q.t, and ¢.b, respectively.

q.s Allele state attribute of a node ¢.

q.l Time attribute of a node ¢, measured in
units of N generations.

q.b Number of descendant terminal nodes
attribute of a node ¢.

a, Internal node (including the root):
ke{l,2,...,n—1}, &.t>0,a.b>0.

7, Terminal node: k € {1,2,...,n}, 5.0 =0,
Vk.b =0.

[ The event that £ distinct alleles
ke {1,2,...,n} are observed in a sample.

la Time of the duplication event, measured in

units of N generations.

The probability in time ¢ of an allele state
difference of r.s — a;.s between the allele
state of node 1 and that of its ancestor
a. V(k, t) refers to the probability
V(rn — a,t), when k= r.s — a.s.

V('I"] — ap, t)

two paralogs are completely unlinked, as might occur if
a whole chromosome or genome was duplicated. We
also assume that the duplication event happened longer
ago than the time at which alleles at the two paralogous
loci coalesce to their respective common ancestors and
that the evolution of lineages at each paralog follows a
coalescent model in a population of constant effective
size¢ N allelic copies. Mutation events on different
branches of the genealogy of four alleles from the two
paralogs (Figure 2) are assumed to occur independently.

Asshown in Figure 2, define {4 = as.t — 1.1, bo, = ay.1—
n.t, and fy, = as.t — %... We now must select a starting
value for as.s. A sensible choice for mutation models
with stationary distributions of allele size is to select as.s
according to the stationary distribution. The stepwise
mutation model has no stationary distribution (MORAN
1975), but because it also has no length dependence or
allele size constraints, any choice for as.s will produce
the same probability distribution of the number of
distinct alleles. We can therefore assume without loss of
generality that at the time of duplication, as.s = 0. Then

duplication

coalescence

|
i
z

haploid 2

haploid 1

FIGUurE 2.—Genealogy of two completely unlinked dupli-
cated paralogous microsatellite loci, with sample size two hap-
loid genomes. &, and f, have independent (truncated)
exponential distributions. The genealogy of one paralog is
in red, and the genealogy of the other paralog is in blue.
The time {; of the duplication event is assumed to be more
ancient than the common ancestor of extant samples from
a local population. Along the branches of this genealogy,
looking backward in time, two coalescence events and one du-
plication event take place.

the probability of observing only one distinct allele in a
sample—that is, the probability that all four sampled
alleles have the same copy number—is

P(c1 |0, ta, toa, top)
“+o0

Z P(n.s=n.s=mrns=1r.s=k)

h=—00

“+ o0

Z P(r.s =r.s = k)P(ra.s = rp.s = k)

h=—x

i { i P(71~5 =13.8§ = k|d1.S)P(a1.s)

k=—0  a.5=—%

X i P(r.s=mr.s=k| GQ.S)P(LZQ.S)}.

' @)

All probabilities are conditional on 0, 4, ., and &, but
for convenience, these quantities are not written in the
following equations. Substituting (1) into (2) yields

“+oo

Z Pn.s=n.s=k|a.s)P(a.s)
ay.s=—o
+oo
= Z P(ri.s=k|a.s)P(r.s = k| a1.s)P(ay.s] as.s)
ay.s=—>

“+o0
Z V(al, lqg — tQa)V(k —a, l‘ga)(z.
ay=—>
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Similarly,
+oo
Z P(ra.s = r.s = k| ag.s)P(as.s)
ag.s=—c
+o0
= > V(agta— ) V(k—a, t)%. (4)
{1,2:7%

Combining (2), (3), and (4) yields the probability of
observing only one distinct allele,

P(c1 |0, ta, boa, top)

+ oo —+oo
S { S Vs ta— )Vl ar, )

k=—o ay=—"
X Z (ag, ta — th)V<k — a, th)Q}. (5)

This result can be viewed as a four-allele generalization
of the classical computation for a nonduplicated locus
of the probability under the stepwise model that two
alleles have the same allele state (OHTA and KiMURA
1973).

We now derive the probability of observing two
distinct alleles. Using the tree topology (Figure 2) to
identify the possible ways in which the genealogy could
give rise to two distinct alleles,

P(c2 |0, 14, toa, toy)
= P(n.s = 13.5,70.8 = 14.5, 1.5 7 15.5)
+2P(11.8 = 1.8 = 13.8, 1.8 £ 11.5)
+ 2P (1.8 = 13.8 = 14.8,711.5 7 1o.5)
+ 2P(r1.8 = 19.5,13.8 = 14.5, 115 7 13.5). (6)

Applying the same conditional probability approach as
was used in deriving the probability of observing only
one distinct allele, we have

P(r.s =13.5,79.5 = 11.5, 1.5 # 12.8)

+o o
= Z Z Pn.s=mn.s=kPns=ns=1)

k== __o

I#k

Ey{En

p— a.5=—»

(n.s=*k| ar.s)P(rs.s =k | ar.5)P(a.s)
|=—o0

I#k

400
X Z P(ry.s=1] as.s)P(ry.s = 1| af2<S)P((l/2.S)}
ag=—o

+o +o +o%

I

p— P —

V(ar, ta = t20) V(ag, ta — tap)
|=—o0 @

£k

X V(k - a, 52(¢)2V(l - @, t?b)2'

We also have the following three equations:

P(r.s = 1.5 =13.5,1.5 # 1.s)

S Y S Ve Ve -

k=—0o |— o W= ®=

Ik

X V(k— a1, t,)*V(k — ag, o) V(I — ag, toy),

(8)

P(ro.s = 13.8 = 14.5, 1.5 # 12.5)

+o0 +oo +oc
=> 3 Z Viar, ta — toa) V(az, ta — tay)
kffm |=—o M=% ag==%
Ik

V(k= a1, ba) V(L= a1, b)) V(k — ap, )%,

P(r]s—rzsrgs—msr]s;érgs)

+o 4o 4
= Z Z Z Vi(ar, ta — toa) V(az, ta — o)
k=— |=—oo M=—F a@g=—%
I#£k

X V(k=a, o) V(= a1, b0a) V(k = az, t9) V(I — az, b5).  (10)
Combining Equations 7, 8, 9, and 10 we obtain

P(L? I e: la, toa, l?b)
+o 4o

+oo 11
— Z Z Z Z (a1, ta — o) V(ag, ta — to)[ Do), ( )

k= |, @=—% gy=—o°

Ik

where

Qo = V(k— a1, 1,)* V(I — ag, t9)* + 2V (k — a1, ta,)*
X V(k— ag, top) V(I — ag, to;) + 2V (k — ay, to,)
X V(I — ay, toa) V(k — ag, to3)? + 2V (k — a1, toa)

X V(= ar,to,)V(k— ag, toy) V(I — ag, tap).

Applying the same approach, the probability of ob-
serving three distinct alleles is

P(c3 |0, ta, toa, top)

* =m0 m=—c UT T ®R=TF

I#k  m#Lk
X V(ag, ta — t2)[Qs], (12)

where

Qs =V(k— a1, 15,)* V(I — ap, toy) V(m — ap, toy)
+V(k— ar, toa) V(I — a9, t3)*V(m — a1, o)
+4V(k — a1, lo,) V(k — a9, to,) V(I — ay, lo,)
X V(m— ag, top),
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and the probability of observing four distinct alleles is

P(64 I 67 td7 LZ{H t?b)

_iiz Z iz V(ar, ta — t2q)

S—3 [ —3
k I=—% m=—% n=—% o

I#k  m#ALk  n#m,lk
X V(ag, ta — t2)[Qul, (13)

where  Qu=V(k— a1, ,) V(I — ao,t0,) V(m — ay, to,)
V(n — o, tgb).

Under the neutral coalescent model with N allelic
copies in the population at a given locus, f, and &, fol-
low independent exponential distributions with mean 1
time unit, where time is measured in units of N gen-
erations (NORDBORG 2001). As a result, for unlinked
paralogs—such as might be produced by genome
duplication—their probability density functions are
given by

[(to,) = e ™ and [(loy) = e ™. (14)

Using these two exponential distributions, we can inte-
grate over values of &, and #, to derive the conditional
probabilities of one, two, three, and four distinct alleles
given only the mutation rate 6 and the duplication time
4. Because we assume that the most recent common
ancestor for each paralog is more recent than the time
of duplication, the calculation is conditional on the ex-
ponentially distributed coalescence times being smaller
than #y. Thus, for each i from 1 to 4 we have

Pler] 0, 1) = ()&l Otd P(c; |0, ta, bog, top) f (t0) [ (top) dlogdlsy,
l fo Y [ (toa)f (tos) dtoqdtay

(15)

Note that the denominator simplifies to (1 — e ),
Completely linked paralogs: For a model with com-
pletely linked loci, as might apply to a situation of
tandem duplication, &, and &, are identical. Thus, the
computations in this model can be viewed as a special
case of those performed in the model with completely
unlinked loci. Probabilities in this model are obtained
by substituting #, and &, with a single variable, &, in
Equations 2-13. Thus, for each i from 1 to 4 we have

IO Q \6 td,tg)f(tg)dtg
jO tg dty

—ta

P(ci|8,ta) = (16)

The denominator simplifies to 1 — ¢

METHODS OF COMPUTATION AND SIMULATION

We investigated the roles of ¢ and 0 in our duplicated
microsatellite model (Figure 2) to understand the
effects of the two parameters on the distribution of
the number of distinct alleles in a single diploid
individual. Using Mathematica (Wolfram Research,
Champaign, IL), computations were performed with

Equations 15 and 16. For computational efficiency, the
sums indexed by a; and a, were replaced with a single
sum indexed by z = a» — a;, as described in the APPENDIX.
To make the computation feasible, infinite summations
were truncated, and for all cases, each summation pro-
ceeded at least from —12 to +12. For large duplication
times and mutation rates, the probability along a branch
of a net allele size change >12 repeats in absolute value
may have a nonnegligible probability. Denoting P,(¢) as
the probability P(c;) computed by truncating the sums
from —y to +y, the relative difference |Py(e) — Pso(2) |/
P50 () tends to increase with increasing {; and 0 (results
not shown). Thus, in the completely linked case, the
truncation we used for the computation of P(¢;) (i=1, 2,
3, 4) at a given point ({4, 6) employed at least as many
terms as max(12,y*), where y* is a value that satisfies
|Py<(¢2) — Pso(¢c2) | /Pso(c2) <0.01 for some location (#y*,
0%*) with 3% = f3 and 6* = 0 . The same truncation as was
used in the completely linked case was then used in the
completely unlinked case.

In the completely unlinked case, the presence of a
double integral (Equation 15) rather than a single
integral makes the computational task more demand-
ing than in the completely linked case. Joint analysis of
{a and 6 also requires more computation than analysis of
one parameter at fixed values of the other parameter.
Thus, for all figures except Figures 3-5, which were
obtained numerically, we used a simulation approach to
study the joint effects of ¢; and 0. In this approach, we
first choose the coalescence times of the paralogs from
an exponential distribution with mean 1, conditional on
the exponential random variable being smaller than the
duplication time. We then simulate mutations along the
tree from the time of duplication forward, one branch at
a time. A number of mutations is chosen for a given
branch of length ¢, using a Poisson distribution with
mean 60¢/2. After mutation events are placed, each
mutation is specified as being a +1 or a —1 change in
copy number, each with probability & Allele states at the
nodes corresponding to the paralog coalescences are
recorded as the basis for simulation of mutations on the
external branches. The simulated mutations on the
external branches in turn lead to sizes for the four
alleles, and each simulated tree is classified by the
number of distinct alleles produced. The fractions of
simulated trees with one, two, three, and four distinct
alleles are then used as estimates of P(¢;), P(c), P(c3),
and P(c¢s). To ensure convergence in probability,
500,000 simulated trees were obtained for each combi-
nation of #{; and 6. The simulation results, which
underlie Figures 6-12, were found to be consistent with
exact computations at various sets of parameter values.
For example, comparing the simulated values of P(¢)
and the computations based on the exact formula in the
linked case (Equation 16, with each term truncated
from —40 to +40), using a fixed 0 of 3.5 and varying {4
from 2 to 12 at intervals of 1 (with an extra point at
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FIGURE  3.—Probability
distribution of the number
of distinct alleles for a pair
of completely linked paral-
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ogous loci in a diploid indi-
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leles are colored in four dif-
ferent shades. (a and b)
The effect of varying 6 from
0 to 10, with fixed small #y
(1.5) (a) and fixed large
ta (10) (b). (c and d) The
effect of varying ¢ from
1 to 12, with fixed small 0
(0.9) (c) and fixed large 6
(3.5) (d). In all graphs,
lr ~exp(l) (with the re-
striction that # is strictly
less than 1y).

la = 1.5), no significant difference is found (P = 1.00,
two-sample Kolmogorov-Smirnov test). Similarly, no
difference is found using a fixed 4 of 6, varying 0
from 1 to 12 at intervals of 1 (P = 1.00, two-sample
Kolmogorov-Smirnov test).

THE ROLE OF THE PARAMETERS

Figure 3 shows the role of the mutation rate 6 and the
duplication time {4, in the case where the two paralogous
loci are completely linked. We computed the distribution
of the number of distinct alleles, varying 0 for fixed values
of t4 and varying ¢, for fixed values of 0. Figure 3 shows the
influence of 8 for a “small” #; of 1.5 units of coalescent
time and for a “large” ¢4 of 10 units, with 8 ranging from 0
to 10, and the influence of ¢; for a small 6 of 0.9 and a
large 0 of 3.5, with #; ranging from 1.5 to 12.

The mutation parameter 6 plays an important role in
shaping the probability distribution of the number of dis-
tinct alleles, regardless of the value of #;. When 0 is near
zero, mutations rarely occur and the current allele state is
likely to be the same as the ancestral state. Thus, the
scenario of a single distinct allele predominates. How-
ever, this pattern quickly disappears as 0 increases. Even-
tually, for large values of 0, sufficiently many mutations
occur that all four alleles are likely to be distinct.

When {4 is large (Figure 3b), as 0 increases from 0
to 10, the probability that the number of distinct alleles
is one decreases sharply from near 1 to near 0. The
probability of two distinct alleles first increases to ~0.65,
but then decreases slowly. The two-allele configuration

is dominant for a short range, until P(¢s) outpaces P(cy)
near 8 = 1.5. The probability of three distinct alleles
increases quickly for small 6, and for 6 from ~1.5 to
~4.0, the three-allele configuration is most probable,
with a relatively stable probability over this range. The
probability of four distinct alleles rises slowly but mono-
tonically. Finally, at 6 = 4.0, the configuration with four
distinct alleles becomes most probable.

When {; is small (Figure 3a), compared to the case
when {4 is large, the rate of decrease for one distinct
allele and the rates of increase for two, three, and four
distinct alleles are slower. At 8 ~ 2.8, the configuration
with three distinct alleles becomes most frequent and
predominates as 0 increases to 10. The difference in the
speed at which the four possibilities change their order
in the cases of large ¢4 and small ¢4 is primarily a result of
long branches between the time of duplication and the
times of coalescence of the individual paralogs in the
former case and short branches separating these two
events in the latter. When these branches are long, the
increasing mutation rate will cause them to accumulate
many mutations. These mutations will likely increase
the number of distinct alleles to at least two, with nodes
7 and 73 having one allele state and nodes 7% and r
having another. As 0 increases further, mutations will
occur on the shorter branches between the paralog
coalescences and the present, further increasing the
number of distinct alleles. Regardless of the duplication
time, however, as the mutation rate becomes large for a
fixed t4, the probability of fewer than four distinct alleles
becomes negligible.
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The duplication time 73 plays a less important role
than the mutation rate in shaping the probabilities of
the four values for the number of distinct alleles. As 4
increases from 1.5 to 12 in Figure 3, ¢ and d, the
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FIGURE  4.—Probability
distribution of the number
of distinct alleles for a pair
of completely unlinked pa-
ralogous loci in a diploid in-
dividual. The probabilities
of one, two, three, and four
alleles are colored in four
different shades. (a and b)
The effect of varying 6 from
0 to 10, with fixed small #4
(1.5) (a) and fixed large
la (10) (b). (c and d) The
effect of varying f4 from
1 to 12, with fixed small 0
(0.9) (c) and fixed large 6
(3.5) (d). In all graphs,
le ~exp(l) and
exp(1) (with the restriction
that &, and &, are strictly
less than {4).

toy ~

probabilities of one and two distinct alleles slowly
decrease. When 0 is small (Figure 3c), configurations
with three and four distinct alleles slowly increase in
probability, while the number of distinct alleles with the

0.6
P(C;lo.a

0.2
0

td

15

td

15

F1GURE 5.—Probability distribution of the number of distinct alleles at a pair of completely linked paralogous loci in a diploid
individual. The time of duplication {4 ranges from 1.0 to 15.0, the mutation rate 6 ranges from 0.05 to 11.0, and the time of the
coalescence events, fy, has exponential distribution with mean 1 (truncated to be strictly less than #3); the four probabilities P(¢; ),
P(c), P(c3), and P(¢q) are displayed in the four different graphs. Each data point is computed numerically from a truncated
summation as described in METHODS OF COMPUTATION AND SIMULATION.
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F1GURE 6.—Probability distribution of the number of distinct alleles at a pair of completely unlinked paralogous loci in a diploid
individual. The time of duplication #4 ranges from 1.0 to 15.0, the mutation rate 0 ranges from 0.05 to 11.0, and the times of two
independent coalescence events, &, and &,, have exponential distributions with mean 1 (truncated to be strictly less than #;); the
four probabilities P(¢;), P(¢e), P(¢3), and P(¢y) are displayed in the four different graphs. Each data point is based on 500,000

simulations.

highest probability is two. When 0 is larger, however
(Figure 3d), the probability of three alleles slowly
decreases but remains highest until the right side of
the graph, where P(¢;) begins to dominate. The graphs
illustrate that as {4 becomes large, for a fixed mutation
rate, the probability of four alleles does not approach 1.
Mutations will tend to occur on the long branches
between duplication and paralog coalescence, so that
the probability of having at least two distinct alleles
increases. However, even for large {4, coalescence times
for the individual paralogs remain relatively small. Thus,
for small mutation rates, mutations are unlikely to occur
on the short branches between coalescence and the
present; for large mutation rates, such mutations are
more likely, although some probability exists that they
do not occur. As {; increases, the distribution of the
number of alleles therefore approaches a distribution in
which the probability is concentrated on two, three, and
four distinct alleles and in which the relative probabil-
ities of these configurations depend on the mutation
rate. Similar behavior is observed in the case of
completely unlinked loci (Figure 4).

Figures 5 and 6 show the probability surface for
completely linked and unlinked paralogous loci with
sample size two haploid genomes, covering the range of
ty from 1.0 to 15.0 and 6 from 0.05 to 11.0. In both the
linked and the unlinked cases, the probability P(¢;)
decreases quickly as 0 increases, as the increasing

number of mutations reduces the chance that alleles
will be identical. P(c) first increases as 6 increases,
reaching a local maximum. For {; large relative to f,
and #,, this maximum can be viewed as a consequence
of the fact that there is some range of 6-values for which
multiple mutations are likely to occur on the long
internal branches, but not on the short external
branches. In this range, r.s and 7.5 are likely to be
equal due to the lack of external mutations—as are 7.s
and 7;.s—but because many mutations will occur on the
long internal branches, it is likely that r.s and r;.s will
differ from 7.5 and 74.s. As {4 increases, the range of 6-
values that produces this phenomenon decreases in
size, resulting in a narrower “ridge” on the surface for
large #4. P(c¢3) increases as 0 increases, as mutations
begin to occur on external branches. Finally, P(¢) is
very small when 6 is small, butitincreases monotonically
with increases in /3 and especially in 0, as it becomes
increasingly likely that mutations will occur on all
branches, internal and external. For 0 sufficiently large,
regardless of {4, the configuration of four distinct alleles
eventually predominates.

The general trend of increasing numbers of distinct
alleles with increases in 6 and #; can be visualized in
Figures 7a and 8a, which show the mean number of
distinct alleles as functions of 6 and ¢, in the linked and
unlinked cases. However, the variance of the number of
distinct alleles, plotted in Figures 7b and 8b, is not
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monotonic in 0 and {; and instead has a ridge-like shape
similar to that of P(¢p) in Figures 5 and 6. This behavior
reflects the fact that for a given value of ¢4, at extreme
values of 0 where one configuration predominates, the
number of distinct alleles has a low variance, whereas for
intermediate values of 6 where multiple configurations
have nontrivial probabilities, the variance is relatively
high.

Two additional ways of viewing the four probabili-
ties—partitions of the parameter space by the relative
order of the four probabilities and visualizations of the
first-, second-, third-, and fourth-place probabilities—
can help to identify features that are not easy to
recognize in the graphs of the probability functions
described above. For example, small differences be-
tween the unlinked case and the linked case, which are
not conspicuous in the surface plots of Figures 5-8, can
be viewed in the summaries of the parameter space
plotted in Figures 9-12.

Figures 9 and 10 partition the parameter space by the
relative order of the four probabilities P(¢), P(c),
P(c3), and P(¢q). Of the 24 possible orders in which
these four probabilities could potentially occur, only 7
were observed at any point in the parameter space. The
same sequence of transitions with increasing values of

FIGURE 7.—Mean and variance of the number
of distinct alleles at a pair of completely linked
paralogous loci in a diploid individual. (a) Mean.
(b) Variance.

0 was always observed. Initially, P(¢;) > P(c) > P(c3) >
P(cy). To reach the eventual state in which P(¢)>
P(¢3) > P(c2) > P(c), the following transpositions then
occur: P(¢) and P(¢;), P(e1) and P(c3), P(c1) and P(cy),
P(¢y) and P(¢3), P(co) and P(¢y), and P(¢3) and P(cy).
One difference between the linked and the unlinked
cases is that for the unlinked case (Figure 10), the
intermediate regions of the parameter space shown in
blue have a greater area. In comparison with the linked
case (Figure 9), which has a single coalescence time
shared by both paralogs, in the unlinked case, there is a
greater chance that one of the two coalescence times for
the two paralogs will be extreme (either very large or
very small). If one of these coalescence times is
particularly large, 6 must be smaller to have a chance
of no mutations on the external branches between that
coalescence and the present, so that situations with high
values of P(¢;) and P(¢p) require smaller values of 6.
Conversely, if one of the coalescence times is particularly
small, 6 must be larger to have a chance of some
mutations on the external branches between that co-
alescence and the present. Thus, situations with a high
value of P(¢;) require larger values of 6. This same trend,
in which the unlinked case has a greater proportion
of the parameter space where the situation of three
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distinct alleles predominates, is visible in Figures 11 and
12, which illustrate at each point in the parameter space
the first, second, third, and fourth highest values among
P(c1), P(e2), P(c3), and P(cy). The part of the parameter
space where P(¢;) is in “first place” and the part where
P(e¢q) is in “second place” are both larger in the
unlinked case (Figure 12) than in the linked case
(Figure 11). Note that in both the linked and the
unlinked cases, as can be inferred from the list of the
seven partitions of the parameter space in Figures 9 and
10, at every point in the parameter space, either P(¢;) or
P(cy) was always observed to be in fourth place.

DISCUSSION

In this article, we have introduced a model for
studying evolution at duplicated microsatellite loci.
The model incorporates a stepwise model for micro-
satellite mutation, together with a coalescent model for
pairs of lineages of the same paralog, and was studied
both in the case of unlinked paralogs (chromosome or
genome duplication) and in the case of linked paralogs
(tandem duplication). Using our model we have de-
rived the distribution of the number of distinct alleles

FIGURE 8.—Mean and variance of the number
of distinct alleles at a pair of completely unlinked
paralogous loci in a diploid individual. (a) Mean.
(b) Variance.

that will be amplified by the PCR primers of a duplicated
microsatellite.

The two parameters of the model are the duplication
time and the mutation rate. We found that the mutation
rate 6 has a strong influence on the probability distri-
bution of the number of distinct alleles, in that the
probabilities of one, two, three, and four alleles vary
greatly with 0. As 0 increases, the probability of four
distinct alleles quickly becomes quite high. The dupli-
cation time has less of an influence: as the duplication
time increases—although the probability of one distinct
allele becomes negligible—the probabilities of two,
three, and four alleles slowly approach values that
depend on the mutation rate.

While our main goal has been to explore the prop-
erties of a relatively simple model, our results provide
information about potential uses of duplicated micro-
satellites for inference. One application may be to infer
0 and {4 for a partial genome duplication by genotyping
a single individual at many duplicated microsatellites
assumed to have the same mutation properties. In this
strategy, the fractions of loci observed to have one, two,
three, and four alleles are taken as estimates of P(¢),
P(c2), P(cs), and P(cy). However, the shapes of the like-
lihood surfaces in Figures 5 and 6 suggest that for many
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Order of configurations

combinations [P(c;), P(c2), P(¢3), and P(¢4)], the param-
eters will not both be identifiable, as points on a ridge
with decreasing 0 and increasing tq may all produce
similar probability distributions. If one of the two
parameters is estimated by other means—such as by
using nonduplicated microsatellites to estimate 60—
there may be some possibility of estimating the other
parameter. Another approach may be an expansion of
the model to accommodate sample sizes larger than one
diploid individual.

A second potential application concerns the linkage
status of the two loci in a duplicate pair. Although some
subtle differences are observable, the model illustrates
that unlinked and linked paralogs produce similar
distributions for the number of distinct alleles (Figures
5 and 6). This suggests that the frequency distribution
across individuals of the number of distinct alleles—
which can provide a valuable source of information for
identifying that a locus is duplicated—is not very infor-
mative about the linkage relationship of the two paralogs.

0 z.5§ 5 7.5 10

td

1lz.5

1s

[4,3,2,1] WA
[3,4,2,1] 1A
[3.2,4,1 W Ficure 9.—Partition of the parameter
[2.3,4,1 = space in the completely linked case, ac-
(2.3.1, 4] cording to the order of the four probabili-

L ties P(c1), P(c2), P(cs), and P(¢). For
(21.3,4] = example, [2,1,3,4] refers to a situation
(1.2,3,4 mm where P(c) > P(c1) > P(cs) > P(cq).
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In applications of the model, it will be important to
determine how inferences depend on changes to the
mutation scheme. We have focused on a simple muta-
tion model due to its relative tractability, but observa-
tions of microsatellite loci suggest a variety of deviations
from the model, including length-dependent mutation
rates, multistep mutations, mutation-influencing inter-
ruptions, and different probabilities of upward and
downward mutations (MATSUOKA et al. 2002; WHITTAKER
et al. 2003; ELLEGREN 2004; SAINUDIIN et al. 2004;
CALABRESE and SAINUDIIN 2005). Due to the particular
choice of variable that we have studied—the number of
distinct alleles in a single individual—some deviations
from the stepwise mutation model may have only
modest effects. For example, holding the overall muta-
tion rate constant and assuming length-independent
single-step mutation, asymmetry in the upward and down-
ward mutation rates has no effect on the probability of
identity for two alleles (KiIMMEL and CHAKRABORTY 1996).
Thus, it seems unlikely that such asymmetry would

Order of configurations

[43,21] 1A

[3.4,2,1] 1R

(32,411 W. FicUre 10.—Partition of the parameter
[23,41] WA space in the completely unlinked case, ac-
[2,3,1, 4] cording to the order of the four probabili-
[2.1.3.4] mm ties P(c1), P(c), P(c3), and P(cy). For
1,234 mm example, [2,1,3,4] refers to a situation

e where P(c) > P(c) > P(c3) > P(cy).

w

17.5
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strongly influence the scenario of four alleles consid-
ered here.

It is noteworthy that for the model to be applicable,
duplication must have occurred sufficiently recently
that the microsatellite that experienced duplication is
still polymorphic and actively mutating. Such scenarios
may occur in various species of fish, in which large-scale
duplications have occurred quite recently, and in which
substantial numbers of polymorphic microsatellites are
duplicated (DAVID et al. 2003, 2007; O’MALLEY et al.
2003). Between humans and chimpanzees, however,
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FIGURE 11.—First-, sec-
ond-, third-, and fourth-
4 6 & 10 12 14 place configurations for

td the linked case. For exam-
ple, over a range of values
of 6 and {4, the top left
graph shows which configu-
ration of alleles—one, two,
three, or four distinct allel-
es—is most probable, that
is, in “first place.”

Fourth Place

perhaps only ~6% of genes differ due to gene gains and
losses (DEMUTH et al. 2006), and thus, microsatellites
duplicated on the timescale for production of genetic
variation within the human species are likely to be quite
exceptional.

Although our model has been limited to a single in-
dividual, a single duplication event, and relatively simple
assumptions about mutation, it provides a beginning for
understanding the factors that affect patterns of varia-
tion at a duplicated microsatellite. With the increasing
frequency of observations of duplicated microsatellites

Second Place

FIGURE 12.—First-, sec-
ond-, third-, and fourth-
4 & & 10 1z 14 place configurations for

td the unlinked case. For ex-
ample, over a range of val-
ues of 6 and {, the top
left graph shows which con-
figuration of alleles—one,
two, three, or four distinct
alleles—is most probable,
that is, in “first place.”

Fourth Place
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in organisms where recent gene and genome duplica-
tions have played an important role in evolution (DAvVID
el al. 2003, 2007; O’MALLEY el al. 2003), further de-
velopment of coalescent-based models of duplicated
microsatellites may lead to new tools for inference about
the evolutionary process in these organisms.
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APPENDIX

The probability distribution of the number of distinct
alleles in the scheme of Figure 2 is equivalent to the
corresponding distribution in a scheme in which the
branch connecting as and ¢, is contracted to a single
point, the branch connecting as and ay is extended
to have length 244 — %, — &,, and no changes are made
to the branches connecting internal nodes @; and a to
descendant nodes 77, 7o, 13, and 7.

The probabilities P(c1), P(c2), P(cs), and P(c¢s) in
Equations 5 and 11-13 each include terms of the form

+o0 ~+oc

Z Z Vi, ta — t,) V(az, ta — tay).- (A1)

a=—% ag=—%
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By making the substitution z = @ — a; and interchang-
ing the order of summation, the sum can be trans-
formed to

+ o0 “+oc
Z Z V(dl, la — t?a) V(dl +tz,la— th)' (A2)

Because of symmetry in the mutation process, V(a,
la — toa) = V(—ay, lq — to,). Thus, the inner sum can be
seen to equal V(z, 2y — to, — fo;), as it can be obtained
by considering a single branch of length 2t — o, — to
traveling up the genealogy from node «, to node as and

then down to node a, rather than by considering
separate branches from a3 to a; and to a,. Therefore,
for computational efficiency, we can replace double
sums of the form of Equation Al in Equations 5, 11, 12,
and 13 with the single sum

“+oo

D V(220 — tha — ty). (A3)

z=—00

A similar idea was used by PRITCHARD and FELDMAN
(1996) for other calculations under symmetric stepwise
mutation.



