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Admixture Models and the Breeding Systems
of H. S. Jennings: A GENETICS Connection

Noah A. Rosenberg
Department of Biology, Stanford University, Stanford, California 94305-5020

The lions of the field have published seminal work in our journal, from Bridges, Muller, and McClintock to
Brenner, Horvitz, and Hartwell. Authors can publish in the same journal as did Luria and Delbruck, and Sewall
Wright, and Ronald Fisher, and Crow and Kimura (and many other luminaries). And while GENETICS provides a
professional and scientific thread that extends back to the founders of our field, it also points to our future.

JOHNSTON 2014, p. 10

LONG-TIME GENETICS readers are bound to learn (see the
perspective by Ganetzky and Hawley 2016, this issue)

that the journal’s first article, Vol. 1, p. 1, reported a founda-
tional study whose results continue to occupy a central place
in the field: the celebrated work of Calvin Bridges on “Non-
disjunction as proof of the chromosome theory of heredity”
(Bridges 1916).

What other treasures lie hidden in the 100-year record of
GENETICS, and what links do they have to ongoing events in
the field? GENETICS authors can delight in the fact that every
so often, the search for the origin of an idea uncovers an
unexpected connection in an early volume. This essay gives
an account of one such quest that led to the second article in
the first issue of the journal, Vol. 1, p. 53, by H. S. Jennings
on “The numerical results of diverse systems of breeding”
(Jennings 1916).

Genetic Admixture

Amy Goldberg and I had been studying genetic admixture, a
topic of current interest frequently featured in recent issues of
GENETICS (e.g., Lohmueller et al. 2011; Verdu and Rosenberg
2011; Gravel 2012; Patterson et al. 2012; Duchen et al. 2013;
Loh et al. 2013; Liang and Nielsen 2014; Lohse and Frantz
2014; Sanderson et al. 2015; Sedghifar et al. 2015). In geneti-

cally admixed populations—populations formed from genetic
mixing of two or more groups that have long been separated—
just as in a classic F2 cross, individual genomes consist of a
mosaic of regions with different ancestries. The proliferation
of population-genetic data, statistical advances in inferring the
populations of origin of genomic segments, interest in ancient
admixture, and the prospects for mapping trait loci in admixed
populations formed by natural experiments have all helped give
rise to substantial activity in the study of genetic admixture.

Our focuswas sex-biased admixture, inwhich one ormore of
the ancestral sources for an admixed population has a difference
in its levels of female and male contribution. In humans, sex-
biased admixture has been common, often with a bias toward
males in invading populations and toward females in native
groups. Because the X chromosome and autosomes have differ-
ent modes of inheritance, X chromosomes record signatures of
the founding females and males differently from autosomes.
Having already built a general mathematical model of the effect
of sex-biased admixture on autosomal markers (Goldberg et al.
2014), our goal was to do the same for the X chromosome.

An Admixture Model

Following our earlier model, we considered two source pop-
ulations (“1” and “2”), one or both of which has a sex bias in
its contributions to an admixed population. In a formulation
with discrete generations, we examined the expected
X-chromosomal admixture from a specific source population
for a random female and a random male chosen in the
admixed population at a specified generation—in other
words, the admixture level predicted by the model for a
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randomly chosen admixed female or male. A particular in-
terest was “hybrid isolation,” the case in which after the ini-
tial generation of admixture, no further contributions from
the source groups enter the admixed population (Long
1991).

Discrete-time models are often studied by obtaining recur-
sions that describe the state of a system in terms of that in
the previous time step. Amy used a recursion approach and
found that as a function of time, the expected X-chromosomal
admixture could be computed using an iteratively defined
sequence Jn, which after initial conditions J0 = 0 and J1 = 1
follows the formula Jn = Jn21 + 2Jn22. If the initial genera-
tion of offspring n= 1 in an admixed population begins with
a proportion sf of its mothers and sm of its fathers from source
population 1, then under hybrid isolation, the random vari-
ables Hn,f, the proportion of X-chromosomal ancestry from
source 1 for a random female in the admixed population in
generation n$ 1, and Hn,m, the corresponding admixture for
a random admixed male, have expectations

E
�
Hn;f

� ¼ Jnþ1sf þ Jnsm
2n

(1)

E
�
Hn;m

� ¼ Jnsf þ Jn21sm
2n21 : (2)

A quick check of the On-Line Encyclopedia of Integer Sequences
(Sloane 2015) revealed that our sequence Jn, which begins 0, 1,
1, 3, 5, 11, 21, 43, was known as the Jacobsthal numbers. The
approximate doubling in the successive terms of the sequence
produced an approximate 2-to-1 weighting of the female and
male contributions sf and sm in Equations 1 and 2—a sensible
result given that in a population with equally many males and
females, the number of X chromosomes residing in females is
twice as large as the corresponding number for males.

At the same time, however, the appearance in our problem
of the sequence Jn was peculiar. Its generative formula, Jn =
Jn21+ 2Jn22, was reminiscent of the famous recursion for the
Fibonacci numbers, Fn = Fn21 + Fn22. We knew of the result
that the number of genealogical ancestors of an individual
according to haplodiploid inheritance—such as on the X
chromosome—follows the Fibonacci sequence (e.g., Basin
1963). That a related sequence appeared in another
X-chromosomal problem could not have been a coincidence.
But where did such number sequences, formed by simple
linear recursions, enter population genetics?

The Fibonacci Numbers

A search for Fibonacci numbers and population genetics quickly
led us to a much-chronicled episode (Wright 1969, p. 171;
Provine 1971, p. 136; Crow 1987) involving the computation
of the probability of heterozygosity of an autosomal diploid
locus aftern generations of inbreeding by sibmating, beginning
from an initial cross of AA and aa parents. Such calculations of
probabilities of homozygosity and heterozygosity were impor-
tant in understanding the consequences of animal and plant

breeding schemes for the properties of the lines produced.
What level of inbreeding was generated by different breeding
systems with their own characteristic sequences of crosses?

The sib-mating problemwas difficult, and the first report
of a solution, by Pearl (1913), was mistaken. In one of a
series of corrections to the erroneous claim, a brief note by
Jennings (1914) used a discrete-time recursion to show
that the probability of heterozygosity in the nth genera-
tion, including as generation n = 1 the sibs born from
the initial cross, is Fn/2n21. He commented, “The formula
turns out to be a combination of the successive powers of 2,
with the successive terms of the Fibonacci series, which ap-
pears in so curious a way in various natural phenomena”
(Jennings 1914, p. 693).

We had traced the source of the Fibonacci numbers. They
arose, however, in an autosomal calculation. Surely someone
had looked at the X.

The Breeding Systems of Jennings (1916)

The 1914 report by Jennings was short, focused on correcting
the earlier error. Jennings’s (1916) GENETICS article was
next. In this longer study, a 37-page treatise dense with cal-
culations, Jennings considered not only the case of sibmating
and autosomal loci from the exchange with Pearl, but also
several other breeding systems: for example, randommating,
self-fertilization, parent-by-offspring mating with the same
parent bred over multiple generations of offspring, and
parent-by-offspring mating with parents bred with their
own offspring and no further. The various cases had charac-
teristic discrete-time recursions describing the proportions of
homozygotes or heterozygotes in consecutive generations.

Jennings’s article was impressive. Its problems were chal-
lenging, and the number of cases far exceeded what a mod-
ern author would put into a single manuscript. At the same
time, it was hard to follow. Figures were limited to a few
schematic diagrams, and the article was almost all math, with
little context. One wants to know more about the interest at
the time of such schemes as parent-by-offspring mating in
which each individual is used for two, and exactly two, suc-
cessive generations.

Perhaps the X chromosome appeared in this article? The
article had a table of contentswithSex-Linked Factors as oneof
its sections. At first, however, the section was unenlightening.
But in obtaining the recursion for each breeding system,
Jennings computed the first several terms, conveniently col-
lecting the numerical values into a comprehensive table. And
there in the table, right under the Fibonacci sequence, in a
row annotated simply by “G,”was the Jacobsthal sequence—
the very numbers we had just derived!

The Connection Between Admixture and Breeding
Systems

We returned to the section on Sex-Linked Factors, finding that
it contained the mysterious G. Knowing now that G (Figure 1)
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was the Jacobsthal sequence unlocked the section. Jennings
(1916) had examined a case involving the X chromosome,
crossing a female AA to a male aY with sole X chromosome a.
Random mating occurs among the offspring, continuing for n
generations. What are the frequencies for allele A in females
and males in the nth generation of the newly formed line?

We simplified Jennings’s equations, shifting the index in
his paragraph 58 so that, like in our admixture model—
where generation 1 is the first generation of the existence
of the admixed population—the nth generation includes the
result of the initial cross followed by n 2 1 generations of
random mating. Using our notation, Jennings obtained for the
frequency pn,f of allele A in females and the corresponding fre-
quency pn,m in males

pn;f ¼
Jnþ1

2n
(3)

pn;m ¼ Jn
2n21: (4)

Jennings’s allele frequencies accord exactly with the
expected admixture proportions from Equations 1 and 2 in
the special case that all females arise from source 1 (sf = 1)
and all males arise from source 2 (sm = 0). In other words, at
generation n, the frequency of X-chromosomal allele A in
females and males in a breeding system where a female AA
is crossed to a male aY, and random mating continues for
n2 1 generations, exactly equals the expected X-chromosomal
admixture level in females and males for source 1 in an ad-
mixture model in which females enter from source 1 and
males from source 2 (Table 1).

Mathematically, the computations answer the same ques-
tion: whereas we compute the admixture from a source pop-
ulation fora randomfemaleormaleatanX-chromosomal locus,
Jennings computes for an X-chromosomal locus the “admix-
ture” from the “source population” consisting of the single AA
female. With this view of Jennings’s scheme, the frequency of
allele A records the admixture proportion from the source pop-
ulation that provided the females. In a sense, breeding-system
computations of levels of homozygosity and heterozygosity

that were at the forefront of the field a century ago are a
version of modern admixture computations popular now.

Perspective

The appearance in two problems of the same number se-
quence Jn was the linchpin in identifying a connection be-
tween similar families of models separated by 99 years. The
question remains, however: What other links between mod-
els of admixture and models of breeding systems can be
unearthed deep in the GENETICS record, and what insights
can they bring to the modern study of admixture? The anal-
ogy of admixture as a form of cross between populations is
familiar. But in some cases, the parallel is more than an anal-
ogy, as admixture and breeding-system models can make use
of exactly the same mathematics.

Beyond its relationship to admixture models, the article of
Jennings (1916) is noteworthy for a number of other reasons,
including an early assortative mating model and an early sin-
gle-locus analysis of selection against deleterious recessives. It
is perhaps most often remembered for its identification of an
oscillation in the approach to Hardy–Weinberg equilibrium on
the X chromosome. Because each male X chromosome was in
a female one generation in the past, the allele frequencies in
males “chase” the frequencies in females, lagging by one gen-
eration. Unlike for autosomes, equilibrium is approached over
time, rather than achieved immediately. A correspondence
with this pattern can also be seen in Goldberg and Rosenberg
(2015): the expected admixture for a specific source popula-
tion follows the same oscillation (Figure 2). Indeed, Equations
3 and 4 give exactly the female andmale frequencies of alleleA
in generation n$ 1 during the approach to Hardy–Weinberg
equilibrium for a population that begins in generation 0 ex-
clusively with AA females and aY males (Crow and Kimura
1970, p. 46). In parallel to the Hardy–Weinberg setting, un-
like for autosomal loci (Goldberg et al. 2014), the expected
admixture on the X chromosome for a random female ormale
under hybrid isolation is not constant over time.

Some earlier textbooks, including Crow and Kimura (1970)
and Li (1976), discuss the X-chromosomal Hardy–Weinberg

Figure 1 The table of number sequences from Jennings (1916). Row F contains the Fibonacci numbers, and row G, the Jacobsthal numbers.
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oscillation. In later books, however, the oscillating pattern and
its connection to recursive sequences are sometimes lost, as, in
some cases, is the reference to Jennings (1916).

In a perspective on H. S. Jennings, Crow (1987) com-
mented that the computational methods of Jennings
(1916) in systems of breeding were soon superseded by
Sewall Wright’s general approach to the inbreeding coeffi-
cient produced by an arbitrary pedigree. Nevertheless, this
one article uncovered the X-chromosomal behavior of the
Hardy–Weinberg model, anticipated questions of interest in
modern admixture investigations, and moreover, contributed
to expanding the long list of biological examples of the Fibo-
nacci numbers.

A quest in the GENETICS archive is full of surprises.
GENETICS reports the date in 1915 on which Bridges’s
manuscript was received as October 21 and Jennings’s as
August 26. It is tempting to speculate how the history of
GENETICSmight have unfolded differently had the editors
not inverted the timing of arrival in arranging the publi-
cation order for the journal’s first issue.
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