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Abstract

It was recently conjectured by H.A. Orr [2003. A minimum on the mean number of steps taken in adaptive walks. J. Theor. Biol.

220, 241–247] that from a random initial point on a random fitness landscape of alphabetic sequences with one-mutation adjacency,

chosen from a larger class of landscapes, no adaptive algorithm can arrive at a local optimum in fewer than on average e � 1 steps.

Here, using an example in which the mean number of steps to a local optimum equals ðA � 1Þ=A, where A is the number of distinct

‘‘letters’’ in the ‘‘alphabet’’ from which sequences are constructed, it is shown that as originally stated, the conjecture does not hold.

It is also demonstrated that ðA � 1Þ=A is a sharp minimum on the mean number of steps taken in adaptive walks on fitness

landscapes of alphabetic sequences with one-mutation adjacency. As the example that achieves the new lower bound has properties

that are not often considered as potential attributes for fitness landscapes—non-identically distributed fitnesses and negative fitness

correlations for adjacent points—a weaker set of conditions characteristic of more commonly studied fitness landscapes is proposed

under which the lower bound on the mean length of adaptive walks is conjectured to equal e � 1.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In a modern interpretation of Wright’s (1932)
adaptive landscape metaphor, evolution of a population
occurs on a discrete space of sequences, each of which is
associated with a fitness value (Orr, 2005). The
population is viewed as being located at a particular
point in the space. Substitutions in the sequence then
occur, each of which shifts the population to a point
adjacent to its current location, so that in any given step,
the population is more likely to move to neighboring
points of higher fitness than to those of lower fitness.
The space of sequences, together with the function that
e front matter r 2005 Elsevier Ltd. All rights reserved.
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assigns fitnesses to sequences, is termed the fitness

landscape. The relation that describes which sequences
are adjacent in the space induces a metric for the
landscape. A path through the space that terminates
upon reaching a local fitness optimum is termed an
adaptive walk. If in an adaptive walk, moves from a
point P always transit to the highest-fitness point among
the neighbors of P, a path is a gradient adaptive walk.
In a recent article, Orr (2003) argued that if fitnesses

are assigned randomly to sequences in such a way that
all sequences have identically distributed fitness, and if
adjacent points in sequence space are those that differ at
exactly one position in the sequence, then for ‘‘long’’
sequences, the mean number of steps taken in a gradient
adaptive walk from an initial sequence to a local
optimum is e � 1. This result was obtained as an
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approximation by considering infinitely long sequences.
However, the approximation of e � 1 held well in
simulated fitness landscapes with sequences of finite
length.
Orr noted that in comparison with other adaptive

algorithms, gradient adaptation is efficient at reaching
local optima. He also observed that landscapes with
identically distributed fitnesses are likely to produce
shorter adaptive walks than are those in which
neighboring points have positively correlated fitnesses:
such correlations will cause optima to be clustered in
locations that are difficult to access from points with low
fitness. These observations together with the remarkably
small mean number of steps for gradient adaptive walks
suggested the following conjecture (Orr, 2003, p. 246):
‘‘No adaptive algorithm on any class of fitness land-
scape can arrive at a local optimum in fewer than a
mean of e � 1 steps, given random starting points and
long sequences.’’ In this statement a class of landscapes

refers to a random field on the sequence space, so that
any given landscape is a particular realization of a class
of landscapes.
Here, after formalizing Orr’s results on the distribu-

tion of walk lengths for the case of independent and
identically distributed fitnesses, it is then found that as
originally stated, the conjecture does not hold. The
minimum mean length of adaptive walks is sharpened
from e � 1 to ðA � 1Þ=A, where A is the size of the
‘‘alphabet’’ from which ‘‘letters’’ in sequences are
chosen. In other words, it is shown that no adaptive
algorithm on any fitness landscape of alphabetic
sequences can arrive at a local optimum in fewer than
a mean of ðA � 1Þ=A steps, given random starting points
and sequences of any length. Because no landscape has a
mean adaptive walk length smaller than ðA � 1Þ=A, it is
also impossible for any class of landscapes to have a
mean adaptive walk length less than ðA � 1Þ=A. After
this improved lower bound is obtained, an example of a
class of fitness landscape that achieves the bound is
presented, demonstrating that the new bound is sharp.
The hypotheses of Orr’s conjecture are then weakened,
giving rise to a more restricted set of conditions under
which the conjectured lower bound on the mean length
of adaptive walks equals e � 1.
2. Definitions

The mean length of adaptive walks is a property of a
finite space of points together with an adjacency
relation, a fitness function, and an adaptive algorithm.
Of interest here is ‘‘alphabetic sequence space’’ with the
‘‘one-mutation’’ adjacency relation.
Consider an alphabet A with AX2 letters, denoted a0,

a1; . . . ; aA�1. These are the letters that can potentially be
part of a sequence. As an example, for DNA sequences,
A ¼ fadenine, cytosine, guanine, thymineg. Each se-
quence has length N, with each letter taken from the
alphabet A. For NX1, the set of sequences of length N

is A� � � � �A ¼ AN , as each element in the alphabet
can be in any position in a sequence. The number of
sequences in AN is AN . For a sequence Y 2 AN , Y i

denotes the ith letter of the sequence. Here AN is termed
the space of alphabetic sequences of length N for
alphabet A. Note that it is possible to view any space
of points on which adaptive walks can occur as an
alphabetic sequence space with N ¼ 1 and with an exact
correspondence between letters of the alphabet and
points in the space.
Given a space of points S, an adjacency relation t is

a relation between pairs of points in S that satisfies (i)
for Y ;Z 2 S, ZtY if and only if YtZ, and (ii) it is
never true that YtY . To ensure that S with adjacency
relation t is a connected graph, for this article, it is
assumed that adjacency relations satisfy a third condi-
tion: (iii) for Y ;Z 2 S, if it is not true that YtZ, then
there must exist points Y ð1Þ, Y ð2Þ; . . . ;Y ðkÞ 2 S such that
YtY ð1Þ, Y ð1ÞtY ð2Þ; . . . ;Y ðk�1ÞtY ðkÞ, and Y ðkÞtZ.
Two distinct alphabetic sequences Y ;Z 2 AN are one-

mutation adjacent if Y i ¼ Zi for all except one value of
i 2 f1; 2; . . . ;Ng, that is, if a single mutation at one
position can transform one of the sequences into the
other. The one-mutation adjacency relation is denoted

, so that if Y and Z are one-mutation adjacent, it is
written Y
Z (or Z
Y ).
Given the space of points S with adjacency relation

t, let f : AN ! ½0;1Þ be a fitness function. A sequence
Y 2 S is a local optimum of f if f ðY Þ4maxZtY f ðZÞ. To
avoid trivial cases (such as a situation in which all points
have equal fitness), it is assumed for any fitness function
f that if Y ;Z 2 S and YtZ, then f ðY Þaf ðZÞ.
Given the space of points S with adjacency relation

t and fitness function f, an adaptive algorithm Q is a
procedure that, given a starting point Y ð0Þ 2 S, chooses
points Y ð1Þ; . . . ;Y ðLÞ 2 S, such that (i) Y ðl�1ÞtY ðlÞ for
each lX1, (ii) Y ðLÞ is a local optimum of f, and (iii) Y ðlÞ is
not a local optimum of f for loL. The collection Y ð0Þ,
Y ð1Þ; . . . ;Y ðLÞ is an adaptive walk with length L. The
gradient adaptive algorithm, denoted Q�, chooses
Y ðlÞ ¼ argmaxZtY ðl�1Þf ðZÞ.
Finally, let LðS;t; f ;QÞ denote the mean length of

adaptive walks on space S with adjacency relation t,
fitness function f, and adaptive algorithm Q.
3. Independent and identically distributed fitnesses

Consider AN with one-mutation adjacency. Let h be a
fitness function on AN that assigns independent and
identically distributed fitnesses to all points. Let pJðNÞ

denote the probability that a gradient adaptive walk in
AN terminates on the Jth step.
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The probability that the starting sequence Y ð0Þ for a
gradient adaptive walk is a local optimum is the
probability that it has higher fitness than all of its one-
mutant neighbors, or, assuming independent and
identically distributed fitnesses (Kauffman and Levin,
1987)

p0ðNÞ ¼
1

ðA � 1ÞN þ 1
. (1)

Suppose now that Y ð0Þ is not a local optimum. Consider
an adaptive walk Y ð0Þ, Y ð1Þ; . . . ;Y ðJÞ 2 AN , with
Y ð0Þ
Y ð1Þ; . . . ;Y ðJ�1Þ
Y ðJÞ. Let aJðNÞ be the probability
that an adaptive walk that has reached Y ðJÞ continues
rather than terminates. If JX1, an adaptive walk can
reach Y ðJÞ only if it has reached each of Y ð0Þ,
Y ð1Þ; . . . ;Y ðJ�1Þ. Thus, the probability that an adaptive
walk has length greater than or equal to J, denoted
fJ ðNÞ, equals

QJ�1
j¼0 ajðNÞ. For JX1, the probability that

the walk has length exactly J equals fJðNÞ � fJþ1ðNÞ,
or

pJðNÞ ¼ ½1� aJ ðNÞ�
YJ�1

j¼0

ajðNÞ. (2)

The quantity aJðNÞ is the probability that at least one
of the points adjacent to Y ðJÞ has a higher fitness than
Y ðJÞ itself. Equivalently, for JX1, it equals the prob-
ability that the point with the highest fitness among all
points adjacent to any of Y ð0Þ; . . . ;Y ðJÞ is adjacent to
Y ðJÞ, but is not adjacent to any of Y ð0Þ; . . . ;Y ðJ�1Þ.
Because all points have independent and identically
distributed fitnesses, aJðNÞ is the ratio of the number of
points adjacent to Y ðJÞ but not adjacent to any of
Y ð0Þ; . . . ;Y ðJ�1Þ (and not equal to Y ð0Þ) and the number
of points adjacent to one or more of Y ð0Þ; . . . ;Y ðJÞ. In
Table 1

The probability pJ ðNÞ for alphabet size AX2 that a gradient adaptive walk o

distributed fitnesses) lasts exactly J steps (assuming AN4J)

J aJ ðNÞ limN!1aJ ðNÞ

0 ðA�1ÞN
ðA�1ÞNþ1

1

1 ðA�1ÞðN�1Þ
ðA�1Þð2N�1Þþ1

1=2

2 ðA�1ÞðN�1Þ�1
ðA�1Þð3N�2Þ

1=3

3 ðA�1ÞðN�1Þ�1
ðA�1Þð4N�3Þ�1

1=4

4 ðA�1ÞðN�1Þ�1
ðA�1Þð5N�4Þ�2

1=5

Values of pJ ðNÞ are obtained from values of aJ ðNÞ using Eq. (2). To compu

Y ð0Þ ¼ 000:::0. The formula for a0ðNÞ follows from the fact that all points in A

walk lasts at least one step. Without loss of generality, assume Y ð1Þ ¼ 100:::0
modifying the first position of Y ð1Þ include A � 2 neighbors of Y ð0Þ as well

ðA � 1ÞðN � 1Þ. The total number of points explored is ½ðA � 1ÞN þ 1� þ ðA

a2ðNÞ, suppose that a walk lasts at least two steps. Without loss of generalit

sequences obtained by modifying the second position of Y ð2Þ include A � 2 ne

of Y ð0Þ. Therefore, the number of new points adjacent to Y ð2Þ i

½ðA � 1Þð2N � 1Þ þ 1� þ ðA � 1ÞðN � 1Þ � 1, from which the formula for a2ð
cases for Y ðJ�1Þ must be considered.
other words, it is the quotient of the number of ‘‘new’’
points adjacent to Y ðJÞ and the total number of points
explored.
For small J, the ratio aJðNÞ is straightforward to

compute exactly (Table 1). For larger J, Orr (2003) used
an approximation to evaluate limN!1aJðNÞ ¼

1=ðJ þ 1Þ, from which he obtained limN!1pJðNÞ ¼

J=ðJ þ 1Þ! via Eq. (2). Here Orr’s argument is formalized
to verify the result.

Proposition 1 (Orr). For each integer JX0,
limN!1pJðNÞ ¼ J=ðJ þ 1Þ!.

Proof. For J ¼ 0, the result is clear from Eq. (1).
Suppose now that JX1 and N4J. To place bounds on
aJ ðNÞ, note that each of Y ð1Þ; . . . ;Y ðJÞ differs in one
sequence position from the previous point. Therefore, at
most J sequence positions vary among Y ð0Þ,
Y ð1Þ; . . . ;Y ðJÞ. A point adjacent to Y ðJÞ that differs from
Y ðJÞ in one of these J positions might be adjacent to one
or more of Y ð0Þ; . . . ;Y ðJ�1Þ. However, any point adjacent
to Y ðJÞ that differs from Y ðJÞ in one of the remaining
N � J positions cannot be adjacent to any of
Y ð0Þ; . . . ;Y ðJ�1Þ. Thus, the number of points adjacent
to Y ðJÞ and not adjacent to any of Y ð0Þ; . . . ;Y ðJ�1Þ is at
least ðN � JÞðA � 1Þ, but at most NðA � 1Þ.
The number of points adjacent to one or more of

Y ð0Þ; . . . ;Y ðJÞ is greater than or equal to
ðJ þ 1ÞðN � JÞðA � 1Þ, as each of the J þ 1 points has
at least ðN � JÞðA � 1Þ neighbors that cannot be
adjacent to any of the other J points. The number of
points adjacent to one or more of Y ð0Þ; . . . ;Y ðJÞ is at
most ðJ þ 1ÞNðA � 1Þ.
Combining the upper and lower bounds for the

numerator (new points) and denominator (total points)
n AN (with one-mutation adjacency and independently and identically

pJ ðNÞ limN!1pJ ðNÞ

1
ðA�1ÞNþ1

0

ðA�1ÞN
ðA�1Þð2N�1Þþ1

1=2

ðA�1ÞNðN�1Þ
½ðA�1ÞNþ1�ð3N�2Þ

1=3

ðA�1Þ2NðN�1Þ½ðA�1ÞðN�1Þ�1�
½ðA�1ÞNþ1�½ðA�1Þð2N�1Þþ1�½ðA�1Þð4N�3Þ�1�

1=8

ðA�1ÞNðN�1Þ½ðA�1ÞðN�1Þ�1�2

½ðA�1ÞNþ1�½ðA�1Þð2N�1Þþ1�ð3N�2Þ½ðA�1Þð5N�4Þ�2�
1=30

te aJ ðNÞ, without loss of generality, assume A ¼ f0; 1; . . . ;A � 1g and
N have exactly ðA � 1ÞN neighbors. To compute a1ðNÞ, suppose that a

. Of the ðA � 1ÞN neighbors of Y ð1Þ, the A � 1 sequences obtained by

as Y ð0Þ itself. Therefore, the number of new points adjacent to Y ð1Þ is

� 1ÞðN � 1Þ, from which the formula for a1ðNÞ follows. To compute

y assume Y ð1Þ ¼ 110:::0. Of the ðA � 1ÞN neighbors of Y ð2Þ, the A � 1

ighbors of Y ð1Þ as well as Y ð1Þ itself. The sequence 010:::0 is a neighbor
s ðA � 1ÞðN � 1Þ � 1. The total number of points explored is

NÞ follows. With J42 the calculation is similar, except that multiple
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of aJðNÞ, for 1pJoN, we have

N � J

ðJ þ 1ÞN
paJðNÞp

N

ðJ þ 1ÞðN � JÞ
. (3)

Note also from Eq. (1) that

a0ðNÞ ¼
ðA � 1ÞN

ðA � 1ÞN þ 1
. (4)

Combining Eqs. (2)–(4),

N � J � 1

N � J

ðA � 1ÞN

ðA � 1ÞN þ 1

J

ðJ þ 1Þ!

N!

ðN � JÞ!NJ
ppJ ðNÞ

p
N þ 1

N

ðA � 1ÞN

ðA � 1ÞN þ 1

J

ðJ þ 1Þ!

ðN � JÞ!NJ

N!
. ð5Þ

Finally, pJðNÞ is bounded between two functions whose
limits both equal J=ðJ þ 1Þ! as N ! 1. &

The convergence of pJ ðNÞ to J=ðJ þ 1Þ! occurs
rapidly, so that values of pJðNÞ are quite close to their
large-N limits even for small sequence lengths (Fig. 1).
4. General landscapes

It is now shown that for general f and Q,
LðAN ;
; f ;QÞXðA � 1Þ=A. The proof proceeds first
by demonstrating that if M is the number of local
optima in AN , then no adaptive algorithm can produce
adaptive walks of mean length less than ðAN � MÞ=AN .
Next, it is shown that with the adjacency relation 
, the
maximum number of local optima in AN equals AN�1.

Lemma 2. Given that the number of local optima of a

fitness function f on the alphabetic sequence space AN

equals M, for any adjacency relation t and any adaptive
algorithm Q, the mean length of an adaptive walk from a

random starting point in AN , LðAN ;t; f ;QÞ, is greater

than or equal to ðAN � MÞ=AN .

Proof. For any adaptive algorithm, the length of an
adaptive walk is 0 if it begins at a local optimum, and at
least 1 otherwise. Thus, the mean length of an adaptive
walk from a random starting point is LX½M � 0þ
ðAN � MÞ � 1�=AN . &

Lemma 3. For any fitness function f, with adjacency

relation 
 for the alphabetic sequence space AN , the

number M of local optima in AN is less than or equal to

AN�1.

Proof. Suppose MXAN�1 þ 1. There are AN�1 possible
values for the first N � 1 letters of a sequence in AN .
Therefore, there exist two local optima Y and Z for
which Y 1 ¼ Z1; . . . ;Y N�1 ¼ ZN�1. Y and Z are then
one-mutation adjacent, contradicting the definition of
local optimum. &

Proposition 4. For any fitness function f and any adaptive

algorithm Q, with adjacency relation 
 for AN , the mean

length of an adaptive walk from a random starting point in

AN is greater than or equal to ðA � 1Þ=A.

Proof. By Lemmas 2 and 3, LðAN ;
; f ;QÞXðAN �

MÞ= AN
XðAN � AN�1Þ=AN ¼ ðA � 1Þ=A. &

To demonstrate that ðA � 1Þ=A is a sharp lower
bound, it remains to produce an example of a fitness
function and adaptive algorithm on AN (with adjacency
relation 
), for which L ¼ ðA � 1Þ=A. Let Cak

: AN !

f0; 1; . . . ;Ng be the function that counts the number of
times that the letter ak 2 A appears in a sequence. That
is, for Y 2 AN , Cak

ðY Þ ¼
PN

i¼1dYi ;ak
, where dYi ;ak

is the
Kronecker delta (1 if Y i ¼ ak, 0 otherwise). Suppose
U : AN ! ð0; 1Þ is a uniform random variable, and
suppose g : AN ! f0; 1; . . . ; ðA � 1ÞNg is a function
so that for Y 2 AN , gðY Þ ¼

PA�1
k¼0 kCak

ðY Þ. Let f � :
AN ! ð0;AÞ be given by f �

ðY Þ ¼ gðY ÞðmodAÞ þ UðY Þ.
Then f � is an instance of a random field on AN ; in other
words, together with AN , f � produces a specific instance
of a statistical class of landscapes. This class of
landscapes, denoted F, encompasses all possible realiza-
tions of f � on the sequence space AN . The following
proposition shows that any fitness function f �

2 F ,
together with the gradient adaptive algorithm Q�,
produces adaptive walks on AN with mean length
ðA � 1Þ=A.

Proposition 5. For any fitness function f �
2 F , LðAN ;


; f �;Q�Þ ¼ ðA � 1Þ=A.

Lemma 6. If Y is a randomly chosen point in AN , and

k 2 f0; 1; . . . ;A � 1g, then P½gðY ÞðmodAÞ ¼ k� ¼ 1=A.

Proof. The result is clear for N ¼ 1, as each letter in A

appears in exactly one sequence. Suppose the result holds
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P is adjacent in the outer cube by replacing the last 0 with 1.
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for sequences of length N. For any sequence Y 2 AN ,
there are N sequences in ANþ1 obtained by appending a
letter to Y. Choosing one of these N sequences at
random, say Z, then P½gðZÞðmodAÞ ¼ k� ¼ P½½gðY Þþ

gðZNþ1Þ�ðmodAÞ ¼ k�, as g for a sequence is easily
shown to be the sum of the values of g for disjoint
component subsequences. P½½gðY Þ þ gðZNþ1Þ�ðmodAÞ ¼

k� ¼ P½gðY ÞðmodAÞ ¼ ½k � gðZNþ1Þ�ðmodAÞ�. Because
½k � gðZNþ1Þ�ðmodAÞ 2 f0; 1; . . . ;A � 1g, the inductive
hypothesis applies and P½gðZÞðmodAÞ ¼ k� ¼ 1=A. &

Proof of Proposition 5. Choose a random point Y 2 AN

and consider two cases: (i) gðY ÞðmodAÞ ¼ A � 1, and (ii)
gðY ÞðmodAÞaA � 1.
(i)
 gðY ÞðmodAÞ ¼ A � 1. Then f �
ðY Þ4A�1. Consid-

er Z 2 AN with Z
Y , Y j ¼ ap, Zj ¼ aq, and paq.
Then gðZÞ ¼ gðY Þ þ q � p, as Z contains one more
aq and one less ap than does Y. Consequently,
f �
ðZÞ ¼ ½gðY Þ þ q � p�ðmodAÞ þ UðZÞ. Because

qap, ½gðY Þ þ q � p�ðmodAÞpA � 2, and because
UðZÞo1, f �

ðZÞoA � 1. Thus Y has higher fitness
than any point one-mutation adjacent to it, and is a
local optimum.
(ii)
 gðY ÞðmodAÞaA � 1. Then f �
ðY ÞoA � 1. Consider

Z 2 AN with Z
Y , Y j ¼ ap, Zj ¼ aq, and q ¼

½p � 1� gðY Þ�ðmodAÞ. Note that ZjaY j , as gðY Þ

ðmodAÞaA � 1. Then gðZÞðmodAÞ ¼ gðY ÞðmodAÞþ

½p � 1� gðY Þ�ðmodAÞ � pðmodAÞ ¼ A � 1. Using
case (i), Z is a local optimum. Such an optimum
can be obtained for any j, so that Y is one-mutation
adjacent to N local optima. In a gradient adaptive
walk, a move from Y proceeds to the point with the
highest fitness among these N optima.
Applying Lemma 6 with case (i), the probability that
an adaptive walk begins at a local optimum is 1=A. If
the adaptive walk does not begin at a local optimum,
using case (ii), it reaches one in its first step. Therefore,
LðAN ;
; f �;Q�Þ ¼ ð1=AÞ � 0þ ð1� 1=AÞ � 1. &

This example can be illustrated with the special case
A ¼ f0; 1g (Fig. 2). Length-N sequences with an odd
number of ones have fitness in (1,2), and those with an
even number of ones have fitness in (0,1). Any ‘‘odd’’
sequence is a local optimum, because any mutation
converts it to an ‘‘even’’ sequence. Any ‘‘even’’ sequence
is one step away from N local optima, because all
sequences one-mutation adjacent to it are odd. Because
half of all sequences are even and half are odd, the mean
number of steps to a local optimum is 1/2.
5. Orr’s conjecture

A tighter lower bound of ðA � 1Þ=A for the mean
length of adaptive walks on fitness landscapes of
alphabetic sequences with one-mutation adjacency has
been found and has been shown to be achieved under
the gradient adaptive algorithm by a specific class of
landscapes. However, as there may still exist conditions
on fitness landscapes that guarantee that the minimum
mean length of adaptive walks is no less than e � 1, it is
instructive to consider three assumptions that, when
stated explicitly, produce an emendation to Orr’s
conjecture for the lower bound.
To obtain the e � 1 bound, it was assumed in Orr’s

article that sequences are ‘‘long.’’ The purpose of this
assumption was twofold. First, long sequences are
required in order for the overlap of neighborhoods of
the points in the adaptive walk to be small in
comparison with the total number of neighbors that
the points have. Second, if sequences are long, for fitness
functions in which the limit as N ! 1 of the propor-
tion of points in the space that are local optima equals
zero, the probability that the starting point of an
adaptive walk is a local optimum is negligible. For the
counterexamples in Proposition 5, however, although
sequences can have arbitrary lengths, the proportion of
local optima in the space is a constant that does not
depend on N. Thus, the ‘‘long sequences’’ assumption
does not take on the role of reducing the probability of
starting at a local optimum.
Orr also implicitly assumed that fitnesses are identi-

cally distributed. However, in the counterexample,
fitnesses are not identically distributed, as the space is
partitioned into disjoint sections such that points in
different sections do not have identical distributions.
Finally, Orr restricted his discussion to scenarios in

which adjacent points had independent or positively
correlated fitnesses, such as Nk-landscapes (Kauffman
and Weinberger, 1989; Palmer, 1991). In the counter-
example, however, fitnesses are in fact negatively
correlated.
Consequently, it seems sensible to amend Orr’s

conjecture. Recall that for any NX1, with one-mutation
adjacency and any fitness function, no adaptive algo-
rithm starting at a random point in AN can arrive at a
local optimum in fewer than a mean of ðA � 1Þ=A steps.
A revised conjecture is as follows:
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For any �40, with one-mutation adjacency and any
fitness function that satisfies (i)–(iii), N can be chosen
sufficiently large so that no adaptive algorithm starting
at a random point in AN can arrive at a local optimum
in fewer than a mean of e � 1� � steps.
(i)
 The limit as N ! 1 of the proportion of points in
AN that are local optima, or limN!1p0ðNÞ equals
zero.
(ii)
 The fitnesses of all points in AN are identically
distributed.
(iii)
 The correlation coefficient for the fitnesses of two
randomly chosen adjacent points is nonnegative.
The Nk-landscapes satisfy the hypotheses of the
conjecture, as for these landscapes, (i)–(iii) hold. There-
fore it seems likely that the e � 1 bound applies to these
landscapes.
Note that it has been assumed throughout that the

space being considered is AN with one-mutation
adjacency. It is conceivable that lower bounds on walk
lengths would be still smaller than ðA � 1Þ=A if an
adjacency relation permitting a greater number of local
optima to exist in the sequence space were used.
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