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Abstract

Homozygosity-based statistics such as Ohta’s identity-in-state (IIS) excess offer the potential to mea-
sure linkage disequilibrium for multiallelic loci in small samples. However, previous observations have
suggested that for independent loci, in small samples these statistics might produce values that more
frequently lie on one side rather than on the other side of zero. Here we investigate the sampling prop-
erties of the IIS excess. We find that for any pair of independent polymorphic loci, as sample size n

approaches infinity, the sampling distribution of the IIS excess approaches a normal distribution.
For large samples, the IIS excess tends towards symmetry around zero, and the probabilities of positive
and of negative IIS excess both approach 1/2. Surprisingly, however, we also find that for sufficiently
large n, independent loci can be chosen so that the probability of a sample having positive IIS excess is
arbitrarily close to either 0 or 1. The results are applied to interpretation of data from human popu-
lations, and we conclude that before employing homozygosity-based statistics to measure LD in a par-
ticular sample, especially for loci with either very small or very large homozygosities, it is useful to
verify that loci with the observed homozygosity values are not likely to produce a large bias in IIS
excess in samples of the given size.
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1. Introduction

The measurement of linkage disequilibrium (LD) is an important tool helpful across a wide
range of problems in population genetics, such as association mapping of genes that influence
phenotypes [15,36], estimation of the age of alleles [17,25], inference of demographic and selective
history [6,29], and evaluation of the nature of the recombination process [8,16]. Of the various
statistics available for measuring LD [3,5,11], in diploid organisms, many assume that data are
available in the form of haplotypes. In other words, it is assumed that the loci of interest are
linked and that the assignments of alleles to individual chromosomes, or the haplotype phases
of sets of loci, are known. When data consist of two-locus or multilocus genotypes of linked loci,
so that haplotype phase is not known, these statistics rely on computational haplotype prediction
algorithms that take the genotypes as inputs, and that then measure LD from the estimated hap-
lotypes or haplotype frequencies. Although haplotype inference can often be performed quite
accurately [9,10,26], this process may lose some information, in that many possible sets of haplo-
types may be consistent with the collection of genotypes, and depending on the particular haplo-
type sets that are found to be most likely, haplotype estimation may introduce a bias into the LD
measurement.

An alternative solution to the problem of unknown haplotype phase in diploid organisms is to
make direct use of the genotypes [2,12,20,22,30,31,33,34]. For example, Ohta [12–14] observed
that for a pair of loci at linkage equilibrium—the state in which all allelic combinations (with
one allele at each locus) have frequency equal to the product of the frequencies of their constituent
alleles—the probability of an individual being homozygous at both loci is the product of the
probability of being homozygous at the first locus and the probability of being homozygous at
the second locus. Thus, LD can be measured as D = (X12n/n) � (X1n/n) (X2n/n), where X1n, X2n,
and X12n denote the numbers of homozygotes at the first locus, homozygotes at the second locus,
and double homozygotes in a sample of n individuals. Ohta termed D the ‘‘identity excess,’’ which
we label here the ‘‘identity-in-state excess’’ or ‘‘IIS excess,’’ to avoid confusion with identity-by-
descent.

Similarly to the haplotype inference approach, the IIS excess method also introduces a loss of
information into LD measurement, in that its calculation requires the collapsing of a larger number
of distinct genotypes into a smaller number of types, namely, double heterozygotes, homozygotes
at the first locus only, homozygotes at the second locus only, and double homozygotes. However, it
avoids the potential bias introduced by haplotype prediction algorithms, whose success at obtain-
ing the haplotype frequencies required in LD estimation may vary with the underlying amount of
LD. Additionally, in contrast to many LD statistics, the IIS excess is straightforwardly applicable
to multiallelic loci; for such loci, the fact that genotypes are collapsed into a small number of types
may actually be beneficial, in that this compression can enable the computation of reasonably accu-
rate estimates of LD without requiring an impractically large sample.

Several recent articles have further developed the connection between homozygosity and LD.
Vitalis and Couvet explored the influence of various population processes on the IIS excess
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[28], and then used the IIS excess to devise estimators of evolutionary parameters [27]. Sabatti and
Risch [20] defined additional statistics based on the IIS excess, exploring aspects of their estima-
tion and devising asymptotic tests of the null hypothesis of zero IIS excess. Importantly, Sabatti
and Risch also noted that while IIS excess statistics are nonzero with some forms of LD, the pres-
ence of LD does not guarantee that the IIS excess will be nonzero. Yang [34] further showed that
if the loci are not in Hardy–Weinberg equlibrium, a nonzero IIS excess reflects the combination of
LD with other disequilibria. However, given that Hardy–Weinberg disequilibrium is not likely to
be severe in most scenarios of interest, it does not substantially affect the general utility of statis-
tics based on the IIS excess [21]. Nevertheless, interpretation of the IIS excess as a measure of LD
is most straightforward when Hardy–Weinberg equilibrium holds at both loci.

Most recently, Rosenberg and Calabrese [18] showed that the IIS excess is sensitive to popula-
tion structure, producing an excess of positive values in structured populations. Additionally, we
observed a dependence of the IIS on sample size in a situation where pairs of loci were not asso-
ciated, that is, not in linkage disequilibrium. In particular, we noticed that in smaller samples from
human populations, more pairs of loci tended to produce negative values of the IIS excess than in
larger samples. This effect was found to result from two observations: (i) for values of the true
homozygosities of two loci between 0 and 0.5, the IIS excess tends to be negative more often than
positive, with the effect stronger in small samples; (ii) in most of the human populations consid-
ered, most loci had homozygosities between 0 and 0.5.

In this article, we more fully characterize the nature of the sampling dependence of the IIS ex-
cess, producing two results that are surprising when considered together: for any values of the true
homozygosities H1 and H2 of two loci, as n!1, the probability of a sample of size n having po-
sitive IIS excess at the loci approaches 1/2; at the same time, however, for any � > 0, if n is suffi-
ciently large, there exist values of H1 and H2 for the homozygosities of two loci so that the
probability of a sample of size n having positive IIS excess at the two loci exceeds 1 � �. Similarly,
there also exist values for the two homozygosities so that the probability of a sample of size n hav-
ing positive IIS excess is less than �.

Lemma 1 and 2 identify symmetry in the distribution of the IIS excess, showing that the IIS
excess for a pair of loci with homozygosities H1 and H2 has a close relationship to the IIS ex-
cess for three other pairs of loci: those with homozygosities 1 � H1 and H2, H1 and 1 � H2, and
1 � H1 and 1 � H2. Proposition 3 then demonstrates that if two loci are independent (that is, in
linkage equilibrium),

ffiffiffi
n
p

times the IIS excess approaches a normal distribution as the sample
size n!1. Corollary 4 then shows that a standardized version of the IIS excess approaches
a standard normal distribution. Also as a consequence of Proposition 3, Corollary 5 shows that
as n!1, for any true homozygosities H1 and H2, the probability of a sample having positive
IIS excess approaches 1/2. However, Proposition 6 then demonstrates that considering all pos-
sible values of (H1, H2), as n!1, the supremum of the probability of positive IIS excess
approaches 1 and the infimum approaches 0. In other words, for sufficiently large n, despite
the fact that with increasing n the probability of positive IIS excess approaches 1/2 for any
two values of H1 and H2, there is some pair (H1, H2) for which the probability of positive
IIS excess is close to 1 and another pair for which it is close to 0. Lastly, Proposition 7 gives
a large-sample Poisson approximation for the distribution of the IIS excess, which is simplified
in Corollary 8 to produce the approximate probability of positive IIS excess in the case that
both H1 and H2 are near 0 or 1.
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2. Results

Consider two loci that are in linkage equilibrium and that have homozygosities H1, H2 2 [0,1].
Let X1n, X2n, and X12n denote the random numbers of homozygotes at the first locus,
homozygotes at the second locus, and double homozygotes in a sample of n diploid individuals,
respectively (X1n and X2n are independent). For these two loci, denote the IIS excess statistic by
Dn(H1, H2):
DnðH 1; H 2Þ ¼
X 12n

n
� X 1n

n
X 2n

n
: ð1Þ
As no stipulations are made here regarding allele frequencies, no assumptions are made about the
presence or absence of Hardy–Weinberg equilibrium at the two loci.

For a pair of loci, Sabatti and Risch [20] defined a statistic HR, whose numerator equals
Dn. Analogously to the LD statistic r [5,11,15], the statistic HR can be viewed as the sample
correlation coefficient of the indicator variable for homozygosity at the first locus (1 if
homozygous, 0 if heterozygous) and the corresponding indicator variable for the second
locus:
HRnðH 1; H 2Þ ¼
X 12n

n �
X 1n

n
X 2n

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 1n

n 1� X 1n
n

� �
X 2n

n 1� X 2n
n

� �q : ð2Þ
HRn(H1,H2) is assumed to be zero if the denominator (and consequently, the numerator) is zero.
For loci with homozygosities H1 and H2, the random variables X1n, X2n, and X12n are binomi-

ally distributed with parameters H1, H2, and H1H2, respectively. The joint probability that
X1n = x1, X2n = x2, and X12n = x12 is given by [18]
Rn;x1;x2;x12
ðH 1; H 2Þ ¼

n

x1

� �
H x1

1 ð1� H 1Þn�x1
n

x2

� �
H x2

2 ð1� H 2Þn�x2

x1

x12

� �
n� x1

x2 � x12

� �

n

x2

� � : ð3Þ
It is required that max(0,x1 + x2 � n) 6 x12 6 min(x1,x2) and 0 6 x1,x2 6 n. The formula is sym-
metric with respect to transposition of the two loci.

Using Eq. (3),
Pr½DnðH 1; H 2Þ < 0� ¼
Xn

x1¼0

Xn

x2¼0

Xc�ðx1; x2Þ

x12¼maxð0; x1þx2�nÞ
Rn;x1;x2;x12

ðH 1; H 2Þ; ð4Þ

Pr½DnðH 1; H 2Þ ¼ 0� ¼
Xn

x1¼0

Xn

x2¼0

Rn;x1;x2;cðx1; x2ÞðH 1; H 2Þ; ð5Þ

Pr½DnðH 1; H 2Þ > 0� ¼
Xn

x1¼0

Xn

x2¼0

Xminðx1; x2Þ

x12¼c�ðx1; x2Þ
Rn;x1;x2;x12

ðH 1; H 2Þ; ð6Þ
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where c(x1,x2) = x1x2/n, c* = c � 1 if c is an integer and c* = bcc otherwise, c* = c + 1 if c is an
integer and c* = dce otherwise, and Rn;x1;x2;cðx1;x2Þ is set to 0 if c(x1,x2) is not an integer.

Denote H �1 ¼ 1� H 1 and H �2 ¼ 1� H 2. Some symmetry arguments will be useful in proving the
main results.

Lemma 1.

(i) Rn;x1;x2;x12
ðH �1; H �2Þ ¼ Rn;n�x1;n�x2;n�x1�x2þx12

ðH 1; H 2Þ,
(ii) Rn;x1;x2;x12

ðH �1; H 2Þ ¼ Rn;n�x1;x2;x2�x12
ðH 1; H 2Þ,

(iii) Rn;x1;x2;x12
ðH 1; H �2Þ ¼ Rn;x1;n�x2;x1�x12

ðH 1; H 2Þ.

Proof. These identities follow directly from Eq. (3). h

Lemma 2.

(i) Pr½DnðH �1; H �2Þ < 0� ¼ Pr½DnðH 1;H 2Þ < 0�,
(ii) Pr½DnðH �1; H �2Þ ¼ 0� ¼ Pr½DnðH 1; H 2Þ ¼ 0�,
(iii) Pr½DnðH �1; H �2Þ > 0� ¼ Pr½DnðH 1; H 2Þ > 0�,
(iv) Pr½DnðH �1; H 2Þ < 0� ¼ Pr½DnðH 1; H 2Þ > 0�,
(v) Pr½DnðH �1; H 2Þ ¼ 0� ¼ Pr½DnðH 1; H 2Þ ¼ 0�,
(vi) Pr½DnðH �1; H 2Þ > 0� ¼ Pr½DnðH 1; H 2Þ < 0�,
(vii) Pr½DnðH 1; H �2Þ < 0� ¼ Pr½DnðH 1; H 2Þ > 0�,
(viii) Pr½DnðH 1; H �2Þ ¼ 0� ¼ Pr½DnðH 1; H 2Þ ¼ 0�,
(ix) Pr½DnðH 1; H �2Þ > 0� ¼ Pr½DnðH 1; H 2Þ < 0�.

Proof. We prove (i). The remaining proofs are similar, substituting Eqs. (5) or (6) for Eq. (4), and
Lemma 1(ii) or 1(iii) for 1(i). Proving two of (i), (ii), and (iii) trivially implies the third statement; a
similar relationship holds among (iv), (v), and (vi) and among (vii), (viii), and (ix). Applying Eq.
(4) and Lemma 1(i),
Pr Dn H �1; H �2
� �

< 0
� �

¼
Xn

x1¼0

Xn

x2¼0

Xc�ðx1; x2Þ

x12¼maxð0; x1þx2�nÞ
Rn;n�x1;n�x2;n�x1�x2þx12

ðH 1; H 2Þ:
If we substitute y1 = n � x1, y2 = n � x2, and y12 = n � x1 � x2 + x12, and determine the limits of
summation with these new variables, the sum becomes
Xn

y1¼0

Xn

y2¼0

Xc�ðy1; y2Þ

y12¼maxð0; y1þy2�nÞ
Rn;y1;y2;y12

ðH 1; H 2Þ;
which by Eq. (4) equals Pr[Dn(H1,H2) < 0]. h
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Fig. 1. Probability of positive IIS excess (plus half the probability of IIS excess equal to zero) as a function of
homozygosities (H1,H2), computed from Eqs. (5) and (6). From left to right, the plots represent n = 10, 20, 40, 80, and
160. From lightest to darkest, the shades represent positive IIS excess probabilities in [0,0.175), [0.175,0.3), [0.3,0.375),
[0.375,0.45), [0.45,0.49), [0.49,0.51], (0.51,0.55], (0.55,0.625], (0.625,0.7], (0.7,0.825], and (0.825,1].
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The symmetry in the distribution of the IIS excess, proven in Lemma 2, is illustrated in Fig. 1.
Symmetry across the line H2 = H1 is a consequence of the fact that H1 and H2 have interchange-
able roles in Eq. (3). Symmetry across the line H1 + H2 = 1 in the probability of positive IIS ex-
cess results from Lemma 2(i)–(iii), and antisymmetry across the lines H1 = 1/2 and H2 = 1/2
results from Lemma 2(iv)–(ix).

We now prove that
ffiffiffi
n
p

DnðH 1; H 2Þ is asymptotically normally distributed. For Proposition 3
and its corollaries, it is useful to think of an infinite sequence of individuals, so that among the
first n of the individuals, X1n, X2n, and X12n respectively represent the numbers of homozygotes
at the first locus, homozygotes at the second locus, and double homozygotes. As X1n, X2n, and
X12n can each be viewed as the sum of independent and identically distributed Bernoulli random
variables, this perspective enables the application of results stated using means of partial sums of
sequences of IID random variables.

It is also useful to notice that Dn(H1,H2) is the estimator based on a sample of size n of the
covariance of two Bernoulli random variables. Given the asymptotic normality of many other sta-
tistics associated with Bernoulli trials and multinomial sampling [1, pp. 419–425] it is not surpris-
ing that asymptotic normality applies to

ffiffiffi
n
p

DnðH 1; H 2Þ as well. The proof employs the delta
method [1,7], a commonly used procedure for obtaining asymptotic normality of sample statistics
[1, p. 419].

Proposition 3. For fixed values of H1 and H2 not equal to 0 or 1, as n!1,
ffiffiffi
n
p

DnðH 1; H 2Þ!
d

Nð0; H 1ð1� H 1ÞH 2ð1� H 2ÞÞ;

where N(l,r2) denotes a normal random variable with mean l and variance r2, and !d denotes con-
vergence in distribution.

Proof. Because X1n is binomially distributed, X1n/n has mean H1 and variance H1(1 � H1)/n. Sim-
ilarly X2n/n has mean H2 and variance H2(1 � H2)/n, and X12n/n has mean H1H2 and variance
H1H2(1 � H1H2)/n. The covariance of X1n/n and X12n/n can be calculated using the independence
of X1n and X2n:
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Cov
X 1n

n
;
X 12n

n

	 

¼ E

X 1n

n
X 12n

n

	 

� ðH 1ÞðH 1H 2Þ

¼ �H 2
1H 2 þ

Xn

x1¼0

Xn

x2¼0

x1n

n
E

X 12n

n

����X 1n ¼ x1;X 2n ¼ x2

	 

Pr½X 1n ¼ x1�Pr½X 2n ¼ x2�

¼ �H 2
1H 2 þ

Xn

x1¼0

Xn

x2¼0

x2
1n

n2

x2n

n
Pr½X 1n ¼ x1�Pr½X 2n ¼ x2�

¼ �H 2
1H 2 þ

Var½X 1n� þ E½X 1n�2

n2

E½X 2n�
n

¼ H 1H 2ð1� H 1Þ=n:

ð7Þ
Similarly Cov[X2n/n, X12n/n] = H1H2(1 � H2)/n. Because X1n, X2n, and X12n can each be written as
the sum of IID Bernoulli random variables, we can use a multivariate central limit theorem stated
for sums of this type [4, p. 26],
ffiffiffi
n
p

X 1n=n�H 1

X 2n=n�H 2

X 12n=n�H 1H 2

0
B@

1
CA!d N

0

0

0

0
B@

1
CA;

H 1ð1�H 1Þ 0 H 1H 2ð1�H 1Þ
0 H 2ð1�H 2Þ H 1H 2ð1�H 2Þ

H 1H 2ð1�H 1Þ H 1H 2ð1�H 2Þ H 1H 2ð1�H 1H 2Þ

0
B@

1
CA

0
B@

1
CA;

ð8Þ
where N(l,R) denotes a multivariate normal distribution with mean vector l and variance–covari-
ance matrix R. Define g : R3 ! R by g(a,b,c) = c � ab. Using the delta method [7, p. 148] and
denoting the variance–covariance matrix in Eq. (8) by V,
ffiffiffi
n
p
½gðX 1n=n; X 2n=n; X 12n=nÞ � gðH 1; H 2; H 1H 2Þ�!

d
Nð0; ZVZTÞ;
where
Z ¼ og
oa
;
og
ob
;
og
oc

� �����
ða;b;cÞ¼ðH1;H2;H1H2Þ

¼ ð�H 2; �H 1; 1Þ:
Simplifying, we obtain that
ffiffiffi
n
p ½X 12n=n� ðX 1n=nÞðX 2n=nÞ�!d Nð0; H 1ð1� H 1ÞH 2ð1� H 2ÞÞ. h

Corollary 4. For fixed values of H1 and H2 not equal to 0 or 1, as n!1,

ffiffiffi
n
p

HRnðH 1; H 2Þ!
d

Nð0; 1Þ:
Proof. From Proposition 3,
ffiffiffi
n
p X 12n

n �
X 1n

n
X 2n

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 1ð1� H 1ÞH 2ð1� H 2Þ

p !d Nð0; 1Þ:



40 N.A. Rosenberg, M.G.B. Blum / Mathematical Biosciences 208 (2007) 33–47
Repeated application of Slutsky’s theorem [24, p. 19], using the fact that as means of the first n
terms in sequences of IID Bernoulli random variables, X1n/(nH1), X2n/(nH2), (n� X1n)/[n(1� H1)],
and (n � X2n)/[n(1 � H2)] all converge in probability to 1 [24, p. 9], yields
ffiffiffi
n
p X 12n

n �
X 1n

n
X 2n

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 1n

n 1� X 1n
n

� �
X 2n

n 1� X 2n
n

� �q !d Nð0; 1Þ: � ð9Þ
Corollary 5. For a real number c and fixed values of H1 and H2 not equal to 0 or 1,
lim
n!1

Pr½
ffiffiffi
n
p

DnðH 1; H 2Þ 6 �c� ¼ lim
n!1

Pr½
ffiffiffi
n
p

DnðH 1; H 2ÞP c�:
Consequently,
lim
n!1

Pr½DnðH 1;H 2Þ 6 0� ¼ lim
n!1

Pr½DnðH 1; H 2ÞP 0� ¼ 1=2:
Proof. The first statement is a direct consequence of Proposition 3 together with the definition of
convergence in distribution. The second statement follows by choosing c = 0, and noting that for
any sample size n, Pr½ ffiffiffinp DnðH 1; H 2Þ 6 0� ¼ Pr½DnðH 1; H 2Þ 6 0�, and Pr½ ffiffiffinp DnðH 1; H 2ÞP 0� ¼
Pr½DnðH 1; H 2ÞP 0�. h

Proposition 6.

(i) limn!1supH1;H22½0; 1�Pr½DnðH 1; H 2Þ < 0� ¼ 1
(ii) limn!1infH1;H22½0; 1�Pr½DnðH 1; H 2Þ < 0� ¼ 0.

Proof that Proposition 6(i) implies Proposition 6(ii). Choose � > 0. Using Proposition 6(i), for any
sufficiently large n, there exist H1n, H2n with Pr[Dn(H1n, H2n) < 0] > 1 � �. It then follows from
Lemma 2(ix) that Pr½DnðH 1n;H �2nÞ > 0� > 1� �, from which Pr½DnðH 1n;H �2nÞ < 0� < �. h

This argument verifies that symmetry can be used to obtain Proposition 6(ii) from 6(i), whose
proof we will defer until after Proposition 7. One way of thinking about why Proposition 6(i)
holds is that for large n, we can find H1 and H2 that are large enough so that it is likely that homo-
zygotes at each of the two loci will separately be observed, but small enough so that double homo-
zygotes are unlikely to be observed. For such loci X12n/n is very likely to be 0, but (X1n/n)(X2n/n) is
very likely to be positive, so that Dn(H1,H2) is likely to be negative.

The sequence of plots in Fig. 1 shows how the probability of positive IIS excess approaches 1/2,
as proven in Corollary 5. The center region of the space of possible values of (H1,H2), in which
this probability is close to 1/2, expands as n increases, forcing the regions with positive IIS excess
probability far from 1/2 into the corners of the space. The locations where the probability is not
close to 1/2 tend towards having positive IIS excess probability farther and farther from 1/2, as is
demonstrated by Proposition 6. This trend is also illustrated in Fig. 2, which shows a cross section
of the plots in Fig. 1 along the line H2 = H1. It can also be seen in Fig. 2 that for a given pair
(H1,H2), there may be some sample size for which the positive IIS excess probability is far from
1/2, but as the sample size increases, the probability tends back towards 1/2.
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Fig. 2. Probability of positive IIS excess (plus half the probability of IIS excess equal to zero) as a function of
homozygosity, computed from Eqs. (5) and (6), for H1 = H2 and n = 10, 20, 40, 80, and 160.
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This tendency of the positive IIS excess probability to move away from and then back
towards 1/2 as sample size increases is more directly illustrated in Fig. 3. For homozygosities
close to 0.5, the probability remains near 1/2 for small sample sizes; the approach to the
large-n limit of 1/2, however, is not monotonic. For more extreme homozygosities, sample
size must be considerably larger before the probability moves back towards 1/2. At
H1 = H2 = 0.04, it only reaches its minimum of �0.158 at n = 82 before climbing back to-
wards its large-n limit of 1/2. At H1 = H2 = 0.01, the probability continues to decline as n
reaches the rightmost edge of the plot. Notice that regardless of the values of H1 and
H2, for n = 2, the probabilities of positive and negative IIS excess are equal, so that the
probability of positive IIS excess plus half the probability of zero IIS excess is always
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1/2. This can be seen by observing that for a pair of individuals, IIS excess is positive if and
only if one individual is a double homozygote and the other is a double heterozygote, and
negative if and only if one individual is homozygous only at one of the loci, and the other is
homozygous only at the other locus. These events have the same probability,
2H1(1 � H1)H2(1 � H2).

We now give a Poisson approximation to the distribution of the IIS excess, which applies if
both H1 and H2 are small. To obtain this approximation, in Proposition 7, we consider sequences
with decreasing homozygosities as n increases, rather than sequences in which H1 and H2 are con-
stant across values of n. Proposition 7 is used to prove Proposition 6i, as well as Corollary 8. Cor-
ollary 8 is illustrated in Fig. 4, which shows the probability of positive IIS excess for increasing n
and decreasing H1n and H2n, subject to H 1n ¼ k1=

ffiffiffi
n
p

, H 2n ¼ k2=
ffiffiffi
n
p

.

Proposition 7. Suppose H1n ¼ k1=
ffiffiffi
n
p

and H2n ¼ k2=
ffiffiffi
n
p

for positive constants k1 and k2. Then
Fig. 4
size, c
corres
nDnðH 1n;H 2nÞ þ k1k2!
d

Poissonðk1k2Þ: ð10Þ
Proof. Proving the proposition amounts to showing that
X 12n �
X 1nffiffiffi

n
p X 2nffiffiffi

n
p � k1k2

� �
!d Poissonðk1k2Þ:
Because limn!1H1n = 0 and E½ðX 1n=
ffiffiffi
n
p
� k1Þ2� ¼ Var½X 1n=

ffiffiffi
n
p
�, limn!1E½ðX 1n=

ffiffiffi
n
p
� k1Þ2� ¼

limn!1H 1nð1� H 1nÞ ¼ 0. Thus X 1n=
ffiffiffi
n
p

converges in second mean to k1, and consequently [24,
p. 10], it converges in probability to k1. Similarly, X 2n=

ffiffiffi
n
p
!p k2.

The random variables X1n and X2n are independent. Therefore, X12n � Binomial(n, k1k2/n), and
it follows that X 12n!

d
X , where X has a Poisson(k1k2) distribution [23, p. 199]. Slutsky’s theorem

[24, p. 19] applied to X 1n=
ffiffiffi
n
p

and X 2n=
ffiffiffi
n
p

gives X 1nX 2n=n!d k1k2, or equivalently [24, p. 19],
X 1nX 2n=n!p k1k2. Applying Slutsky’s theorem again gives X 12n � X 1nX 2n=n!d X � k1k2. h
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Proof of proposition 6(i). Suppose H1n ¼ k1=
ffiffiffi
n
p

and H2n ¼ k2=
ffiffiffi
n
p

for positive constants k1 and k2

with k1k2 < 2. Then
Pr½DnðH 1n; H 2nÞ 6 �k1k2=ð2nÞ� ¼ Pr½nDnðH 1n; H 2nÞ þ k1k2 6 k1k2=2�:
Because 0 < k1k2/2 < 1, the value k1k2/2 is a point of continuity of the cumulative distribution
function of a random variable X with Poisson(k1k2) distribution. Therefore, using the definition
of convergence in distribution together with Proposition 7,
lim
n!1

Pr½DnðH 1n; H 2nÞ 6 �k1k2=ð2nÞ� ¼ Pr½X 6 k1k2=2� ¼ e�k1k2 ;
the last equality following from the Poisson distribution and from the fact that Pr[X 6 k1k2/2] =
Pr[X = 0]. For any n,
sup
H1;H22½0; 1�

Pr½DnðH 1; H 2Þ < 0�P Pr½DnðH 1n; H 2nÞ < 0�P Pr½DnðH 1n; H 2nÞ 6 �k1k2=ð2nÞ�:
Taking the limit as n!1, it follows that:
1 P lim
n!1

sup
H1;H22½0; 1�

Pr½DnðH 1; H 2Þ < 0�P lim
n!1

Pr½DnðH 1n; H 2nÞ 6 �k1k2=ð2nÞ� ¼ e�k1k2 :
As this inequality is true for any k1,k2 > 0 with k1k2 < 2, k1k2 can be made arbitrarily close to 0, so
that
lim
n!1

sup
H1n;H2n2½0; 1�

Pr½DnðH 1n;H 2nÞ < 0� ¼ 1: �
Corollary 8. Suppose H 1n ¼ k1=
ffiffiffi
n
p

and H 2n ¼ k2=
ffiffiffi
n
p

for positive constants k1 and k2 with k1k2 < 1.
Then

(i) limn!1Pr½DnðH 1n;H 2nÞ > 0� ¼ 1� e�k1k2

(ii) limn!1Pr½DnðH �1n;H 2nÞ > 0� ¼ e�k1k2

(iii) limn!1Pr½DnðH 1n;H �2nÞ > 0� ¼ e�k1k2

(iv) limn!1Pr½DnðH �1n;H
�
2nÞ > 0� ¼ 1� e�k1k2

Proof. By Lemma 2, (ii), (iii), and (iv) follow from (i). If X � Poisson(k1k2), then
lim
n!1

Pr½DnðH 1n; H 2nÞ 6 0� ¼ lim
n!1

Pr½nDnðH 1n; H 2nÞ 6 0�

¼ lim
n!1

Pr½nDnðH 1n; H 2nÞ þ k1k2 6 k1k2�

¼ Pr½X 6 k1k2�;
where the last equality follows from the convergence in distribution in Proposition 7 and from the
fact that because k1k2 is strictly between 0 and 1, it is a point of continuity of the cumulative dis-
tribution function of X. Because k1k2 < 1, Pr½X 6 k1k2� ¼ Pr½X ¼ 0� ¼ e�k1k2 . h
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3. Application to data

Investigation of the sampling properties of the IIS excess is useful in interpreting observations
based on this statistic. We now illustrate how our theoretical results help to understand estimates
of the IIS excess for microsatellite genotypes in human populations.

We have previously studied the patterns of genetic variation of 377 autosomal microsatellite
loci in a collection of 1056 individuals from 52 human populations [18,19,35]. Using this data
set, for each population, Rosenberg and Calabrese [18] computed the IIS excess for each of
66,730 (unordered) pairs of unlinked loci. It was observed that in most of the populations, the
number of pairs of unlinked loci that had positive IIS excess was smaller than the number that
had negative IIS excess [18].

For four of the 52 populations—French, Kalash, Surui, and Yoruba—Fig. 5 plots pairs of esti-
mated homozygosities for all of the 66,730 pairs of loci (with both possible orderings). As the esti-
mate of homozygosity for a given locus is obtained from the fraction of sampled individuals
homozygous at the locus (excluding individuals with missing data), the points that could poten-
tially be occupied by ordered pairs of homozygosities form a discrete set symmetric around the
line H2 = H1. The fractions of pairs with positive IIS excess (including half the pairs with IIS ex-
cess equal to 0) are 0.478, 0.487, 0.501, and 0.462 for French, Kalash, Surui, and Yoruba, respec-
tively [18]. In French, Kalash, and Yoruba, most pairs of (estimated) homozygosities are in parts
of the unit square where the probability of positive IIS excess for a pair of independent loci with
those homozygosities is less than 1/2 (red dots in Fig. 5). Thus, in these populations, it is not sur-
prising that fewer than half the pairs would have positive IIS excess. In Surui, however, pairs of
homozygosities are distributed over the entire unit square, and it is therefore unsurprising that in
this population, the probability of positive IIS excess is very close to 1/2. Thus, by superimposing
ordered pairs of homozygosities obtained from data onto plots of the theoretically computed
0 0.5 1

H1

0

0.5

1

H
2

0 0.5 1

H1

0 0.5 1

H1

0 0.5 1

H1

0

0.5

1

H
2

Fig. 5. Probability of positive IIS excess (plus half the probability of IIS excess equal to zero) as a function of
homozygosities (H1,H2), computed from Eqs. (5) and (6), with estimated homozygosities from 66,730 pairs of human
microsatellite markers superimposed (red dots). As a result of the finite number of possible estimates that can be
obtained in small samples, multiple pairs of markers can potentially produce identical estimates; thus, many marker
pairs may be represented by the same red dot. From left to right, the plots are based on data from four populations
studied by Rosenberg and Calabrese [18]: French (n = 29), Kalash (n = 25), Surui (n = 21), and Yoruba (n = 25). For
each population, the probability of positive IIS excess is obtained from an exact computation using the same sample
size as the sample size of the population. From lightest to darkest, the shades represent positive IIS excess probabilities
in [0.175,0.3), [0.3,0.375), [0.375,0.45), [0.45,50), {0.50}, (0.50,0.55], (0.55,0.625], (0.625,0.7], and (0.7,0.825].
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probability of positive IIS excess, it is possible to understand why in Surui the probability of po-
sitive IIS excess is closer to 1/2 than in the other three populations.
4. Discussion

We have shown in this article that for any pair of loci in linkage equilibrium, a transformed
version of the IIS excess statistic has the desirable property of converging to a normal distribution
as sample size approaches infinity. This enables the development of an asymptotic test for linkage
disequilibrium: under the null hypothesis of linkage equilibrium, the statistic
ffiffiffi
n
p

HRnðH 1; H 2Þ ¼
ffiffiffi
n
p X 12n

n �
X 1n

n
X 2n

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 1n

n 1� X 1n
n

� � X 2n
n 1� X 2n

n

� �q
has the standard normal distribution. Note that the null hypothesis that leads to the standard nor-
mal distribution is a hypothesis of linkage equilibrium only, and not of Hardy–Weinberg equilib-
rium at either or both loci. As was mentioned previously, however, if Hardy–Weinberg
disequilibrium is present, a nonzero value of

ffiffiffi
n
p

HRnðH 1; H 2Þ may be a consequence both of asso-
ciations of pairs of alleles (that is, linkage disequilibrium) as well as of other disequilibria [34].

The statistic
ffiffiffi
n
p

HRnðH 1; H 2Þ complements other IIS-based statistics identified by Sabatti and
Risch [20] as having standard distributions under the null hypothesis of linkage equilibrium. In-
deed, one consequence of the asymptotic normality of

ffiffiffi
n
p

HRnðH 1; H 2Þ is that nHRn(H1,H2)2 has
an asymptotic v2

1 distribution, a fact that is equivalent to the asymptotic v2
1 distribution identified

by Sabatti and Risch [20, p. 1714] for the test statistic of independence for a certain contingency
table. Note also that homozygosity-based LD tests such as those using

ffiffiffi
n
p

HRnðH 1; H 2Þ and
nHRn(H1,H2)2 parallel corresponding tests based on LD statistics that apply only when haplotype
phase is known [30–32].

In implementing LD tests based on the IIS excess, however, and more generally, in simply mea-
suring the IIS excess, caution is warranted in interpreting the values of IIS-based statistics.
Although for large sample sizes, the positive IIS excess probability is close to the asymptotic value
of 1/2 for most homozygosity values, for extreme homozygosities, the probability of the IIS excess
being positive in typical sample sizes may be quite far from the asymptotic limit. Indeed, for any
sample size, there will be some extreme homozygosities for which the distribution of the IIS excess
is not close to the asymptotic distribution. When using the IIS excess, properties of its exact distri-
bution (Eq. (3)), such as those studied here, can be used to identify the potential for a bias, so that if
necessary, this bias can be incorporated into interpretations of the observed values of the statistic.
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