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a b s t r a c t

Wederive formulas formean deep coalescence cost, for either a fixed species tree or a fixed
gene tree, under probability distributions that satisfy the exchangeability property. We
then apply the formulas to study mean deep coalescence cost under two commonly used
exchangeable models—the uniform and Yule models. We find that mean deep coalescence
cost, for either a fixed species tree or a fixed gene tree, tends to be larger for unbalanced
trees than for balanced trees. These results provide a better understanding of the deep
coalescence cost, as well as allow for the development of new species tree inference
criteria.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The deep coalescence cost is a measure of the relationship between an ordered pair of rooted, binary, labeled trees
[17,18,24]. It arises in evolutionary models, in which one of the two trees, the ‘‘gene tree’’, can be viewed as evolving over
time through a process dependent on the other tree, the ‘‘species tree’’ [7,19]. Computations of the deep coalescence cost
have been of interest in a variety of problems, such as in algorithms to identify a species tree that produces the minimal
deep coalescence cost summed over a given set of gene trees [24,25], and in studies of trees that describe the duplication
and loss of genes in a set of species [2,28].

Recent papers have established a series of mathematical properties of the deep coalescence cost. Lin et al. [16] proved
that the minimal deep coalescence cost tree is Pareto. That is, for any given set of gene trees, if a cluster (i.e. the leaf set of
a subtree) appears in every input gene tree, then the cluster must appear in every species tree that produces the minimal
deep coalescence cost for the set of gene trees. Zhang [28] provided an elegant relationship between the deep coalescence
cost and the duplication and loss of genes in a set of species, and showed that computing a minimal deep coalescence
cost for a set of gene trees is NP-hard. Most recently, considering all possible gene trees, we have obtained the maximum
deep coalescence cost for a fixed species tree, characterizing the set of gene trees that achieve this maximum [26]. Further,
considering all possible species trees, although a general characterization of the maximum deep coalescence cost for a fixed
gene tree remains open, we have solved the problem in certain cases and have identified some features of the general
solution [26].

Here we pursue an analogous investigation of the mean deep coalescence cost, under a general probability model
for trees in which leaf labels are exchangeable. After presenting key concepts in Section 2, in Section 3 we introduce a
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convenient formula for the deep coalescence cost that is used in subsequent computations. In Section 4, we obtain themean
deep coalescence cost for a fixed species tree, considering all possible gene trees. In Section 5, we obtain the mean deep
coalescence cost for a fixed gene tree, considering all possible species trees. We further establish the upper bound on this
mean, considering all possible gene trees, and characterize the gene trees that achieve the upper bound. In Sections 4 and 5,
although ourmain results apply to general exchangeablemodels, we focus on two of themost popular exchangeablemodels
used in evolutionary biology, the Yule and uniform models. The paper concludes with a short discussion.

2. Background

We consider only binary, rooted trees. We also assume that tree leaves are bijectively labeled by a (nonempty) taxon set
X . The set of all binary, rooted trees on X is denoted by R(X). It is well-known that the number of trees in R(X) is

b(|X |) = (2|X | − 3)!! =
(2|X | − 2)!

2|X |−1(|X | − 1)!
, (1)

with the convention that b(1) = (−1)!! = 1 [5,8,20]. For brevity, we let |X | = n throughout the paper, except when
explicitly stated otherwise.

We denote by V (T ) and E(T ) the sets of nodes and edges of a tree T ∈ R(X). The set V (T ) minus the set of leaves of T is
called the set of internal nodes of T , and it is denoted by V̊ (T ). An edge of T is called an internal edge if both of its endpoints
are in V̊ (T ). The set of internal edges of T is denoted by E̊(T ). For T ∈ R(X), |V (T )| = 2n − 1 and |E(T )| = 2n − 2. Thus,
|V̊ (T )| = |V (T )| − n = n − 1 and |E̊(T )| = |E(T )| − n = n − 2.

For a node v ∈ V (T ), let T (v) be the subtree of T rooted at v, and let CT (v) be the set of leaves of T (v). The set CT (v) is
called the cluster induced by v. The set of clusters induced by T is

C (T ) = {CT (v) | v ∈ V (T )}. (2)

We consider the edges of T to be directed away from the root of T . A non-root node v uniquely determines edge e = (u, v),
where u is the parent of v. Hence, for convenience we also refer to T (v) and CT (v) as T (e) and CT (e), respectively.

2.1. External path length and the Sackin index

For a node v ∈ V (T ), let ℓT (v) be the length of the path from the root of T to v (i.e. the number of edges in the path). The
length ℓT (v) is called the depth of v. The external path length of T is defined as

epl(T ) =


x∈X

ℓT (x). (3)

Eq. (3) can be expressed as (e.g. [3]):

epl(T ) =


e∈E(T )

|CT (e)| = −n +


v∈V (T )

|CT (v)|. (4)

The reason for Eq. (4) is that a leaf x appears in exactly ℓT (x) clusters CT (e), and hence by summing ℓT (x) over all the leaves
of T , we obtain the sum of the sizes of all clusters CT (e). More formally, we have

ℓT (x) =


e∈E(T )

[x ∈ CT (e)],

where [ · ] is the Iverson bracket, equaling 1 if the logical condition in square brackets is true, and 0 otherwise. Thus,

epl(T ) =


x∈X

ℓT (x) =


x∈X


e∈E(T )

[x ∈ CT (e)] =


e∈E(T )


x∈X

[x ∈ CT (e)] =


e∈E(T )

|CT (e)|.

The Sackin index of tree T is the average depth of a leaf in T [13,22]:

ℓ(T ) =
epl(T )

n
=

1
n


x∈X

ℓT (x). (5)

This index, and hence the external path length, can be considered as a measure of the amount of unbalance of a tree: in
general, ℓ(T ) is larger for more asymmetric trees (e.g. [13]). In fact, for a fixed n, epl(T ) (and hence ℓ(T )) is largest if T is a
caterpillar tree [14,15], and smallest when T is a complete binary tree [15], in which 2n − 2k leaves, where k = ⌈log2 n⌉,
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Fig. 1. An illustration of the calculation of dc(T , S). Each node of the gene tree T (left) is mapped to its MRCA in the species tree S (right). In this example,
only one internal node of T (nodew) is mapped to a node below edge e, and hence there is |CS(e)|−1−1 = 1 extra lineage in e. In total, two extra lineages
are required to reconcile T within S.

have depth k and appear as far left in T as possible, and the remaining 2k
− n leaves have depth k− 1 and appear as far right

in T as possible. For example, tree (((a, b), (c, d)), ((e, f ), g)) is a complete binary tree for n = 7.

2.2. Deep coalescence cost

The deep coalescence cost for reconciling a gene tree T ∈ R(X) within a species tree S ∈ R(X), dc(T , S), is computed by
using amost recent common ancestor (MRCA)mapping between the nodes of T and the nodes of S [17]. For a node v ∈ V (T ),
let MRCAS(v) be the farthest node from the root of S such that CT (v) ⊆ CS(MRCAS(v)). For an edge e of S, let ce be the size
of the set {v ∈ V̊ (T ) | MRCAS(v) is a node in CS(e)}, that is, the set of internal nodes of T that are mapped to nodes of CS(e).
We define the number of extra lineages in an edge e as

xl(T , e) = |CS(e)| − ce − 1, (6)

and compute the cost dc(T , S) as the sum

dc(T , S) =


e∈E(S)

xl(T , e). (7)

An example of how the deep coalescence cost is computed appears in Fig. 1.
It is possible to compute xl(T , e) and dc(T , S) without relying on an MRCA mapping. For a nonempty subset A of X , we

say that a subtree T (v) of T is A-maximal if:

1. The leaf set of T (v) (i.e. CT (v)) is a subset of A.
2. For any subtree t of T of which T (v) is a proper subtree, the leaf set of t is not a subset of A.

By this definition, the only X-maximal subtree of T is tree T itself. Conversely, if A is a nonempty, proper subset of X , then
an A-maximal subtree of T must be a proper subtree of T , that is, it must be induced by some non-root node v of T . It can be
seen that T (v) is A-maximal, where A ( X and A ≠ ∅, if and only if [26]:

1. The leaf set of T (v), CT (v), is contained in A.
2. The leaf set of T (u), CT (u), where u is the parent of v, is not contained in A.

For an edge e of S, denote by ms(T , CS(e)) the number of CS(e)-maximal subtrees of T . We then have [24]:

xl(T , e) = ms(T , CS(e)) − 1. (8)

2.3. Exchangeable probability models on trees

Consider a probability distribution on the trees in R(X), and let P(T ) denote the probability of a tree T ∈ R(X). The
probability that a subset A of X is an induced cluster of a tree randomly sampled from R(X) is:

PX (A) =


T∈R(X)

P(T ) [A ∈ C (T )]. (9)

Note that PX (X) = 1 and PX ({x}) = 1 for every x ∈ X , as both X and single-leaf clusters {x} are induced by every tree in
R(X).

Let π be a permutation of X . For a tree T ∈ R(X), let π(T ) denote the tree obtained from T by relabeling each leaf x of T
by π(x). We say that a probability distribution has the exchangeability property [1] if for every π

P(T ) = P(π(T )).
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It follows from exchangeability that PX (A) is the same for all subsets A ⊆ X with the same number of elements. Consider
two subsets A and A′ of the same cardinality. Let π be a permutation of X that maps the elements of A to the elements of
A′. Then A ∈ C (T ) implies A′

∈ C (π(T )). It follows that [A ∈ C (T )] ≤ [A′
∈ C (π(T ))]. Because P(T ) = P(π(T )), we

have

PX (A) =


T∈R(X)

P(T ) [A ∈ C (T )] ≤


T∈R(X)

P(π(T )) [A′
∈ C (π(T ))]

=


T ′∈R(X)

P(T ′) [A′
∈ C (T ′)] (T ′

= π(T ))

= PX (A′).

Exchanging the roles of A and A′, we also have PX (A′) ≤ PX (A). Hence, PX (A) = PX (A′).
Both the uniform (also called PDA for ‘‘proportional to distinguishable arrangements’’) and Yule models have the

exchangeability property [1]. In the uniform model, every tree in R(X), regardless of its shape and leaf labeling, has the
same probability 1/b(n). Let A be a subset of X , and let z be an element not in X . Then a tree T ∈ R(X) of which A is a cluster
can be constructed by replacing leaf z in a tree in R(X \ A ∪ {z}) by a tree in R(A). Hence, the number of such trees T ∈ R(X)
is b(n − i + 1)b(i), where i = |A|, and the probability PX (A) under the uniform model is

pun(i) =
b(i)b(n − i + 1)

b(n)
=


n − 1
i − 1


2n − 2
2i − 2

−1

. (10)

The Yule model [11,27] generates trees from the root by repeatedly splitting a leaf, chosen uniformly at random, into
two leaves. The Yule model is equivalent to the coalescent process [12], ignoring branch lengths [1]. In the Yule model, the
probability of a tree in R(X), regardless of its leaf labeling, is [4,23]

P(T ) =
2n−1

n!


v∈V̊ (T )

1
|CT (v)| − 1

. (11)

Unlike in the uniform model, the probability of a tree in the Yule model depends on its shape. Rosenberg [21] proved that
the probability PX (A) of an i-subset A is

pyn(i) =


2n

i(i + 1)

n
i

−1
if 1 ≤ i ≤ n − 1,

1 if i = n.
(12)

3. A formula for dc(T , S)

In this section, we derive a formula that relates dc(T , S) to the external path length of S. The formula is the key for
obtaining the results in the rest of the paper.

Lemma 1. Let A be a nonempty subset of X, and let T be a tree in R(X). Then the number of A-maximal subtrees of T is

ms(T , A) = |A| −


v∈V̊ (T )

[CT (v) ⊆ A] = 2|A| −


v∈V (T )

[CT (v) ⊆ A]. (13)

Proof. Define the indicator variable

IA(T (v)) =


1 if T (v) is A-maximal,
0 otherwise.

Then

ms(T , A) =


v∈V (T )

IA(T (v)).

If v is the root of T , then IA(T (v)) = IA(T ) = [X ⊆ A], because T is A-maximal if and only if A = X . For a non-root node
v ∈ V (T ), let u be the parent of v (i.e. (u, v) ∈ E(T )). Then [CT (v) ⊆ A] − [CT (u) ⊆ A] = 1 if CT (v) ⊆ A and CT (u) ⊈ A, and
0 if either CT (v) ⊈ A (which implies CT (u) ⊈ A) or CT (u) ⊆ A (which implies CT (v) ⊆ A). Thus,

IA(T (v)) = [CT (v) ⊆ A] − [CT (u) ⊆ A].
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It follows that

ms(T , A) = [X ⊆ A] +


(u,v)∈E(T )

([CT (v) ⊆ A] − [CT (u) ⊆ A]). (14)

Because each internal node of T , including the root, has exactly two children,
(u,v)∈E(T )

([CT (v) ⊆ A] − [CT (u) ⊆ A]) =


(u,v)∈E(T )

[CT (v) ⊆ A] − 2


u∈V̊ (T )

[CT (u) ⊆ A]

= −[X ⊆ A] +


v∈V (T )

[CT (v) ⊆ A] − 2


v∈V̊ (T )

[CT (v) ⊆ A]

= |A| − [X ⊆ A] −


v∈V̊ (T )

[CT (v) ⊆ A]. (15)

Eqs. (14) and (15) imply the first part of Eq. (13). The second part of it follows because exactly |A| leaves of T are
in A. �

By the preceding lemma,

xl(T , e) = ms(T , CS(e)) − 1 = 2|CS(e)| − 1 −


v∈V (T )

[CT (v) ⊆ CS(e)].

Substituting this equation into Eq. (7), we obtain

dc(T , S) =


e∈E(S)

xl(T , e) = −(2n − 2) + 2

e∈E(S)

|CS(e)| −


e∈E(S)


v∈V (T )

[CT (v) ⊆ Cs(e)]

= −(2n − 2) + 2epl(S) −


e∈E(S)


v∈V (T )

[CT (v) ⊆ Cs(e)],

where in the last step we use Eq. (4). We have just proven the following important result.

Theorem 2. For a gene tree T and species tree S in R(X),

dc(T , S) = −(2n − 2) + 2epl(S) −


e∈E(S)


v∈V (T )

[CT (v) ⊆ CS(e)]. (16)

4. Mean deep coalescence cost for a fixed species tree

In this section and the next section, we assume that the probability distribution on R(X) has the exchangeability property.
Recall that exchangeability implies that PX (A) is the same for every subset A of X with a given size. We denote this shared
probability by pn(i), where |X | = n and |A| = i.

Let S ∈ R(X) be a given species tree. The mean deep coalescence cost of S, averaging over all gene trees, is defined as

dcs(S) =


T∈R(X)

P(T )dc(T , S).

We derive in this section a formula that expresses dcs(S) in terms of the external path length of S and cluster probabilities
pn(i). We then present formulas for dcs(S) in the Yule and uniform models, as well as a comparison between the two
formulas.

Theorem 3. If the probability distribution on R(X) has the exchangeability property, then

dcs(S) = −(2n − 2) + 2epl(S) −


e∈E(S)

|CS (e)|
i=1

pn(i)


|CS(e)|
i


. (17)

Proof. From the definition of dcs(S) and Theorem 2, we have

dcs(S) =


T∈R(X)

P(T )


−(2n − 2) + 2epl(S) −


e∈E(S)


v∈V (T )

[CT (v) ⊆ CS(e)]


= −(2n − 2) + epl(S) −


e∈E(S)


T∈R(X)


v∈V (T )

P(T ) [CT (v) ⊆ CS(e)]. (18)
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Let P0(X) be the collection of all nonempty subsets of X . Then
T∈R(X)


v∈V (T )

P(T ) [CT (v) ⊆ CS(e)] =


T∈R(X)


A∈P0(X)

P(T ) [A ∈ C (T )] [A ⊆ CS(e)]

=


A∈P0(X)

[A ⊆ CS(e)]


T∈R(X)

P(T ) [A ∈ C (T )]

=


A∈P0(X)

PX (A) [A ⊆ CS(e)]. (19)

We nowpartitionP0(X) into families Fi of i-element subsets of X, 1 ≤ i ≤ n. The number of elements A ∈ Fi that are subsets
of CS(e) is


|CS (e)|

i


. Note that this quantity is 0 for i > |CS(e)|, consistent with the fact that A ⊈ CS(e) if |A| = i > |CS(e)|.

Exchangeability implies that PX (A) = pn(i) for every A ∈ Fi. Therefore, the right-hand side of Eq. (19) is equal to

n
i=1


A∈Fi

PX (A) [A ⊆ CS(e)] =

n
i=1

pn(i)


|CS(e)|
i


=

|CS (e)|
i=1

pn(i)


|CS(e)|
i


.

The theorem now follows by substituting Eq. (19) into Eq. (18). �

4.1. dcs(S) in the Yule and uniform models

The following corollary provides a formula for dcs(S) in the Yule model. It is obtained by plugging the probability
pn(i) =

2n
i(i+1)

 n
i

−1 (Eq. (12)) for 1 ≤ i ≤ n − 1 into Eq. (17). A corresponding formula for dcs(S) in the uniform model is
given in Corollary 5.

Corollary 4. Assume the Yule model on R(X). Then the mean deep coalescence cost for a fixed species tree S ∈ R(X) is

dc
y
s (S) = −(2n − 2) + 2epl(S) −


e∈E(S)

|CS (e)|
i=1

2n
i(i + 1)

n
i

−1


|CS(e)|
i


. (20)

Corollary 5. Assume the uniform model on R(X). Then the mean deep coalescence cost for a fixed species tree S ∈ R(X) is

dc
u
s (S) = −2n(2n − 2) + 2epl(S) +

(2n − 2)!!
(2n − 3)!!


e∈E(S)

(2n − 2|CS(e)| − 1)!!
(2n − 2|CS(e)| − 2)!!

. (21)

Proof. From the probability pn(i) = b(i)b(n − i + 1)/b(n) (Eq. (10)) and the formula for dcs(S) in Theorem 3, we have

dc
u
s (S) = −(2n − 2) + 2epl(S) −


e∈E(S)

|CS (e)|
i=1


|CS(e)|

i


b(i)b(n − i + 1)

b(n)
. (22)

The inner sum of the last term in Eq. (22) can be simplified by the following claim. Let k be a positive integer smaller than
or equal to n. Then

k
i=1


k
i


b(i)b(n − i + 1) = b(n + 1) −

(2n − 2)!!
(2n − 2k − 2)!!

b(n − k + 1). (23)

Let Z be a set of n + 1 taxa, and let A be a fixed, k-element subset of Z . Denote by TZ (A) the set of trees T ∈ R(Z) that
satisfy the following property:

(PA) The leaf set of the left subtree Tℓ of T contains only elements of A.

Note that we do not require the leaf set of Tℓ to contain every element of A, only that it not contain any element of Z \ A.
Thus, some elements of A can appear in the right subtree Tr of T . We will prove Eq. (23) by counting the size of TZ (A) in two
different ways.

Property PA implies that the left subtree Tℓ of a tree T ∈ TZ (A) has at most k leaves. Let Fi = {T ∈ TZ (A) | Tℓ has exactly
i leaves}, 1 ≤ i ≤ k. A tree T ∈ Fi can be formed by a two-step process: (1) choosing an i-element subset B of A; and (2)
choosing a tree in R(B) for Tℓ and a tree in R(Z \ B) for Tr . There are


k
i


choices for the subset B in step (1), and therefore,

|Fi| =


k
i


|R(B)| |R(Z \ B)| =


k
i


b(i)b(n − i + 1).
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Fig. 2. An illustration for the proof of Corollary 5. A binary, rooted tree is constructed on the taxon set Z = A∪ {z1, z2, z3, z4}, where A = {a1, a2}. The left
subtree contains at least one leaf in Z \ A. We first choose a binary, rooted tree t0 on Z \ A, and then sequentially add leaves a1 and a2 to t0 .

Because {Fi | 1 ≤ i ≤ k} is a partition of TZ (A),

|TZ (A)| =

k
i=1

|Fi| =

k
i=1


k
i


b(i)b(n − i + 1). (24)

On the other hand, we can also count the number of trees in R(Z) \ TZ (A), that is, trees whose left subtrees have at least
one leaf not in A. Enumerate the elements of A by a1, . . . , ak. A tree in R(Z)\TZ (A) can then be constructed as follows (Fig. 2).
We first choose a tree t0 ∈ R(Z \ A). Having built ti, for i = 0, . . . , k − 1, we create ti+1 by bisecting an edge of ti with a
2-degree node vi+1, and then attaching leaf ai+1 to vi+1.

It is clear that tk ∈ R(Z). We show that tk ∉ TZ (A). The left subtree of t0 has at least one leaf not in A, as t0 ∈ R(Z \ A). By
the process just described, leaf ai+1 is added to a subtree of ti in each step i. Consequently, the left subtree of tk contains all
the leaves of the left subtree of t0. Hence, it has at least one leaf not in A, that is, tk ∉ TZ (A).

There are b(n− k+ 1) choices for the tree t0 ∈ R(Z \ A). Tree ti has n− k+ i+ 1 leaves, and so it has 2n− 2k+ 2i edges.
Therefore, there are 2n − 2k + 2i trees ti+1 that can be built from ti by joining leaf ai+1 to an edge of ti. It follows that the
number of trees in R(Z) \ TZ (A) is

b(n + 1) − |TZ (A)| = b(n − k + 1)
k−1
i=0

(2n − 2k + 2i) =
(2n − 2)!!

(2n − 2k − 2)!!
b(n − k + 1). (25)

Eqs. (24) and (25) imply Eq. (23).
Eq. (22) can now be simplified using Eq. (23):

dc
u
s (S) = −(2n − 2) + 2epl(S) −


e∈E(S)


b(n + 1)
b(n)

−
(2n − 2)!!

b(n)
b(n − |CS(e)| + 1)

(2n − 2|CS(e)| − 2)!!


= −2n(2n − 2) + 2epl(S) +

(2n − 2)!!
(2n − 3)!!


e∈E(S)

(2n − 2|CS(e)| − 1)!!
(2n − 2|CS(e)| − 2)!!

. �

4.2. Numerical investigation of dcs(S)

We note from Eq. (17) that dcs(S) of a species tree S depends on the shape of S, but not on the specific leaf labeling
of S. We now investigate the relationship between dcs(S) and the Furnas rank of S [9], in which tree shapes are assigned
consecutive positive integers, rankF (S), starting from 1. The rank of a tree depends first on the number of leaves in its left
subtree: trees with fewer leaves in their left subtrees have smaller ranks. Next, for trees with the same number of leaves
in their left subtrees, their relative order is determined by the ranks of their left subtrees. Finally, for trees with identical
left subtrees, the ranks of their right subtrees determine their relative rank. Generally, trees with higher rankF appear more
balanced than trees with smaller rankF (e.g. [13]). In particular, rank 1 is always assigned to caterpillar trees, and the largest
ranks are assigned to trees in which for each internal node, the numbers of leaves in the left and right subtrees of the node
differ by at most one. For brevity, we refer to the k-leaf caterpillar and the k-leaf tree shape with the highest Furnas rank as
T c
k and T b

k , respectively.
The values of dc

y
s (S) and dc

u
s (S) for all species tree shapes with up to nine leaves are given in Table 1, and plots of the two

functions for the 46 species tree shapes with nine leaves appear in Fig. 3(a). We first observe that both dc
y
s (S) and dc

u
s (S)

follow a similar pattern, with slightly higher values for dc
u
s (S). They generally decrease as rankF (S) increases, with T c

9 having
a high value, and T b

9 having a low value. However, the plots in Fig. 3(a) have jumps that usually occur between consecutive
trees S1 and S2 in which the left subtree of S1 has one leaf fewer than the left subtree of S2. Note then that the left and right
subtrees of S1 are T b

k and T b
9−k, where k is the number of leaves in S1, while the left and right subtrees of S2 are T c

k+1 and T c
8−k.

Fig. 3(b) plots the Sackin index for the 46 species tree shapes against their Furnas ranks. The figure shows that the
Sackin index exhibits a pattern very similar to the pattern observed in either dc

y
s (S) or dc

u
s (S). This observation can be

partly explained by the fact that the formula for dcs(S) in Eq. (17) contains the term 2epl(S) = 2nℓ(S), where ℓ(S) is the
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Fig. 3. Mean deep coalescence costs and the Sackin index for the 46 species tree shapes with nine leaves. Figure (a): dc
y
s (S) and dc

u
s (S), computed using

Eqs. (20) and (21). Figure (b): the Sackin index, computed using Eq. (5). The species tree shapes are ordered according to their Furnas ranks.

Sackin index of S. The formula and the plots in Fig. 3(a) and (b) demonstrate that a close connection exists between dcs(S)
and ℓ(S). Note, however, that the connection is complicated, as it depends on the sum


e∈E(S)

|CS (e)|
i=1 pn(i)


|CS (e)|

i


.

5. Mean deep coalescence cost for a fixed gene tree

In this section, we deal with the problem of evaluating the mean deep coalescence cost for a given gene tree T ∈ R(X),
averaging over all possible species trees. By Eq. (16),

dct(T ) =


S∈R(X)

P(S)dc(T , S)

=


S∈R(X)

P(S)


−(2n − 2) + 2epl(S) −


e∈E(S)


v∈V (T )

[CT (v) ⊆ CS(e)]


= −(2n − 2) + 2E[epl(S)] −


v∈V (T )


S∈R(X)


e∈E(S)

P(S) [CT (v) ⊆ CS(e)]. (26)

With the assumption that the probability distribution on R(X) has the exchangeability property, we can write E[epl(S)] and
the sum

f (T , v) =


S∈R(X)


e∈E(S)

P(S) [CT (v) ⊆ CS(e)]

in terms of cluster probabilities, as in the following two lemmas.

Lemma 6. If the probability distribution on R(X) has the exchangeability property, then

E[epl(S)] = −n +

n
i=1

n
i


ipn(i). (27)
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Proof. Using the formula for epl(S) in Eq. (4), we have

E[epl(S)] =


S∈R(X)

P(S)epl(S)

=


S∈R(X)

P(S)


−n +


v∈V (S)

|CS(v)|


= −n +


S∈R(X)


v∈V (S)

P(S) |CS(v)|.

Let P0(X) be the collection of all nonempty subsets of X , and let Fi be the collection of subsets of X that have exactly i
elements, 1 ≤ i ≤ n. Then

S∈R(X)


v∈V (S)

P(S) |CS(v)| =


S∈R(X)

P(S)


A∈P0(X)

[A ∈ C (S)] |A|

=

n
i=1


A∈Fi

|A|


S∈R(X)

P(S) [A ∈ C (S)].

The term


S∈R(X) P(S) [A ∈ C (S)] is the probability that A is a cluster of a tree in R(X), and by assumption, it is pn(i) for
every A ∈ Fi. Hence,

E[epl(S)] = −n +

n
i=1


A∈Fi

|A|


S∈R(X)

P(S) [A ∈ C (S)]

= −n +

n
i=1


A∈Fi

ipn(i) = −n +

n
i=1

n
i


ipn(i). �

Lemma 7. If the probability distribution on R(X) has the exchangeability property, then

f (T , v) =


S∈R(X)


e∈E(S)

P(S) [CT (v) ⊆ CS(e)] = −1 +

n
i=|CT (v)|


n − |CT (v)|

i − |CT (v)|


pn(i). (28)

Proof. Let P0(X) be the collection of all nonempty subsets of X . Observing that {CS(e) | e ∈ E(S)} = C (S) \ {X}, we rewrite
f (T , v) as

f (T , v) =


S∈R(X)


A∈P0(X)\{X}

P(S) [A ∈ C (S)] [CT (v) ⊆ A]

=


A∈P0(X)\{X}

[CT (v) ⊆ A]


S∈R(X)

P(S) [A ∈ C (S)] =


A∈P0(X)\{X}

PX (A) [CT (v) ⊆ A]

= −1 +


A∈P0(X)

PX (A) [CT (v) ⊆ A] = −1 +

n
i=1

pn(i)

A∈Fi

[CT (v) ⊆ A],

where Fi is the collection of all i-element subsets of X . Note that in the last step, we use the assumption that PX (A) = pn(i)
for every A in Fi.

The sum


A∈Fi
[CT (v) ⊆ A] is the number of elements of Fi that contain CT (v) as a subset. It is clear that if 1 ≤ i ≤

|CT (v)| − 1, then the summand is zero. If i ≥ |CT (v)|, then the sum is equal to


n−|CT (v)|

i−|CT (v)|


. For if CT (v) ⊆ A, then elements

in A \ CT (v) are chosen from X \ CT (v). Hence,

f (T , v) = −1 +

n
i=|CT (v)|


n − |CT (v)|

i − |CT (v)|


pn(i). �

Theorem 8. If the probability distribution on R(X) has the exchangeability property, then

dct(T ) = −(2n − 1) + 2
n

i=1

n
i


ipn(i) −


v∈V (T )

n
i=|CT (v)|


n − |CT (v)|

i − |CT (v)|


pn(i). (29)

Proof. The theorem is a direct consequence of Eqs. (26)–(28). �
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We next provide an upper-bound for dct(T ), considering all gene trees T (Theorem 10). The proof of the theorem relies
on the following lemma.

Lemma 9. Let φ be a strictly decreasing function on [2, n]. Then for any tree T ∈ R(X), where |X | = n,


v∈V̊ (T )

φ(|CT (v)|) ≥

n
k=2

φ(k), (30)

with equality if and only if T is a caterpillar tree.

Proof. We assign integers 2, . . . , n to the n − 1 internal nodes of T in postorder. For each v ∈ V̊ (T ), let Dv be the set of
nodes in V̊ (T ) that are proper descendants of v. Then node v is labeled only after all the nodes in Dv have been labeled. Since
T is binary and rooted, |Dv| = |CT (v)| − 2, and it follows that at least |Dv| numbers 2, . . . , |CT (v)| − 1 have been used for
labeling. Consequently, the next available number for labeling v is at least |CT (v)|. In other words, if we denote by κ(v) the
number assigned to v by the postorder labeling procedure, then we always have κ(v) ≥ |CT (v)| for any v ∈ V̊ (T ). Since φ
is decreasing, φ(|CT (v)|) ≥ φ(κ(v)), and hence

v∈V̊ (T )

φ(|CT (v)|) ≥


v∈V̊ (T )

φ(κ(v)).

As each v ∈ V̊ (T ) is assigned a unique integer among 2, . . . , n, we have {κ(v) | v ∈ V̊ (T )} = {2, . . . , n}. Thus, the right-hand
side of the last equation is equal to

n
k=2 φ(k). Eq. (30) now follows.

In order for the equality in Eq. (30) to hold, we must have φ(|CT (v)|) = φ(κ(v)) for every v ∈ V̊ (T ). Because φ is strictly
decreasing, |CT (v)| = κ(v) for every v ∈ V̊ (T ). This in turn implies that T induces for each k = 2, . . . , n a subtree that has
k leaves, which occurs if and only if T is a caterpillar tree. �

Theorem 10. Assume that the probability distribution on R(X) has the exchangeability property, and that pn(i) > 0 for every
1 ≤ i ≤ n. Then

dct(T ) ≤ −(n − 1) +

n
i=2

n
i


i −


n − 1
i − 2


pn(i), (31)

with equality if and only if T is a caterpillar tree.

Proof. For a positive integer 2 ≤ k ≤ n, define

φ(k) =

n
i=k


n − k
i − k


pn(i).

If 2 ≤ k ≤ n − 1, then

φ(k) >

n
i=k+1


n − k
i − k


pn(i) =

n
i=k+1

n − k
i − k


n − k − 1
i − k − 1


pn(i)

≥

n
i=k+1


n − k − 1
i − k − 1


pn(i) = φ(k + 1),

that is, the function φ is strictly decreasing on [2, n]. By Lemma 9,
v∈V̊ (T )

φ(|CT (v)|) ≥

n
k=2

φ(k) =

n
k=2

n
i=k


n − k
i − k


pn(i)

=

n
i=2

pn(i)
i

k=2


n − k
i − k


=

n
i=2

pn(i)
i

k=2


n − k
n − i



=

n
i=2


n − 1
i − 2


pn(i), (32)

where in the last step we use the identity
q

r=p


r
p


=


q+1
q−p


(e.g. Eq. (5.10), p. 160, [10]).
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From Eqs. (29) and (32), we have

dct(T ) = −(2n − 1) + 2
n

i=1

n
i


ipn(i) −

n
n

i=1


n − 1
i − 1


pn(i) +


v∈V̊ (T )

φ(|CT (v)|)


≤ −(2n − 1) +

n
i=1

n
i


ipn(i) −

n
i=2


n − 1
i − 2


pn(i)

= −(n − 1) +

n
i=2

n
i


i −


n − 1
i − 2


pn(i).

The equality in the last equation holds if and only if the equality in Eqs. (32) holds, which by Lemma 9, occurs if and only if
T is a caterpillar tree. �

5.1. dct(T ) in the Yule and uniform models

We derive in this section formulas for dct(T ) and its upper bound in the Yule and uniform models.

Corollary 11. Let Hn =
n

i=1 1/n, and assume the Yule model on R(X). Then the mean deep coalescence cost for a fixed gene
tree T ∈ R(X) is

dc
y
t (T ) = −(2n − 2) + 4n(Hn − 1) −


v∈V (T )

n−1
i=|CT (v)|

2n
i(i + 1)

n
i

−1

n − |CT (v)|

i − |CT (v)|


. (33)

Further,

dc
y
t (T ) ≤ −(2n − 2) +


2n − 2 +

8
n + 2


(Hn − 1). (34)

Proof. Eqs. (33) and (34) can be obtained by substituting the formula for pn(i) in the Yule model (Eq. (12)) into Eqs. (29) and
(31), respectively. The derivation of (34) involves several additional steps:

dc
y
t (T ) ≤ −(n − 1) + (n − (n − 1)) +

n−1
i=2

n
i


i −


n − 1
i − 2


2n

i(i + 1)

n
i

−1

= −(n − 2) + 2n(Hn − 3/2) −

n−1
i=2

2(i − 1)
(i + 1)(n − i + 1)

= −(n − 2) + 2n(Hn − 3/2) −
2n

n + 2

n−1
i=2

1
n − i + 1

+
4

n + 2

n−1
i=2

1
i + 1

= −(2n − 2) +


2n − 2 +

8
n + 2


(Hn − 1). �

As for the derivation of dct(T ) and its upper bound in the uniform model, we make use of the following lemma, whose
proof will be presented shortly.

Lemma 12. Let k and n be positive integers, where k ≤ n. Then

n
i=k


n − k
i − k


b(i)b(n − i + 1) =

(2n − 2)!!
(2k − 2)!!

b(k). (35)

Corollary 13. Assume the uniform model on R(X). Then the mean deep coalescence cost for a fixed gene tree T ∈ R(X) is

dc
u
t (T ) = −(2n − 1) + 2n

(2n − 2)!!
(2n − 3)!!

−
(2n − 2)!!
(2n − 3)!!


v∈V (T )

(2|CT (v)| − 3)!!
(2|CT (v)| − 2)!!

. (36)

Further,

dc
u
t (T ) ≤ −2(2n − 1) + (n + 1)

(2n − 2)!!
(2n − 3)!!

. (37)
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Proof. Recall that in the uniform model, pn(i) = b(i)b(n − i + 1)/b(n), where b(i) = (2i − 3)!! (Eq. (10)). Thus, we can
rewrite the second term in the formula for dct(T ) in Eq. (29) as

2
n

i=1

n
i


ipn(i) = 2n

n
i=1


n − 1
i − 1


b(i)b(n − i + 1)

b(n)
= 2n

(2n − 2)!!
(2n − 3)!!

,

where in the last step we use Lemma 12. Similarly, by applying the lemma on the third term of the formula for dct(T ) in
Eq. (29), we have

v∈V (T )

n
i=|CT (v)|


n − |CT (v)|

i − |CT (v)|


pn(i) =


v∈V (T )

n
i=|CT (v)|


n − |CT (v)|

i − |CT (v)|


b(i)b(n − i + 1)

b(n)

=
(2n − 2)!!
(2n − 3)!!


v∈V (T )

(2|CT (v)| − 3)!!
(2|CT (v)| − 2)!!

.

Eq. (36) now follows.
We can obtain an upper bound of dc

u
t (T ) either by using the upper bound in Eq. (31) with pn(i) replaced by b(i)b(n −

i + 1)/b(n), or by applying Lemma 9 directly on the formula for dc
u
t (T ) that we have just derived. The latter approach is

employed here.
For a positive integer k, let φ(k) = (2k − 3)!!/(2k − 2)!!. Then

φ(k + 1)
φ(k)

=
(2k − 1)!!
(2k − 3)!!

(2k − 2)!!
(2k)!!

=
2k − 1
2k

< 1,

that is, φ(k) is strictly decreasing on the set of positive integers. Thus, by Lemma 9,

dc
u
t (T ) = −(2n − 1) + 2n

(2n − 2)!!
(2n − 3)!!

−
(2n − 2)!!
(2n − 3)!!

n +


v∈V̊ (T )

φ(|CT (v)|)


≤ −(2n − 1) + n

(2n − 2)!!
(2n − 3)!!

−
(2n − 2)!!
(2n − 3)!!

n
k=2

φ(k)

= −(2n − 1) + (n + 1)
(2n − 2)!!
(2n − 3)!!

−
(2n − 2)!!
(2n − 3)!!

n−1
k=0

(−1)k


−1/2
k


,

where
 x
k


is defined as x(x − 1) · · · (x − k + 1)/k! for real x and nonnegative k. Then using the identity

n
k=0(−1)k

 x
k


=

(−1)n


x−1
n


(e.g. Eq. (5.16), p. 165, [10]), we have

dc
u
t (T ) ≤ −(2n − 1) + (n + 1)

(2n − 2)!!
(2n − 3)!!

− (−1)n−1 (2n − 2)!!
(2n − 3)!!


−3/2
n − 1


= −2(2n − 1) + (n + 1)

(2n − 2)!!
(2n − 3)!!

. �

Proof of Lemma 12. We now return to the proof of Lemma 12. The proof presented here employs a similar idea as in the
proof of Eq. (23): counting a certain class of binary, rooted trees in two different ways. Let X be a taxon set of cardinality n,
and let z be a distinguishing taxon name not appearing in X . Further, let A be a fixed subset of X of cardinality k. Denote by
TX (A, z) the set of trees T ∈ R(X ∪ {z}) that have the following two properties:

(PL) Every element of A appears in the left subtree Tℓ of T .
(PR) Taxon z appears in the right subtree Tr of T .

Note that Tℓ can have leaves from X \ A, but none of the elements of A appears in Tr . For a tree T ∈ TX (A, z), the leaf set
of Tℓ has at least k leaves (by PL) and at most n leaves (by PR). Let Fi = {T ∈ TX (A, z) | Tℓ has exactly i leaves}, k ≤ i ≤ n. A
tree T ∈ Fi can be formed in two steps: (1) choosing an i-element subset B of X that contains A; (2) choosing a tree in R(B) to
be Tℓ and a tree in R((X \ B)∪{z}) to be Tr . The elements of B \A are chosen from X \A, and hence, there are


n−k
i−k


different

choices for the set B in step (1). Therefore,

|Fi| =


n − k
i − k


|R(B)| |R((X \ B) ∪ {z})| =


n − k
i − k


b(i)b(n − i + 1).
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Fig. 4. An illustration for the proof of Lemma 12. A binary, rooted tree is constructed on the taxon set X = A ∪ {x1, x2, z}, where A = {a1, a2, a3}. The left
subtree contains all the elements of A and the right subtree contains z. We first choose a binary, rooted tree t0 on A∪ {z}, and then sequentially add leaves
x1 and x2 to t0 .

Fig. 5. Mean deep coalescence costs for the 46 gene tree shapes with nine leaves. The values of dc
y
t (T ) and dc

u
t (T ) are computed using Eqs. (33) and (36).

The gene tree shapes are ordered according to their Furnas ranks.

Because {Fi | k ≤ i ≤ n} is a partition of TX (A, z), we have

|TX (A, z)| =

n
i=k

|Fi| =

n
i=k


n − k
i − k


b(i)b(n − i + 1). (38)

On the other hand, we can construct a tree T ∈ TX (A, z) as follows. Enumerate the elements of X \ A by x1, . . . , xn−k. We
choose a tree t0 ∈ R(A∪{z}) such that the left subtree of t0 is a tree in R(A) (and so z is the only leaf in the right subtree of t0).
Having built ti, for i = 0, . . . , n−k−1, we create ti+1 by bisecting an edge of ti with a 2-degree node vi+1, and then attaching
leaf xi+1 to vi+1 (Fig. 4). It can be seen that tn−k ∈ R(X ∪ {z}) and satisfies both properties PL and PR. Thus, tn−k ∈ TX (A, z).

Since the left subtree of t0 is a tree in R(A), there are |R(A)| = b(k) different choices for t0. Tree ti has k+ i+1 leaves, and
so it has 2k + 2i edges. Therefore, there are 2k + 2i possible trees ti+1 that can be constructed from ti by joining leaf xi+1 to
an edge of ti. It follows that

|TX (A, z)| = b(k)
n−k−1
i=0

(2k + 2i) =
(2n − 2)!!
(2k − 2)!!

b(k). (39)

Eqs. (38) and (39) imply Eq. (35). �

5.2. Numerical investigation of dct(T )

The values of dc
y
t and dc

u
t for all gene tree shapeswith up to nine leaves are given in Table 2, and plots of the two functions

appear in Fig. 5. Both dc
y
t (T ) and dc

u
t (T ) generally decrease with increasing values of the Furnas rank. As is demonstrated

by the bounds in Eqs. (34) and (37), the highest values of the mean deep coalescence cost occur for the caterpillar tree. The
lowest values occur for trees with high Furnas ranks. In the samemanner as in the case of dc

y
s (S) and dc

u
s (S), jumps occur in

dc
y
t (T ) and dc

u
t (T ) at Furnas ranks where the number of leaves in the left subtree changes. Also as in the case of means over

species trees, the mean deep coalescence costs across gene trees are larger for the uniform model than for the Yule model.
Both for the Yule and uniform models, we have

S

P(S)dcs(S) =


S

P(S)

T

P(T )dc(T , S) =


T

P(T )

S

P(S)dc(T , S) =


T

P(T )dct(T ).

In other words, the mean across all 46 species trees of the values in Fig. 3 must equal the mean across gene trees of the
values in Fig. 5, as each quantity represents a mean over both gene trees and species trees. However, the values of dc

y
t (T )
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and dc
u
t (T ) in Fig. 5 show a number of differences from the corresponding values of dc

y
s (S) and dc

u
s (S) in Fig. 3(a). First, the

range of the values is greater for dc
y
s (S) and dc

u
s (S), with both the largest and the smallest values falling outside the range

of dc
y
t (T ) and dc

u
t (T ). Second, as might be expected from the difference in range, the variability across trees in mean deep

coalescence costs is greater for dc
y
s (S) and dc

u
s (S) than for dc

y
t (T ) and dc

u
t (T ). Despite this greater variability, however, the

difference between corresponding values for the Yule and uniform models is smaller for dc
y
s (S) and dc

u
s (S) than for dc

y
t (T )

and dc
u
t (T ).

6. Discussion

Our results on the mean deep coalescence cost have a series of parallels with our previous results on the maximum deep
coalescence cost [26]. We have observed that both for fixed species trees and for fixed gene trees, the mean and maximum
deep coalescence costs are highest when the fixed tree is a caterpillar. More generally, the mean and maximum tend to
decrease with increasing tree balance, as measured by the Furnas rank. Both the mean and maximum appear to vary to a
greater extent across fixed species trees than across fixed gene trees.

The mean deep coalescence cost provides a natural way of normalizing deep coalescence costs in evolutionary studies.
As we have previously argued [26], in searching for a species tree that has minimal deep coalescence cost summed across
a given set of fixed gene trees, a method might be applied that penalizes candidate species trees that naturally generate
higher deep coalescence costs (e.g. caterpillars) less severely than candidate species trees with lower deep coalescence costs
(e.g. balanced trees). Adapting the minimization criterion through normalizations involving either the maximum or mean
deep coalescence cost might help to eliminate a bias toward inference of balanced trees that has been both predicted under
evolutionary models [25] and observed in the analysis of genetic sequences [6]. Investigation of such normalized criteria
involving our results on the maximum and mean provides an important direction for future work on the deep coalescence
cost.
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