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ABSTRACT Consanguineous unions increase the rate at which identical genomic segments are paired within individuals to produce
runs of homozygosity (ROH). The extent to which such unions affect identity-by-descent (IBD) genomic sharing between rather than
within individuals in a population, however, is not immediately evident from within-individual ROH levels. Using the fact that the time
to the most recent common ancestor (Tirca) for a pair of genomes at a specific locus is inversely related to the extent of IBD sharing
between the genomes in the neighborhood of the locus, we study IBD sharing for a pair of genomes sampled either within the same
individual or in different individuals. We develop a coalescent model for a set of mating pairs in a diploid population, treating the
fraction of consanguineous unions as a parameter. Considering mating models that include unions between sibs, first cousins, and nth
cousins, we determine the effect of the consanguinity rate on the mean Tyrca for pairs of lineages sampled either within the same
individual or in different individuals. The results indicate that consanguinity not only increases ROH sharing between the two genomes
within an individual, it also increases IBD sharing between individuals in the population, the magnitude of the effect increasing with the
kinship coefficient of the type of consanguineous union. Considering computations of ROH and between-individual IBD in Jewish
populations whose consanguinity rates have been estimated from demographic data, we find that, in accord with the theoretical
results, increases in consanguinity and ROH levels inflate levels of IBD sharing between individuals in a population. The results
contribute more generally to the interpretation of runs of homozygosity, IBD sharing between individuals, and the relationship
between ROH and IBD.
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ONSANGUINEOUS unions, in which mating pairs have a

close genetic relationship, produce offspring whose two
genomic copies have higher levels of identity-by-descent
(IBD) sharing than is seen for corresponding offspring of
nonconsanguineous unions. The offspring of consanguineous
unions can inherit two copies of a segment of the genome from
the same recent ancestor—a shared close relative of both
mother and father—through separate maternal and paternal
lines of descent. Because this ancestor is recent, little time has
been available for recombination to break the segment, so
that the two copies can be identical over a long distance
(Figure 1A).
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Long runs of homozygosity (ROH)—regions in which the
two homologous chromosomes of an individual are identical
over long distances—have been observed to co-occur with
known high rates of consanguinity (Woods et al. 2006;
Hunter-Zinck et al. 2010; Scott et al. 2016; Ceballos et al.
2018). In humans, many populations with a high rate for
consanguineous unions have been seen to be among the pop-
ulations with the largest fractions of their genomes residing
in long ROH (Kirin et al. 2010; Pemberton et al. 2012; Karafet
et al. 2015; Kang et al. 2016).

Measurement of IBD sharing between genomes in distinct
individuals has emerged as a powerful method for analysis of
population relationships and demographic history (Browning
and Browning 2012; Palamara et al. 2012; Harris and Nielsen
2013; Ralph and Coop 2013; Thompson 2013). IBD sharing
is computed for pairs of genomes in individuals at different
geographic scales or in comparisons of pairs from the same or
different populations. The pattern of sharing is then used to
infer demographic histories.
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Figure 1 Consanguinity and genomic sharing. (A) In a consanguineous
pedigree, an inbred individual can possess two copies of a long genomic
segment inherited from a common ancestor along two paths. (B) In a
population with consanguineous mating, individuals experience increased
genomic sharing of their two genomic copies (yellow); this article con-
siders the effect of consanguinity on genomic sharing between genomes
in two “unrelated” individuals (blue).

Informally, high levels of IBD sharing between individuals
within populations have been seen in some of the same
populations that possess high ROH levels (Kang et al
2016). However, it is not clear from a theoretical understand-
ing of the determinants of IBD sharing that ROH levels, mea-
sured within individuals, and levels of between-individual
IBD sharing would have a direct relationship. Consanguinity
increases the probability that the same genomic segment ap-
pears in two copies in the same individual; the way in which
consanguinity relates to genomic sharing between individuals
does not directly follow from the within-individual pattern
(Figure 1B).

It is possible that the increased IBD sharing within indi-
viduals that is produced by consanguinity increases IBD shar-
ing between individuals, as an enlarged inbreeding coefficient
decreases effective population size, and, hence, might in-
crease genomic sharing between all pairs of individuals. On
the other hand, it is possible that the increased genomic
sharing within offspring resulting from consanguinity has
little or no effect on sharing between pairs of genomes in
individuals from different families; increased IBD sharing for
individuals within a family that has many consanguineous
unions might be counteracted by decreased IBD sharing
for individuals from different families that are not closely
related.

A difficulty in evaluating the effect of relationships among
consanguinity, ROH, and IBD sharing between individuals is
that the phenomena of interest concern properties of a diploid
population pedigree. Unlike in many problems in population
genetics, in which a diploid population of size 2N exchange-
able individuals can be approximated by a model of a corre-
sponding haploid population of size 4N (Wakeley 2009,
Chapter 6.1), for the study of consanguinity, it is important
to consider mating pairs of diploid individuals, and to ac-
count for the possibility that individuals might have many
consanguineous mating pairs in their ancestry.

Here, adapting a model of N diploid mating pairs, each of
which can represent a consanguineous pair or a nonconsan-
guineous pair, we study the effect of consanguinity on the
mean time to the most recent common ancestor (Tyrca) for
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Figure 2 Diploid model of monogamous mating pairs, some of which are
sib mating pairs. (A) Each generation has N = 5 mating pairs, a fraction
Co = 0.4 of which represent sib mating pairs. (B) Each sib mating pair is
assigned one parental pair from the previous generation, representing
parents of both sibs. (C) Each nonconsanguineous pair is assigned two
distinct parental pairs from the previous generation, representing the two
sets of parents for the members of the pair.

pairs of gene lineages sampled either as the two genomic
copies within an individual or as two copies from different
individuals. In the model, not only does consanguinity de-
crease E[Tyrca] for pairs of genomic copies within an indi-
vidual, thereby increasing ROH levels, it also decreases
E[Tmrca] for pairs of genomic copies in separate individuals
in a population, thereby increasing between-individual IBD
sharing. We verify the prediction of the model by examining
ROH and IBD sharing in data from human populations.

Model
Trrcar ROH, and IBD

Our goal is to study the relationship between ROH within
individuals and IBD sharing between individuals. To do so, we
examine a model of a genetic locus in a population, in which
we can consider two random variables: T, the Tyrca for the
two gene lineages sampled from the same individual chosen
at random in the population, and V, or Tyrca for a pair of
lineages from two individuals chosen at random in separate
mating pairs. The choice to study Tygrca arises from the fact
that the length of genome shared around a focal site is closely
related to Tyrca at the site (Palamara et al. 2012; Carmi et al.
2014; Browning and Browning 2015). Thus, lower values of
T lead to longer homozygous segments within individuals,
and lower values of V lead to longer IBD segments in pairs
of individuals. The relationship between T and V, and its de-
pendence on model parameters, then provide insight into the
relationship between ROH and IBD.

Diploid mating model

We study a diploid discrete-generation model with sib mating
that was introduced by Campbell (2015), extending it to permit
other forms of consanguinity. The model of Campbell (2015)
considers a constant-sized diploid population with N = 2 mo-
nogamous mating pairs, 2N individuals, and 4N allelic copies
at a locus. Some of the mating pairs are consanguineous, and
the others are nonconsanguineous. In particular, in each gen-
eration, a constant fraction (cp) of the pairs represent sib mat-
ings (Figure 2A). Although in principle, ¢, can be viewed as a
probability of consanguinity that ranges from O to 1, in our
model, to ensure that the number of sib mating pairs is an
integer, co must be a multiple of 1/N.



Figure 3 Three states possible for a pair of alleles. State 1: within the
same individual (yellow). State 2: in two individuals in a mating pair (pink).
State 3: in two individuals in different mating pairs (blue).

One generation back in time, for each of the ¢oN sib mat-
ing pairs, a single parental mating pair is chosen uniformly
at random with replacement to represent the parents of
the mating sibs (Figure 2B). For each of the remaining
(1 —¢o)N nonconsanguineous mating pairs, two parental
mating pairs in the previous generation are chosen uniformly

at random from the (g

ents of the two members of the pair in the current generation
(Figure 2C). Because each nonconsanguineous mating pair
chooses two distinct parental mating pairs, chance sib mating
does not occur.

In this model, two allelic copies at a locus have three
possible states (Figure 3). They can be the two alleles of the
same individual (state 1). Alternatively, they can be in the two
individuals of a mating pair, one in each member of the pair
(state 2). Finally, they can be in two individuals in separate
mating pairs (state 3). We define three random variables cor-
responding to these three states: T is Tyrca for two alleles in
the same individual, U is Tygrca for two alleles in two indivi-
duals in a mating pair, and V is Tyrca for two alleles in two
individuals in separate mating pairs (Figure 3).

Campbell (2015) derived the mean coalescence time E[T]
for two alleles in an individual as a function of the population
size N and the fraction of sib mating pairs c¢y. We begin by
recapitulating the results of Campbell (2015) in the diploid
model with sib mating, also examining E[U] and E[V]. Next,
we extend the model to consider E[T], E[U], and E[V] in other
consanguinity regimes: first cousin mating, nth cousin mat-
ing, and a superposition of multiple degrees of cousin mating.
We find that, in all regimes, consanguinity decreases E[T],
E[U], and E[V], thereby predicting that consanguinity in-
creases both ROH lengths within individuals and IBD sharing
between individuals. A single result unifies the consanguinity
regimes in terms of the kinship coefficient of the pairs of
individuals in consanguineous unions.

) possibilities, representing the par-

Sib Mating

Following Campbell (2015), we first rederive E[T], E[U], and
E[V] in units of generations by setting up recursions using a
first-step analysis. For E[T], if two alleles are present within
one individual (state 1), then they must have been present in
two individuals in a mating pair in the previous generation
(state 2). Hence, T = U + 1 and

E[T] = E[U] + 1. (1)

For E[U], if two alleles are in the two individuals of a mat-
ing pair (state 2), then, with probability cq, the pair is a sib
mating pair. Three cases are possible for the previous gener-
ation. With probability }P the two alleles coalesce, giving a
coalescence time of 1 generation. With probability zlv they are
the two alleles of the same individual (state 1), giving a mean
coalescence time of E[T] + 1. With probability 1, they are two
alleles in the two individuals of a mating pair (state 2), gen-
erating mean coalescence time E[U] + 1.

Chance sib mating is forbidden among the pairs that
are not among the coN sib mating pairs. If the two individuals
in the mating pair are not sibs, then, in the previous genera-
tion, the alleles trace to two separate mating pairs (state 3),
giving mean coalescence time E[V] 4+ 1. Combining the vari-
ous cases, we have

E[T] + 1
4

+ (1 —co)(E[V]+1).

(2

E[U] = co G . LEUL+ 1)

Finally, for E[V], because parental pairs are chosen uni-
formly at random with replacement among N possible pairs,
two individuals in separate mating pairs are sibs with proba-
bility I%] In the previous generation, if the two individuals are
sibs, then the two alleles can either coalesce, be in the same
parent in the previous generation (state 1), or be in separate
parents (state 2). If they are not sibs, then the alleles lie in
two individuals in separate mating pairs in the previous gen-
eration (state 3). Combining these cases, we have:

E[V] :z%/ (% 4 ]Em: L ]E[U]2+ 1> 4 (1 —%) (E[V] + 1).

(3

Equations 1-3 form a linear system of equations in E[T],
E[U], and E[V], the solution to which is

E[T] =4N(1—co) +6 4

E[U] =4N(1—c¢y)+5 (5)
3

E[V] = 4N(1 - ZCO) +4. 6)

Note that although Campbell (2015) presented only Equation
4, Equations 5 and 6 also result from solving the system.

We can immediately observe that E[V] — E[T] = ¢oN — 2,
so that if ¢y exceeds ]%, or the population has more than two
consanguineous mating pairs each generation, then E[V] >
E[T], and the mean coalescence time for two alleles in differ-
ent mating pairs exceeds the mean coalescence time within
individuals. For ¢o =2, E[V] and E[T] differ by at most two
generations.

If ¢o = 0, then the reduced model of N monogamous dip-
loid pairs with sib mating avoidance produces mean coales-
cence times close to the mean coalescence time of 4N for two
lineages chosen uniformly at random in a haploid population
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cence time for two alleles in two separate mating
pairs (Equation 6).
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of size 4N (Wakeley 2009, Chapter 6.1). The factors of 1 — ¢
in Equations 4 and 5and 1 — %co in Equation 6 provide linear
reductions in mean coalescence time owing to increasing
consanguinity co.

Equations 4 and 6, normalized by 4N, are plotted in Figure
4 as functions of N for various values of cy. As N increases, the
constant terms in Equations 4-6 become unimportant, and
the mean coalescence times are dominated by a product of
4N, the number of allelic copies in the population, and the
reduction factor due to consanguinity, 1 —co or 1 — %co.

First Cousins

Next, we extend the model to first cousin mating and again
derive E[T], E[U], and E[V] in the same manner as in the sib
mating case. In each generation, the fraction of first cousin
mating pairs is a constant value c¢;. Similarly to the sib mating
case, both chance first-cousin mating and chance sib mating
are forbidden among the remaining nonconsanguineous
pairs. Consanguineous pairs are assumed not to be double-
first cousins, and chance double-first-cousin mating is also
forbidden among nonconsanguineous pairs.

E[T] is the same as with sib mating: if two alleles are pre-
sent within one individual (state 1), then they must have
been present in two individuals in a mating pair in the pre-
vious generation (state 2), and Equation 1 still holds.

For E[U], if two alleles are in two individuals of a mating
pair (state 2), then, with probability c;, those individuals are
first cousins. If they are first cousins, then each has a parent
who is the offspring of the shared grandparental mating pair
(Figure 5B). For each individual in the first cousin mating
pair, the probability that the sampled allele is inherited from
the sib parent is % Consequently, the probability that the
sampled alleles in both individuals are inherited from the
sib parents is }‘. If both alleles are inherited from the sib
parents, then—similar to sib mating—two generations ago,
three cases are possible. First, with probability %, the two
alleles coalesce, giving a coalescence time of two generations.
With probability %, they are the two alleles of the same indi-
vidual (state 1), giving a mean coalescence time of E[T] + 2.
Finally, with probability 3, they are two alleles in the two
individuals of a mating pair (state 2), generating mean co-
alescence time E[U] + 2.
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With probability 1 — %, two alleles in two individuals in a
mating pair are not inherited from a shared grandparental
mating pair. Because both chance sib and first-cousin mating
are forbidden, two generations ago the alleles are in separate
mating pairs, giving mean coalescence time E[V] 4 2. Com-
bining the cases gives

Blv) =2 G 4 E[T]4+ 2, E[U]; 2) T <1 - %1) (E[V] +2).
%)

Lastly, for E[V], the formula is the same as Equation 3
because parental pairs of individuals are still chosen uni-
formly at random with replacement from the N pairs.

Equations 1, 7, and 3 form a linear system of equations,
with solution

E[T] = 4N(1 - %q) +10 (8)
1
E[U] = 4N(1 - ch) +9 )
EV] = 4N(1-= 7 (10)
[ ] = < ECl) + /.

We first note that E[V] — E[T] = % —3,s0ifc; >12 orthe
number of consanguineous mating pairs exceeds 12, then the
mean coalescence time for two alleles in different mating
pairs, E[V], exceeds the mean coalescence time for two alleles
within an individual, E[T]. As c¢; approaches 0, the mean co-
alescence times are near 4N, the mean coalescence time for
two lineages from a randomly mating haploid population of
size 4N. On the other hand, for ¢; near 1, E[T] ~ 3N and
E[V] = %N . The mean coalescence times are reduced line-
arly due to consanguinity, by a factor of 1 — %cl in Equations 8
and 9, and by a factor of 1 —¢; in Equation 10.

Equations 8 and 10, normalized by 4N, are plotted in Fig-
ure 6. As the number of mating pairs N increases, the mean
coalescence times approach the product of 4N and a reduc-
tion factor due to consanguinity. In contrast to sib mating, for
which E[T]/(4N) decreases to 0 and E[V]/(4N) to  for large N
and ¢y = 1, E[T]/(4N) is bounded below by 2 and E[V]/(4N)
by £2.



Figure 5 The path by which two sampled alleles (green) in a consanguin-
eous union of individuals with a specified relationship are inherited from a
recent shared ancestral mating pair. (A) Sibs. (B) First cousins. (C) nth cousins.

nth Cousins

The similarity of the derivation in the cases of sib mating and
first-cousin mating suggests a generalization to nth cousin
mating, where n =1 represents first-cousin mating and
n = 0 represents sib mating. As before, ¢, is the fraction of
mating pairs that represent nth cousins. It will be convenient
to assume that chance mating of ith cousins is forbidden for
alli from O to n. Beginning with E[T], if two alleles are within
one individual, then, as before, they must have been in two
individuals in a mating pair in the previous generation. Equa-
tion 1 continues to hold.

For E[U], with probability c,, the individuals in the mating
pair are nth cousins. They then share an ancestral mating pair
n + 1 generations in the past and have ancestors that are sibs n
generations ago (Figure 5C). The probability that a pair of al-
leles, one in an offspring of one sib and one in an offspring of the
other sib, both trace to the sibs is %, For each of the nextn — 1
generations connecting the sibs to the nth cousins, the condi-
tional probability that the transmitted alleles are both from the
sibs given that they are from the sibs in the previous generation
is ;. Consequently, with probability 1, the sampled alleles in the
current generation are inherited from the sib ancestors.

Conditional on tracing to the sibs, three cases exist for the
two alleles in the shared ancestral mating pair: with probability
%, the alleles coalesce n + 1 generations ago. With probability ‘lp
the two alleles are in state 1 and have mean coalescence time
E[T] + n + 1. Lastly, with probability 1, the two alleles are in
state 2 and have mean coalescence time E[U] + n + 1. If the
two alleles are not inherited from the ancestral sibs, or if the
individuals in the mating pair in the current generation are not
nth cousins, then because chance mating of cousins of degree
0,1,2,...,n is forbidden, the two alleles are in separate mat-
ing pairs n + 1 generations ago and have mean coalescence
time E[V] + n + 1. Combining the cases gives

_ e (n+l E[T+n+1
C4n\ 4 4

B[] E[U] +n + 1)

(11)
+ (1 —%)(E[V} +n+1).

Lastly, for E[V], because parental pairs are chosen uni-
formly at random with replacement from the N possible pairs,
Equation 3 continues to hold.

Equations 1, 11, and 3 form a linear system of equations,
the solution to which is

E[T] = 4N(1 - %cn) +4n+6 (12)
E[U] :4N(1 —41n n> +4n+5 (13)
3

Note that Equations 12-14 give Equations 4-6 as a special
case when n = 0, and Equations 8-10 when n = 1. We can
consider the difference E[V]—E[T] = ¢,N/4" — (n + 2). If
cn >4"(n+2)/N, or the number of consanguineous pairs
exceeds 4"(n + 2), then the mean coalescence time for two
alleles in different mating pairs, E[V], exceeds the mean co-
alescence time for two alleles within an individual, E[T]. As n
increases, the first term c,N /4" approaches zero and the two
means differ by approximately n + 2 For fixed n, the mean
coalescence times are reduced linearly due to consanguinity,
by a factor of 1 —c,/4" in Equations 12 and 13, and by
1 — 3¢, /4! in Equation 14.

Equations 12 and 14, normalized by 4N, are plotted in
Figure 7 as functions of the degree n of the cousin relation-
ship. The terms in these equations that reduce coalescence
times are c,/4" in Equation 12 and 3c,/4""! in Equation 14.
As the degree n of the cousin relationship increases, these
terms decrease exponentially to zero, and the mean coales-
cence times approach 4N. The ratio E[V]/E[T], taking the
ratio of Equations 14 and 12, is plotted in Figure 8 as a func-
tion of ¢, for n from O to 5. As the fraction of cousin mating c,
increases, the ratio increases above 1, so E[V] > E[T]; how-
ever, as the degree of the relationship n increases for fixed c,,
the ratio decreases toward 1.

Superposition of Multiple Mating Levels

We now combine all forms of consanguinity examined thus far
into a superposition of levels of cousin mating, in which ith
cousin mating is permitted for each i from O to n. For each i
from O to n, let ¢; be the fraction of ith cousin mating pairs in
each generation, and let n be the degree of the most distant
cousin relationship allowed. For each i = n, chance ith cousin
mating is prohibited. We assume individuals in a consanguin-
eous mating pair cannot be related by more than one path; for
example, they cannot be both first and third cousins. This
assumption is designed for use with a large population and
asmall value of >} ; ¢; < 1. For fixed n, as N becomes large,
the probability that two individuals in a consanguineous mat-
ing pair share more than one recent ancestor is regarded as
negligible.
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E[T] is the same as in the previous models: two alleles
within one individual must have been in two individuals in
a mating pair in the previous generation (Equation 1).

For E[U], for each i = n, with probability ¢; the individuals
in the mating pair are ith cousins. As was seen with nth
cousins, with probability %, the two alleles were inherited
from sib ancestors i generations ago. Then, i + 1 generations
ago, there are three possible cases: with probability }P the
alleles coalesce. With probability %, the alleles are in state
1 and have mean coalescence time E[T] + i + 1. Finally, with
probability %, the alleles are in state 2 and have mean co-
alescence time E[U] +1+ 1.

The probability is 1 — ), § that the two alleles are either
not in a consanguineous mating pair for all i from 0 to n, or
not inherited from the shared ancestral mating pair. Then,
because chance mating of cousins of degree 0,1,2,...,n is
forbidden, the two alleles are in separate mating pairs n + 1

generations ago and have mean coalescence time
E[V] +n + 1. Combining the cases for all i =<n gives
n . . .
¢ (i+1 E[T+i+1 E[U+i+1
ElU] = —
U] ; 4 ( s Tt
(15)

+(]E[v]+n+1)<1— ii)

i=0

Because parental pairs are chosen uniformly at random
with replacement from the N possible pairs, for two alleles in
separate mating pairs, Equation 3 holds as before.

We define ¢ as the sum over i of the probability that two
alleles in a mating pair chosen at random are inherited by
descent from the same allele in a shared ancestral mating pair
i+ 1 generations in the past:

n

Ci
c= E —.
41+1

i=0

(16)

In other words, c is defined in the same way as the kinship
coefficient of the two individuals in a randomly chosen
mating pair (Jacquard 1972; Lange 1997); it is the probabil-
ity that two alleles selected at random from a randomly cho-
sen mating pair are identical by descent.
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Equations 1, 15, and 3 form a system of equations, the
solution to which is

E[T] = 4N(1—4c) +4n(1 —4c) + 16d + 6 a7
E[U] = 4N(1 — 4c) + 4n(1 — 4c) + 16d + 5 (18)
E[V] = 4N(1—3c) + 3n(1 —4c) + 12d + 4, (19)
where
1 iCi
= 20)

i=0

First, if ¢ =c,/4"! for any n, then Equations 17-19
reduce to Equations 12-14. The difference E[V]—
E[T] = 4Nc — n(1 — 4c) — 4d — 2 for large N is approximately
4Nc.

For sufficiently large N, the constant terms in Equa-
tions 17-19 contribute little. Next, for each i, ¢;=1, so
d<Y i /4" =1 and the contributions from 16d in Equa-
tions 17 and 18 and from 12d in Equation 19 are relatively
small. Finally, noting that for probabilities (co,...,c,) with
St oci =1, the sum in Equation 16 is maximized if co = 1
and all other ¢; equal 0, so OSCS% and 0=1—4c=1.1If
n < N, then the maximal contribution of 4n in Equations
17 and 18 and 3n in Equation 19 is also relatively small.
Then, except in the sib mating case of co = 1 and ¢ = }P the
means in Equations 17-19 are dominated by the product of
4N and the linear reduction factors 1 — 4c¢ in Equations 17
and 18 and 1 — 3c in Equation 19.

Application to Data
Background

Previously, Kang et al. (2016) demonstrated that ROH shar-
ing increases with consanguinity. Specifically, in their Figure
7, they observed a positive correlation between population
means of the total ROH length and population levels of
consanguinity available from demographic studies. This re-
lationship accords with our prediction that increased consan-
guinity reduces within-individual mean pairwise coalescence
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times E[T] (Equations 4, 8, 12, and 17), and, hence, increases
ROH length.

We use the data of Kang et al. (2016) to test predictions
about the relationship between consanguinity, ROH, and IBD.
Our model of the effect of consanguinity on coalescence times
predicts that increased consanguinity decreases mean coales-
cence times both for pairs of alleles within individuals (E[T7]),
and for pairs of alleles in individuals in different mating pairs
(E[V]), with a larger reduction for within-individual coales-
cence times. Because more recent coalescence times for pairs
of lineages are expected to give rise to elevated genomic
sharing, we expect IBD and ROH sharing to be correlated,
owing to the fact that their associated coalescence times both
decrease with increasing consanguinity. In addition, we ex-
pect a larger increase in ROH sharing relative to the corre-
sponding increase in IBD, due to the larger relative decrease
of coalescence times for E[T] compared to E[V].

Data set

We use data from Kang et al. (2016) consisting of 202 indi-
viduals from 18 Jewish populations, and 2903 individuals
from 123 non-Jewish populations, with genotypes available
at 257,091 SNPs. We focus our analysis on Jewish individuals
classified by Kang et al. (2016) into six regional groups: Ethi-
opian, European, Middle Eastern, North African, South
Asian, and Yemenite. The remaining non-Jewish individuals
are a combination of the HGDP-CEPH and HapMap III data
sets and were included only for phasing.

Data analysis

ROH lengths for each individual were taken from Kang et al.
(2016). Following Pemberton et al. (2012), Kang et al.
(2016) classified ROH segments into three length categories:
Class A for short segments, Class B for segments of interme-
diate length, and Class C for long segments. Kang et al.
(2016) further examined the relationship between length
class and consanguinity, demonstrating that the total length
of the Class C segments drives the correlation between ROH
length and consanguinity.

To calculate IBD, we first phased the full data set with
Beagle 4.1 (Browning and Browning 2007) using the default
parameters (maxlr = 5000, lowmem = false, window =
50,000, overlap = 3000, niterations = 5, impute = false,
cluster = 0.005, ne = 1,000,000, err = 0.001, seed =

Degree of cousin relationship (n)

—99,999, modelscale = 0.8) and HapMap GRCh36 genetic
maps for the map parameter. From the phased data, we called
IBD segments with Refined IBD (Browning and Browning
2013) using the default parameters (window = 40.0, lod =
3.0, length = 1.5, trim = 0.15, scale = 3) and the same map
files.

Total ROH length sums segments shared between two
haplotypes within an individual, whereas total IBD length
is a sum of four haplotype comparisons between two diploid
individuals. To make IBD directly comparable with ROH, we
calculated total IBD length by summing all segments shared
between two individuals (reported by Refined IBD) and di-
viding by 4. This computation gives the mean total IBD length
shared between two haplotypes chosen at random from the
two individuals. We averaged this length across all pairs of
distinct individuals within populations.

Data availability
See Kang et al. (2016) for the data used in this study.

Results

In Figure 9A, we compare the relationship between mean
total IBD across all pairs of individuals and mean total ROH
across all individuals in 18 Jewish populations. As noted by
Kang et al. (2016), the longest ROH lengths occur primarily
in the two South Asian Jewish populations and several of the
Middle Eastern Jewish populations. Our new computation of
IBD length generally accords with those of Atzmon et al.
(2010), Campbell et al. (2012), and Waldman et al
(20164a,b), in that the South Asian Jewish populations have
the highest IBD sharing, followed by most Middle Eastern
and North African Jewish populations, with European,
Syrian, and Ethiopian Jews having the least sharing. Note
that the particularly high level of IBD sharing in the Mumbai
population has been observed previously in an independent
sample (Waldman et al. 2016a).

IBD and ROH are positively correlated, with p = 0.63. The
regression has positive slope 0.12 with P = 0.012, indicating
that, at a population level, a 1 Mb increase in mean total
ROH is expected to increase total IBD by 120 kb on average.
The positive relationship between ROH and IBD is consistent
with the prediction under the model of a correlated relation-
ship for within-and between-individual coalescence times.
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Figure 8 The ratio E[V]/E[T], or Equation 14/Equation 12, as a function
of the fraction of cousin mating ¢, and the degree of the cousin relation-
ship n. N— « is assumed.

Moreover, the slope is less than 1, reflecting the greater
reduction in within-individual coalescence times due to
consanguinity compared to between-individual coalescence
times.

In Figure 9, B-D, we consider the relationship between
mean total IBD and each of the ROH length classes. We ob-
serve the strongest correlation of IBD with total Class C or
long ROH, with p = 0.62. Classes A (short) and B (interme-
diate) have positive, but weaker, correlations, with p = 0.45
and p = 0.44, respectively. The regression line for Class C is
significant with P = 0.004, whereas for Classes A and B it is
not significant, with P = 0.113 and P = 0.200, respectively.
The relationship between IBD length and Class C ROH length
suggests that, in general, IBD and ROH are correlated be-
cause both are affected by consanguinity, in agreement with
our theoretical predictions. The weaker correlations between
IBD length and Classes A and B might result from compara-
tively less accurate calling of short IBD segments.

Discussion
Summary

We have studied the effect of consanguinity on within- and
between-individual coalescence times. We extended the sib
mating model of Campbell (2015) to permit first cousin mat-
ing, nth cousin mating, and a superposition of multiple levels
of cousin mating, deriving mean coalescence times for two
alleles within an individual (E[T]) and two alleles in separate
mating pairs (E[V]). We found that consanguinity linearly
reduces both means, with a greater reduction for within-
individual coalescence times. To test our theoretical predic-
tions, we studied ROH and IBD patterns in 18 Jewish
populations, finding that they are correlated, and that the
correlation is driven by long Class C ROH. These results sup-
port the prediction of the modeling framework that ROH and
IBD levels are both amplified by consanguinity.
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In each of our various models, for large N, E[T] and E[V] are
approximately equal to the product of 4N, the mean Tyrca in
a haploid population of size 4N, and a linear reduction term
that depends on the fraction of consanguineous pairs and
their degree of consanguinity. Thus, although the model con-
siders diploids with a rigid monogamous mating structure, its
coalescence times produce a close relationship to those of the
standard haploid model.

The difference E[V] — E[T] is approximately c,N /4" for nth
cousin mating and 4Nc for the superposition of different mat-
ing levels. The quantity 4Nc can be viewed as the expected
number of coalescence events due to consanguinity, as it is
the product of the number of pairs of alleles in two individ-
uals in a mating pair (4N) and the probability that two alleles
in a mating pair are identical by descent, and, therefore, co-
alesce quickly rather than on a coalescent timescale (c). In
other words, two alleles in the same individual have proba-
bility ¢ of having a coalescence time near zero, so that on
average their coalescence time is expected to be 4Nc less than
that of two alleles that are in different mating pairs and that
do not have the probability ¢ of near-immediate coalescence.
Note that this perspective, based on the superposition case,
also applies in the nth cousin mating case, as the difference
E[V] —E[T] for nth cousins is ¢,N/4" = 4Nc,/4""!, and
cn /41 is the probability that two alleles in two individuals
in a mating pair are identical by descent in this case.

Theoretical population genetics of ROH and IBD

If two genomes share a recent common ancestor at a site, then
the length of the shared segment surrounding that site is likely
to be long, because recombination has had little time to break
down the segment. If the genomes share a distant common
ancestor, then the surrounding segment is likely to be short
because recombination will have had many generations to
break it. In this way, recombination produces an inverse re-
lationship between coalescence times at a genomic site and
the length of the surrounding shared segment (Palamara et al.
2012; Carmi et al. 2014; Browning and Browning 2015). The
results of our model, that increased consanguinity decreases
both within-individual and between-individual coalescence
times, suggest that populations with higher rates of consan-
guinity will have more recent coalescence times and will
share longer ROH and IBD segments. Moreover, the result
E[T] <E[V] suggests that the reduction is greater for ROH
than for IBD, and that consanguinity will have a stronger
effect on ROH sharing.

To study ROH and IBD together in the same model, we
generalized a diploid coalescent model of sib mating. The
Campbell (2015) model and its generalization represent ex-
amples of the increasing integration of coalescent perspec-
tives into models that consider a diploid pedigree structure
(Wollenberg and Avise 1998; Wakeley et al. 2012, 2016;
Wilton et al. 2017; King et al. 2018). For example, Wakeley
et al. (2012) found that, in a pedigree-based coalescent
model, compared to a standard haploid model, the distribu-
tion of pairwise coalescence times for random pairs of
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individuals was altered, most strongly for the most recent
coalescence times. Otherwise, the two models have similar
coalescence time distributions. In our case, consideration of
the pedigree—with no consanguinity—produced mean pair-
wise coalescence times close to the haploid mean pairwise
coalescence time of 4N. The inclusion of consanguinity in the
model decreased the mean coalescence time by a linear factor
dependent on the kinship coefficient of a randomly chosen
mating pair.

Contrasting two hypotheses—one in which both within-
individual ROH and between-individual IBD are increased by
consanguinity, and the other in which consanguinity in-
creases ROH but not IBD—we found support for the former
rather than the latter view. According to our model, consan-
guinity inflates relatedness not only within families, but in
the population in general, so that mean pairwise coalescence
times decrease with increasing consanguinity, both for pairs
of alleles within individuals and for pairs of alleles in separate
mating pairs. We can understand this phenomenon through
the concept of coalescent effective population size. In this per-
spective (Sjodin et al. 2005), mean pairwise coalescence times
have a direct relationship with effective size. Consequently, the
direct relationship that we observed between coalescence times
associated with ROH and those associated with IBD can be
viewed as resulting from a decreased coalescent effective size
that in turn results from consanguinity, and which decreases
coalescence times both within and between individuals.

Previously, Jacquard (1970) studied the effect of inbreed-
ing avoidance on effective population size. He modeled a
two-sex, diploid population of N individuals with equally
many males and females, considering cases with and without
sib mating avoidance (Jacquard 1970, p. 175, 245). Sib mat-
ing avoidance generated a slightly larger effective size com-
pared to the case in which sib mating was permissible,
analogous to our observation that coalescence times decrease
with increasing sib mating.

The sib mating case of our model is also similar to models of
partial selfing in plants (Charlesworth 2003). Such models
can be viewed as having a linear combination of “consanguin-
ity” (selfing) and “random mating” (outcrossing). In our sib
mating model, two alleles have probability % of coalescing in
the previous generation, whereas, under partial selfing, al-
leles have probability § of coalescence in the previous gener-
ation, where s is the selfing rate. In a partially selfing
population of 2N diploid individuals, taking N — o, the ef-
fective population size is 2N(1 — §) individuals (Pollak 1987;
Nordborg and Donnelly 1997), a product of the effective size
in a randomly mating population and a linear reduction fac-
tor proportional to the probability of coalescence, similar to
our findings for E[T] and E[V]. Our results are analogous to
those of Milligan (1996), who studied the effect of partial
selfing on within- and between-individual coalescence times,
T.w and T, respectively, finding E[T,] =4N(1—s) and
E[Tp] = 4N(1 — $) for a population of size 2N diploid individ-
uals. The greater reduction in coalescence time for within- vs.
between-individual comparisons echoes our results for E[T]
and E[V]. Moreover, E[T;] — E[T,,] = 4N §, the product of the
number of alleles and the probability of rapid coalescence
from selfing, analogous to the difference 4Nc that we found
for E[V] — E[T].

IBD in Jewish populations

Our population ordering by ROH and IBD accords with pre-
vious studies in Jewish populations (Atzmon et al. 2010;
Campbell et al. 2012; Waldman et al. 2016a,b). Kang et al.
(2016) observed that their ordering of populations by mean
total ROH lengths was similar to the ordering reported by
Waldman et al. (2016b). We find that the ordering of mean
total IBD length in the data of Kang et al. (2016) is also
similar to that of Waldman et al. (2016b). For the populations
included in both studies, Waldman et al. (2016b) reported, in
decreasing order, Mumbai, Cochin, Iranian, Libyan, Italian,
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Iraqi, Tunisian, Georgian, Yemenite, Syrian, Ashkenazi,
Moroccan, Algerian, and Sephardi. Here we find a similar
ordering: Mumbai, Cochin, Iranian, Libyan, Georgian,
Moroccan, Ashkenazi, Yemenite, Iraqi, Italian, Tunisian,
Algerian, Sephardi, and Syrian. Although some specific rank-
ings differ, South Asian Jewish populations generally share
the most IBD, followed primarily by some of the Middle East-
ern and North African Jewish populations, with European
Jewish populations tending toward intermediate and lower
levels.

From our model, we expect ROH and IBD to be correlated
because E[T] and E[V] both depend on consanguinity. Be-
cause E[T] < E[V], we expect a stronger effect of consanguin-
ity on ROH than on IBD. Indeed, we find that ROH and IBD
are correlated with positive regression slope less than 1,
reflecting the weaker effect of consanguinity on IBD. In par-
ticular, the correlation is strongest with Class C (long) ROH,
though Classes A and B might produce larger correlations if
IBD calling for short segments was more accurate. Long ROH
in a population reflect consanguinity because long segments
are the most likely to share a recent ancestor (Pemberton
et al. 2012; Kang et al. 2016); the correlation between Class
C ROH and IBD supports the prediction of our model that
ROH and IBD are correlated because they are both amplified
by consanguinity.

Limitations and extensions

Our analysis has a number of limitations. First, we assumed a
constant population size and a constant fraction of consan-
guineous unions each generation. It might be possible to
generalize these assumptions to accommodate temporal
changes in population size and consanguinity that could affect
ROH and IBD distributions. We also did not consider popu-
lation substructure, which is potentially relevant if consan-
guinity is practiced as a culturally transmitted trait in
subgroups of a population. Substructure would affect within-
and between-individual coalescence probabilities, and, in
turn, coalescence times. In the same manner that inbreeding
and substructure can be viewed as forms of the same general
phenomenon of deviation from random mating, it is possible
that a structured population in which random mating occurs
within subpopulations, but not between them, could produce
similar phenomena to those we have seen in our consanguinity
model.

Second, we focused only on neutral loci. Loci experiencing
balancing selection can exhibit evidence of excess genetic
differences for pairs of alleles sampled within individuals
compared to that seen between individuals, so that a reverse
effect E[T] > E[V] might be observed. For example, for the
HLA locus, Robertson et al. (1999) studied identity of haplo-
types for haplotypes in the same individual and for haplo-
types in different individuals, quantities expected to be
inversely related to pairwise coalescence times under a neu-
tral model. In a population with no first cousin and closer
matings, they found an excess in the number of within-
individual vs. between-individual haplotype differences
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compared to a neutral prediction, suggesting an increase in
within-individual vs. between-individual coalescence times
at the HLA locus. This result, which contrasts with our pre-
diction of greater difference for between-individual compar-
isons, suggests that caution is warranted in interpreting ROH
and IBD with our model for regions experiencing balancing
selection.

A third limitation is that for nth cousin mating, we assumed
n < N. However, in practical scenarios, if n is large, then
randomly mating pairs are related to some degree, and if N
is small, then double-first cousin mating is non-negligible. It
might therefore be unrealistic to consider n large in our
model. A fourth limitation is that we did not examine the full
distributions of T and V; further information about these dis-
tributions will be important for clarifying the theoretical re-
lationship between ROH and IBD more precisely.

The same approach we took here can also be applied to
other consanguinity regimes. Double-first cousins, for exam-
ple, have twice the number of paths to a recent common
ancestor as first cousins. In Equation 7, 7 is the probability
that two alleles in a mating pair are inherited from a shared
grandparental mating pair. If, instead, we consider double-
first cousins, and if d; is the fraction of double-first cousin
mating pairs, then %1 is the probability that two alleles in the
two individuals of a mating pair are inherited from a shared
grandparental mating pair. Substituting %1 for % in Equation 7
gives a computation for double-first cousin mating.

Our model has implications for empirical studies of ROH
and IBD. Studies have used properties of IBD for inference of
demographic parameters (e.g., Palamara et al. 2012; Harris
and Nielsen 2013; Ralph and Coop 2013), and joint interpre-
tation of ROH and IBD can potentially provide information
about consanguinity. One method for distinguishing between
the effects of small population size and those of consanguin-
ity is to examine the relationship between the number and
length of ROH segments (Ceballos et al. 2018). Our results
suggest that examining the number and length of IBD seg-
ments could also assist in disentangling these effects, as such
features of IBD segments are also affected by consanguinity.

The reduction we observed in coalescence times owing to
consanguinity implies that assuming random mating when
inferring effective population size may produce underesti-
mates. Under random mating, the mean coalescence time is
4N, whereas we find that, with consanguinity; it is 4N (1 — 3c).
Thus, in populations with consanguinity, an apparent estimate
of 4N might actually be an estimate of 4N (1 — 3c). Lastly, our
finding that E[T] and E[V] depend on the population size N and
the kinship coefficient ¢ suggests that given the full distribu-
tions of these random variables, it may be possible to infer N
and ¢ from joint analysis of ROH and IBD sharing.

We have introduced a model for the simultaneous analysis
of ROH and IBD, finding that both are driven by the same
phenomena of consanguinity and reduction in effective
population size. ROH and IBD have often been analyzed
separately, with different motivations and techniques. Our
results provide a formal connection between ROH and IBD,



demonstrating the utility of considering them together in the
same analysis.
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