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Abstract: Allele-sharing statistics for a genetic locus measure the dissimilarity between two populations as a

mean of the dissimilarity between random pairs of individuals, one from each population. Owing to within-

population variation in genotype, allele-sharing dissimilarities can have the property that they have a nonzero

value when computed between a population and itself. We consider the mathematical properties of allele-

sharing dissimilarities in a pair of populations, treating the allele frequencies in the two populations para-

metrically. Examining two formulations of allele-sharing dissimilarity, we obtain the distributions of within-

population and between-population dissimilarities for pairs of individuals. We thenmathematically explore the

scenarios in which, for certain allele-frequency distributions, the within-population dissimilarity – the mean

dissimilarity between randomly chosen members of a population – can exceed the dissimilarity between two

populations. Such scenarios assist in explaining observations in population-genetic data that members of a pop-

ulation can be empirically more genetically dissimilar from each other on average than they are frommembers

of another population. For a population pair, however, themathematical analysis finds that at least one of the two

populations always possesses smaller within-population dissimilarity than the value of the between-population

dissimilarity. We illustrate the mathematical results with an application to human population-genetic data.
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1 Introduction

Statistics that measure the genetic dissimilarity between pairs of populations are widely used for interpret-

ing population-genetic data (Bowcock et al. 1994; Chakraborty and Jin 1993; Gao and Martin 2009; Mountain

and Cavalli-Sforza 1997; Mountain and Ramakrishnan 2005; Rosenberg 2011; Tal 2013; Witherspoon et al. 2007).

Patterns in numerical values of the statistics appear in calculations of the relative similarity and dissimilarity

of different human groups (Mountain and Ramakrishnan 2005; Rosenberg 2011; Witherspoon et al. 2007). Fur-

ther, genetic dissimilarity statistics, often termed “genetic distances,” underlie frequently applied tools for data

analysis and visualization, including methods such as evolutionary tree construction (Bowcock et al. 1994) and

multidimensional scaling (Gao and Martin 2009).

Population-level genetic dissimilarity statistics computed at a single genetic locus often proceed by consid-

ering pairs of vectors, p and q, representing the allele frequencies of two populations. Each vector consists of
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nonnegative entries that sum to 1. Hence, for a locus with I distinct alleles, such a genetic dissimilarity statistic

has domainΔI−1 ×ΔI−1, whereΔI−1 is the simplex
{
p1, p2,… , pI :

∑I

i=1 pi = 1 and pi ≥ 0 for all i
}
.

Among the many genetic dissimilarity statistics that are available (Jorde 1985; Nei 1987), those known as

allele-sharing dissimilarities form a distinctive subset. Such statistics view a dissimilarity between two popu-

lations as the mean of a dissimilarity between pairs of individuals, one from one population and one from

the other. With this perspective, they have a simple interpretation as a population-level generalization of an

individual-level statistic. They also have a natural connection to a fundamental computation in human popu-

lation genetics – the apportionment of genetic diversity among different levels of genetic structure (Edge et al.

2022; Lewontin 1972) – which can be viewed in terms of various mean pairwise dissimilarities across certain

subsets of individuals (Rosenberg 2011).

Unlike most dissimilarity statistics – such as those based on such principles as the Euclidean distance

between functions of allele frequency vectors (Cavalli-Sforza and Edwards 1967) or the dot product of these

vectors (Nei 1972) – because they emerge from inter-individual computations among non-identical individuals,

allele-sharing dissimilarities can produce nonzero values for the dissimilarity between a polymorphic popula-

tion and itself. This feature assists in understanding a property of genetic variation in structured populations: the

extent to which genetic dissimilarity of individuals from the same population ever exceeds genetic dissimilarity

of individuals from different populations, if at all.

Because individuals in a population generally possess a larger number of recent shared ancestors than

individuals from different populations, a perspective focused on population-genetic descent predicts that indi-

viduals from the same population will be genetically more similar than individuals from different populations.

Indeed, in human population genetics, studies of allele-sharing dissimilarity find that the mean dissimilarity

across pairs of individuals from different populations does exceed the mean dissimilarity for pairs from the

same populations (Mountain and Ramakrishnan 2005; Rosenberg 2011; Tal 2013; Witherspoon et al. 2007). How-

ever, such studies also find a perhaps unexpected result that the allele-sharing dissimilarity for some pairs of

individuals from the same population can exceed the dissimilarity for some pairs from different populations.

Here, we seek to explain the properties of allele-sharing dissimilarities within and between populations.

We study mathematical properties of population-level allele-sharing dissimilarities under the assumption that

individuals in a population represent random draws from the vector of allele frequencies in the population.

We consider mean allele-sharing dissimilarities for pairs of individuals from the same population and for pairs

of individuals from different populations, evaluating the conditions on allele-frequency vectors under which

the allele-sharing dissimilarity for a population to itself can exceed the allele-sharing dissimilarity between two

populations. We interpret the results in relation to ongoing efforts to understand human genetic similarity and

difference.

2 Methods

2.1 Allele-sharing dissimilarities

An allele-sharing dissimilarity (ASD) is a type of dissimilarity that is based on counting the number of alleles shared at a locus between

two diploid individuals. We consider two different versions of the ASD concept.

In one ASD variant, which we denote by1, “allele-sharing” for two diploid individuals is interpreted as the number of shared

elements in their multisets of alleles. Consider a locus with four distinct alleles, the minimum number required so that all possible

cases exist. Call these alleles A, B, C, and D. For 1, two individuals both with genotype AB have 2 alleles shared, as the sets {A,B}
and {A,B} have 2 identical elements. An individual with genotype AB and an individual with genotype AC have 1 allele shared, as
the sets {A,B} and {A, C} have 1 element shared between them, namely A. Two individuals with genotype AA have 2 alleles shared,

as multisets {A,A} and {A,A} have 2 shared elements, A and A. The dissimilarity1 then uses 1 minus half the number of the shared

alleles as the dissimilarity; the normalization ensures that 1 lies in [0,1] (Gao and Martin 2009; Mountain and Cavalli-Sforza 1997).

With 0, 1, and 2 shared alleles, the dissimilarity equals 1,
1

2
, and 0, respectively.

Another variant of ASD, which we denote by2, instead considers alleles individually, evaluating the fraction of pairs of alleles,

one from the first individual and one from the second, that are distinct (Mountain and Ramakrishnan 2005). For two individuals with
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Table 1: Two variants of allele-sharing dissimilarity. All possible pairs of unordered genotypes are shown, along with their values of1

and2.

Case Genotypes 1 2

1 AA, AA 0 0

2 AA, AB
1

2

1

2

3 AA, BB 1 1

4 AA, BC 1 1

5 AB, AB 0
1

2

6 AB, AC
1

2

3

4

7 AB, CD 1 1

genotype AB,2 is equal to
1

2
, because among the four possible pairs of alleles – (A,A), (A,B), (B,A), and (B,B), where the first entry

in the pair represents an allele from the first individual and the second entry is an allele from the second individual – two of four

contain distinct alleles.

Table 1 shows all sevenpossible pairs of unordereddiploid genotypes for two individuals and their corresponding dissimilarities

measured by1 and2. In only two of seven cases do the two dissimilarities differ.

2.2 Notation

Consider a locus with I distinct alleles. We consider allele-frequency vectors in each of two populations. In Population 1, the allele

frequencies are p = (p1, p2,… , pI ), where pi represents the frequency of allele i. In Population 2, they are q = (q1, q2,… , qI ). The

frequencies satisfy 0 ≤ pi, qi ≤ 1 for all i, and
∑I

i=1 pi =
∑I

i=1qi = 1.

We are interested inmathematical properties of the distribution of ASDmeasure, for pairs of populations – possibly the same

population – where can refer to1 or2.We denote the dissimilarity between two randomly chosen individualswithin the same

population with allele-frequency vector p by𝑤(p), and the corresponding dissimilarity between two randomly chosen individuals

from different populations with allele-frequency vectors p and q byb(p,q). We often drop the arguments for convenience.

We will have occasion to use various symmetric sums involving allele frequencies. For t = 1, 2, 3, 4, for expressions in the

separate populations, we use the notation

𝜎t =
I∑
i=1

pt
i
, 𝜏t =

I∑
i=1

qt
i
, (1)

where 𝜎1 = 𝜏1 = 1.

For expressions involving both populations, we use

𝜌tu =
I∑
i=1

pt
i
qu
i
, (2)

where (t, u) is equal to (1,1), (1,2), (2,1), or (2,2). Note that each of these sums can be viewed as an inner product.

2.3 Assumptions

We seek to perform ASD computations under the assumption that individuals are sampled at random from allele-frequency dis-

tributions. With this perspective, for a random pair of individuals, an ASD measure is a random variable that depends on the

allele-frequency vectors of two populations of interest, treated as parameters.

At a given locus, we assume that the two alleles of an individual are sampled independently, so that diploid genotypes in a

population are assumed to followHardy–Weinberg proportions. In otherwords, the probabilities of diploid genotypes in a population

with allele-frequency vector p equal p2
i
for homozygous genotypes and 2pi pj for heterozygous unordered genotypes, with i ≠ j.

3 Distribution of𝒘

We first compute allele-sharing dissimilarities between random pairs of individuals sampled from the same

population, evaluating the properties of random variables𝑤

1
and𝑤

2
.
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3.1 Distribution of𝒘

1

𝑤

1
is a random variable that takes on values 0,

1

2
, and 1. We compute its probability distribution, and we then

evaluate its mean and variance.

ℙ
[


𝒘

1
= d

]
.

We obtain the probability for each possible genotype combination in Table 1. These probabilities appear in

Table 2, both as sums and as simplified polynomials.

With the probabilities of all genotype combinations obtained, we can sum across genotype combinations to

compute probabilities for𝑤

1
(p) to equal 0, 1

2
, and 1. The resulting probabilities appear in Table 3.

𝔼[𝒘

1
].

The expected value of𝑤

1
(p) can be computed from the full probability distribution, via

𝔼[𝑤

1
(p)] =

∑
d∈{0, 12 ,1}

dℙ
[


𝑤

1
(p) = d

]
.

Table 2: Probabilities of genotype combinations for pairs of individuals sampled from the same population. For each case, the

probability is written as a sum, which is then simplified using Eq. (1).

Case Genotypes Probability Simplified probability

1 AA, AA
I∑
i=1

p4
i

𝜎4

2 AA, AB 4
I∑
i=1

p3
i

I∑
j = 1

j ≠ i

p j 4𝜎3 − 4𝜎4

3 AA, BB
I∑
i=1

p2
i

I∑
j = 1

j ≠ i

p2
j

𝜎
2
2
− 𝜎4

4 AA, BC 2
I∑
i=1

p2
i

I∑
j = 1

j ≠ i

p j

I∑
k = 1

k ≠ i, j

pk 2𝜎2 − 4𝜎3 − 2𝜎2
2
+ 4𝜎4

5 AB, AB 2
I∑
i=1

p2
i

I∑
j = 1

j ≠ i

p2
j

2𝜎2
2 − 2𝜎4

6 AB, AC 4
I∑
i=1

p2
i

I∑
j = 1

j ≠ i

p j

I∑
k = 1

k ≠ i, j

pk 4𝜎2 − 8𝜎3 − 4𝜎2
2
+ 8𝜎4

7 AB, CD
I∑
i=1

pi

I∑
j = 1

j ≠ i

p j

I∑
k = 1

k ≠ i, j

pk

I∑
𝓁 = 1

𝓁 ≠ i, j, k

p𝓁 1− 6𝜎2 + 8𝜎3 + 3𝜎2
2
− 6𝜎4

Table 3: Probability distribution of𝑤

1
(p), the allele-sharing dissimilarity𝑤

1
for a pair of individuals sampled at random from a

population with allele-frequency vector p. The table is obtained by summing entries in Table 2.

Value of the dissimilarity (d) ℙ
[
𝒘

1
(p) = d

]

0 2𝜎2
2
− 𝜎4

1

2
4𝜎2 − 4𝜎3 − 4𝜎2

2
+ 4𝜎4

1 1− 4𝜎2 + 4𝜎3 + 2𝜎2
2
− 3𝜎4
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Figure 1: Mean and variance of the within-population dissimilarities𝑤

1
and𝑤

2
for I = 2 alleles as functions of the frequency p1 of one

of the alleles. (A) Mean, Eqs. (4) and (10). (B) Variance, Eqs. (8) and (14).

Using the probabilities in Table 3, the result is

𝔼[𝑤

1
(p)] = 1− 2𝜎2 + 2𝜎3 − 𝜎4. (3)

In the I = 2 case, using p2 = 1− p1 so that 𝜎t = pt
1
+ (1− p1)

t, Eq. (3) becomes:

𝔼[𝑤

1
(p)] = 2p1 − 4p2

1
+ 4p3

1
− 2p4

1
. (4)

Figure 1A plots Eq. (4) as a function of p1. In the figure, we can observe that the mean value of the dissimilarity

increases from a value of 0 at p1 = 0, when the population is monomorphic, to a peak of
3

8
at p1 = 1

2
. It then

decreases symmetrically to 0 at p1 = 1.

Var[w
1
].

To obtain the variance of the distribution of𝑤

1
(p), we first calculate

𝔼[𝑤

1
(p)2]=

∑
d∈{0, 12 ,1}

d2ℙ
[


𝑤

1
(p) = d

]

= 1− 3𝜎2 + 3𝜎3 + 𝜎
2
2
− 2𝜎4.

(5)

The variance can then be obtained from Eqs. (3) and (5) by Var[𝑤

1
(p)] = 𝔼[𝑤

1
(p)2]− 𝔼[𝑤

1
(p)]2:

Var[𝑤

1
(p)] = 𝜎2 − 𝜎3 − 3𝜎2

2
+ 8𝜎2𝜎3 − 4𝜎2𝜎4 − 4𝜎2

3
+ 4𝜎3𝜎4 − 𝜎

2
4
. (6)

For the I = 2 case, we once again use that p2 = 1− p1:

𝔼[𝑤

1
(p)2] = p1 − p2

1
(7)

Var[𝑤

1
(p)] = p1 − 5p2

1
+ 16p3

1
− 32p4

1
+ 40p5

1
− 32p6

1
+ 16p7

1
− 4p8

1
. (8)

Figure 1B plots Eq. (8) as a function of p1. Like the mean, the variance of the dissimilarity increases from 0 at

p1 = 0 to a peak at p1 = 1

2
, decreasing symmetrically to 0 at p1 = 1. The maximal variance is

7

64
.

3.2 Distribution of𝒘

2

We compute the distribution of random variable𝑤

2
. This computation uses the same probabilities for genotype

pairs as those used for𝑤

1
in Table 2.

ℙ
[


𝒘

2
= d

]
.

We compute the probability for each of the possible values of 𝑤

2
by summing probabilities in Table 2. The

resulting probabilities appear in Table 4.
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Table 4: Probability distribution of𝑤

2
(p), the allele-sharing dissimilarity𝑤

2
for a pair of individuals sampled at random from a

population with allele-frequency vector p. The table is obtained by summing entries in Table 2.

Value of the dissimilarity (d) ℙ
[
𝒘

2
(p) = d

]

0 𝜎4

1

2
4𝜎3 + 2𝜎2

2
− 6𝜎4

3

4
4𝜎2 − 8𝜎3 − 4𝜎2

2 + 8𝜎4

1 1− 4𝜎2 + 4𝜎3 + 2𝜎2
2
− 3𝜎4

𝔼[𝒘

2
].

Summing across the possible values for the dissimilarity,

𝔼[𝑤

2
(p)] =

∑
d∈{0, 12 , 34 ,1}

dℙ
[


𝑤

2
(p) = d

]
,

yielding the result

𝔼[𝑤

2
(p)] = 1− 𝜎2. (9)

Note that Eq. (9) gives the “expected heterozygosity,” the probability that two draws from the allele-frequency

distribution produce distinct alleles.

For the I = 2 case, we have 𝜎2 = p2
1
+ (1− p1)

2 = 1− 2p1 + 2p2
1
, so Eq. (9) simplifies to

𝔼[𝑤

2
(p)] = 2p1 − 2p2

1
= 2p1(1− p1). (10)

Figure 1A plots Eq. (10) as a function of p1. The mean value of the dissimilarity is symmetric around a peak at

(
1

2
,
1

2
), equaling 0 at p1 = 0 and p1 = 1.

Var[w
2
].

The variance of the distribution of𝑤

2
is obtained using Var[𝑤

2
] = 𝔼[𝑤

2
(p)2]− 𝔼[𝑤

2
(p)]2. We first find

𝔼[𝑤

2
(p)2]=

∑
d∈{0, 12 , 34 ,1}

d2ℙ
[


𝑤

2
(p) = d

]

= 1− 7

4
𝜎2 +

1

2
𝜎3 +

1

4
𝜎
2
2
.

(11)

Therefore,

Var[𝑤

2
(p)] = 1

4
𝜎2 +

1

2
𝜎3 −

3

4
𝜎
2
2
. (12)

For the I = 2 case, we use p2 = 1− p1 to obtain

𝔼[𝑤

2
(p)2] = p1 − 2p3

1
+ p4

1
(13)

Var[𝑤

2
(p)] = p1 − 4p2

1
+ 6p3

1
− 3p4

1
. (14)

Figure 1B plots Eq. (14). The variance has peaks at (
3−

√
3

6
,
1

12
) and (

3+
√
3

6
,
1

12
), betweenwhich it has a localminimum

at (
1

2
,
1

16
). It equals 0 at p1 = 0 and p1 = 1.

3.3 Comparison of𝒘

1
and𝒘

2

Comparing 𝔼[𝑤

1
] (Eq. (3)) and 𝔼[𝑤

2
] (Eq. (9)), we quickly observe that if pi ≠ 1 for all i, then

𝔼[𝑤

1
] < 𝔼[𝑤

2
]. (15)

The result follows by noting (1− pi)
2
> 0 for all i, so that

∑I

i=1 p
2
i
(2pi) <

∑I

i=1 p
2
i

(
1+ p2

i

)
and 2𝜎3 < 𝜎2 + 𝜎4, from

which we obtain Eq. (15). In fact, Eq. (15) follows from Table 1: for all possible genotype combinations,𝑤

1
≤ 𝑤

2
,
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Figure 2: Mean and variance of the within-population dissimilarities𝑤

1
and𝑤

2
for I = 3 alleles as functions of the frequencies p1 and

p2 of two of the alleles. (A) Mean of
𝑤

1
, Eq. (3). (B) Mean of𝑤

2
, Eq. (9). (C) 𝔼[𝑤

2
]− 𝔼[𝑤

1
]. (D) Variance of𝑤

1
, Eq. (6). (E) Variance of

𝑤

2
, Eq. (12). (F) Var[𝑤

2
]− Var[𝑤

1
].

and the inequality is strict in two of seven cases, at least one of which must have nonzero probability if pi ≠ 1

for all i.

For I = 2, Eq. (15) can be observed in Figure 1A, as it can be seen that the curve for 𝔼[𝑤

2
] exceeds that for

𝔼[𝑤

1
]. The largest excess occurs at p1 = p2 = 1

2
. Figure 2C plots the difference 𝔼[𝑤

2
]− 𝔼[𝑤

1
] for the case of

I = 3, and the maximal difference in the figure also occurs when alleles have the same frequency, (p1, p2, p3) =
( 1
3
,
1

3
,
1

3
).

For the variances, Figure 1B finds that for I = 2, Var[𝑤

1
] > Var[𝑤

2
] for intermediate p1, and that the two

variances are comparable for p1 near 0 or 1, with some p1 values producing Var[
𝑤

1
] < Var[𝑤

2
]. Figure 2F

illustrates a similar result for I = 3. For both I = 2 and I = 3, at intermediate allele frequencies, Var[𝑤

1
] >

Var[𝑤

2
]; at extreme allele frequencies, the two variances are comparable, sometimeswith Var[𝑤

1
] < Var[𝑤

2
].

4 Distribution ofb

We now examine allele-sharing dissimilarities between pairs of individuals from different populations. Let p

be the allele frequency vector for the population from which the first individual is sampled, and let q be the

corresponding vector for the population of the second individual; the special case of q = p follows Section 3. We

evaluate the properties of the random variablesb
1
andb

2
.

4.1 Distribution ofb

1

ℙ
[


b

1
= d

]
. We obtain the probability for each possible genotype combination for a pair of individuals from

different populations. For this computation, we use the polynomials in Eqs. (1) and (2). The resulting probabilities

appear in Table 5.

We sum across genotype combinations to obtain probabilities for b
1
to equal particular values. Table 6

provides these probabilities.
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T
a
b
le
5
:
P
ro
b
a
b
ili
ty
o
f
g
e
n
o
ty
p
e
co
m
b
in
a
ti
o
n
s
fo
r
p
a
ir
s
o
f
in
d
iv
id
u
a
ls
sa
m
p
le
d
fr
o
m
tw
o
p
o
p
u
la
ti
o
n
s.
Fo
r
e
a
ch

ca
se
,t
h
e
p
ro
b
a
b
ili
ty
is
w
ri
tt
e
n
a
s
a
su
m
,w
h
ic
h
is
th
e
n
si
m
p
lif
ie
d
u
si
n
g
Eq
s.
(1
)
a
n
d
(2
).

C
a
se

G
e
n
o
ty
p
e
s

P
ro
b
a
b
il
it
y

S
im
p
li
fi
e
d
p
ro
b
a
b
il
it
y

1
A
A
,A
A

I ∑ i=
1

p
2 i
q
2 i

𝜌
2
2

2
A
A
,A
B

2
I ∑ i=
1

p
2 i
q
i

I ∑ j
=
1

j
≠
i

q
j
+
2

I ∑ i=
1

p
iq
2 i

I ∑ j
=
1

j
≠
i

p
j

2𝜌
2
1
+
2𝜌

12
−
4
𝜌
2
2

3
A
A
,B
B

I ∑ i=
1

p
2 i

I ∑ j
=
1

j
≠
i

q
2 j

𝜎
2
𝜏
2
−
𝜌
2
2

4
A
A
,B
C

I ∑ i=
1

p
2 i

I ∑ j
=
1

j
≠
i

q
j

I ∑
k
=
1

k
≠
i,
j

q
k
+

I ∑ i=
1

q
2 i

I ∑ j
=
1

j
≠
i

p
j

I ∑
k
=
1

k
≠
i,
j

p
k

𝜎
2
+
𝜏
2
−
2𝜎

2
𝜏
2
−
2𝜌

2
1
−
2𝜌

12
+
4
𝜌
2
2

5
A
B
,A
B

2
I ∑ i=
1

p
iq
i

I ∑ j
=
1

j
≠
i

p
jq

j
2𝜌

2 11
−
2𝜌

2
2

6
A
B
,A
C

4
I ∑ i=
1

p
iq
i

I ∑ j
=
1

j
≠
i

p
j

I ∑
k
=
1

k
≠
i ,
j

q
k

4
𝜌
11
−
4
𝜌
2
1
−
4
𝜌
12
−
4
𝜌
2 11
+
8
𝜌
2
2

7
A
B
,C
D

I ∑ i=
1

p
i

I ∑ j
=
1

j
≠
i

p
j

I ∑
k
=
1

k
≠
i ,
j

q
k

I ∑
𝓁
=
1

𝓁
≠
i ,
j,
k

q
𝓁

1
−
𝜎
2
−
𝜏
2
+
𝜎
2
𝜏
2
−
4
𝜌
11
+
4
𝜌
2
1
+
4
𝜌
12
−
6
𝜌
2
2
+
2𝜌

2 11
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Table 6: Probability distribution ofb
1
(p,q), the allele-sharing dissimilarityb

1
for a pair of individuals sampled at random from two

populations with allele-frequency vectors p and q. The table is obtained by summing entries in Table 5.

Value of the dissimilarity (d) ℙ
[
b

1
(p,q) = d

]

0 2𝜌2
11
− 𝜌22

1

2
4𝜌11 − 2𝜌21 − 2𝜌12 − 4𝜌2

11
+ 4𝜌22

1 1− 4𝜌11 + 2𝜌21 + 2𝜌12 + 2𝜌2
11
− 3𝜌22

𝔼[b

1
].

As we did for the within-population dissimilarity 𝑤

1
(p), we compute the expected value of the distribution of

the between-population dissimilarityb
1
(p,q) as

𝔼[b
1
(p,q)] =

∑
d∈{0, 12 ,1}

dℙ
[


b
1
(p,q) = d

]
.

Using the values in Table 6, we obtain

𝔼[b
1
(p,q)] = 1− 2𝜌11 + 𝜌21 + 𝜌12 − 𝜌22. (16)

For the I = 2 case, with p2 = 1− p1 and q2 = 1− q1, Eq. (16) simplifies to

𝔼[b
1
(p,q)] = p1 + q1 − 4p1q1 + 2p2

1
q1 + 2p1q

2
1
− 2p2

1
q2
1
. (17)

Figure 3A plots Eq. (17). The figure has maxima of 1 at (p1, q1) = (1, 0) and (0,1), when the two populations have

the greatest difference in allele frequency, and equals 0 at (0,0) and (1,1). It has a saddle surface with a value of
3

8
at saddle point (p1, q1) = (

1

2
,
1

2
).

Figure 3: Mean and variance of the between-population dissimilaritiesb
1
andb

2
for I = 2 alleles as functions of the frequencies (p1, q1)

of one of the alleles. (A) Mean ofb
1
, Eq. (17). (B) Mean ofb

2
, Eq. (23). (C) 𝔼[b

2
]− 𝔼[b

1
]. (D) Variance ofb

1
, Eq. (21). (E) Variance ofb

2
,

Eq. (27). (F) Var[b
2
]− Var[b

1
].
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Var[b
1
]. We first compute

𝔼[b
1
(p,q)2]=

∑
d∈{0, 12 ,1}

d2ℙ
[


b
1
(p,q) = d

]

= 1− 3𝜌11 +
3

2
𝜌21 +

3

2
𝜌12 − 2𝜌22 + 𝜌

2
11
.

(18)

Using Var[b
1
(p,q)] = 𝔼[b

1
(p,q)2]− 𝔼[b

1
(p,q)]2, the variance is thus

Var[b
1
(p,q)] = 𝜌11 −

1

2
𝜌21 −

1

2
𝜌12 − 3𝜌2

11
+ 4𝜌11𝜌21 + 4𝜌11𝜌12 − 4𝜌11𝜌22 − 𝜌

2
21
− 𝜌

2
12
− 2𝜌12𝜌21

+ 2𝜌12𝜌22 + 2𝜌21𝜌22 − 𝜌
2
22
. (19)

For the I = 2 case, we have p1 = 1− p2 and q1 = 1− q2. Equations (18) and (19) simplify to

𝔼[b
1
(p,q)2] = 1

2
p1 +

1

2
q1 − 2p1q1 +

1

2
p2
1
+ 1

2
q2
1

(20)

Var[b
1
(p,q)] = 1

2
p1 +

1

2
q1 − 4p1q1 −

1

2
p2
1
− 1

2
q2
1
+ 8p2

1
q1 + 8p1q

2
1
− 4p3

1
q1 − 24p2

1
q2
1
− 4p1q

3
1

+ 20p3
1
q2
1
+ 20p2

1
q3
1
− 4p4

1
q2
1
− 24p3

1
q3
1
− 4p2

1
q4
1
+ 8p4

1
q3
1
+ 8p3

1
q4
1
− 4p4

1
q4
1
. (21)

Figure 3D shows that the variance has higher values away from the four corners (0,0), (1,0), (0,1), and (1,1) for

(p1, q1), equaling 0 in each of these corners.

4.2 Distribution ofb

2

ℙ
[


b

2
= d

]
. We use Table 5 to obtain the probabilities of particular values of b

2
. The resulting probabilities

appear in Table 7.

𝔼[b

2
]. Forb

2
, we substitute the values from Table 7 into

𝔼[b
2
(p,q)] =

∑
d∈{0, 12 , 34 ,1}

dℙ
[


b
2
(p,q) = d

]
.

We obtain

𝔼[b
2
(p,q)] = 1− 𝜌11. (22)

This quantity is the between-population analogue of expected heterozygosity, the probability that two random

draws, one from the allele-frequency distribution of a locus in one population and one from the corresponding

distribution in a second population, represent the same allele.

For the I = 2 case, Eq. (22) simplifies to

𝔼[b
2
(p,q)] = p1 + q1 − 2p1q1. (23)

Table 7: Probability distribution ofb
2
(p,q), the allele-sharing dissimilarityb

2
for a pair of individuals sampled at random from two

populations with allele-frequency vectors p and q. The table is obtained by summing entries in Table 5.

Value of the dissimilarity (d) ℙ
[
b

2
(p,q) = d

]

0 𝜌22

1

2
2𝜌21 + 2𝜌12 + 2𝜌2

11
− 6𝜌22

3

4
4𝜌11 − 4𝜌21 − 4𝜌12 − 4𝜌2

11
+ 8𝜌22

1 1− 4𝜌11 + 2𝜌21 + 2𝜌12 + 2𝜌2
11
− 3𝜌22
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Figure 3B plots Eq. (23). The figure has maxima of 1 at (p1, q1) = (1, 0) and (0,1) and equals 0 at (0,0) and (1,1). It

has a saddle surface with a value of 1

2
at saddle point (p1, q1) = ( 1

2
,
1

2
).

Var[b
2
].

We find that
𝔼[b

2
(p,q)2]=

∑
d∈{0, 12 ,1}

d2ℙ
[


b
2
(p,q) = d

]

= 1− 7

4
𝜌11 +

1

4
𝜌21 +

1

4
𝜌12 +

1

4
𝜌
2
11
.

(24)

Therefore, by Var[b
2
(p,q)] = 𝔼[b

2
(p,q)2]− 𝔼[b

2
(p,q)]2,

Var[b
2
(p,q)] = 1

4
𝜌11 +

1

4
𝜌21 +

1

4
𝜌12 −

3

4
𝜌
2
11
. (25)

For the I = 2 case, Eqs. (24) and (25) simplify to

𝔼[b
2
(p,q)2] = 1

2
p1 +

1

2
q1 +

1

2
p2
1
+ 1

2
q2
1
− p1q1 − p2

1
q1 − p1q

2
1
+ p2

1
q2
1

(26)

Var[b
2
(p,q)] = 1

2
p1 +

1

2
q1 − 3p1q1 −

1

2
p2
1
− 1

2
q2
1
+ 3p2

1
q1 + 3p1q

2
1
− 3p2

1
q2
1
. (27)

Figure 3E plots Eq. (27). The variance is greatest at (p1, q1) = ( 1
2
, 0), ( 1

2
, 1), (0, 1

2
), and (1, 1

2
) and equals 0 at (0,0),

(1,0), (0,1), and (1,1). It has a local minimum at (p1, q1) = ( 1
2
,
1

2
).

4.3 Comparison ofb

1
andb

2

The twomeasures for the between-population dissimilarity have the same expected value, 𝔼[b
1
] = 𝔼[b

2
], if for

all i, at least one of pi, 1− pi, qi, and 1− qi is zero. The condition for equality can be seen from 𝔼[b
2
]− 𝔼[b

1
] =

𝜌11 − 𝜌21 − 𝜌12 + 𝜌22 =
∑I

i=1 pi(1− pi)qi(1− qi). Excluding these equality cases, we have

𝔼[b
1
] < 𝔼[b

2
]. (28)

Note thatb
1
≤ b

2
for all possible genotype combinations in Table 1.

The inequality in Eq. (28) can be observed for the I = 2 case in Figure 3C, where the surface plot of 𝔼[b
2
]−

𝔼[b
1
] remains greater than or equal to 0, with equality only on the boundary. The largest difference occurs at

p1 = q1 = 1

2
.

Figure 3F compares the variances of b
1
and b

2
for the case of I = 2. Across most of the parameter space,

Var[b
1
] > Var[b

2
]. The excess is greatest at points (p1, q1) = (

1

3
,
2

3
) and (

2

3
,
1

3
).

5 The relative magnitudes of 𝔼[𝒘] and 𝔼[b]

We now examine the relative magnitudes of the expectations 𝔼[𝑤] and 𝔼[b]. We determine the condi-

tions under which the expectation of a within-population dissimilarity exceeds that of a between-population

dissimilarity.

5.1 Inequality relationship between 𝔼[𝒘

1
(p)] and 𝔼[b

1
(p,q)]

For arbitrary I, using Eqs. (3) and (16), the expression 𝔼[𝑤

1
(p)] > 𝔼[b

1
(p,q)] is equivalent to

−2𝜎2 + 2𝜎3 − 𝜎4 + 2𝜌11 − 𝜌21 − 𝜌12 + 𝜌22 > 0. (29)

This condition can be written with vector notation. Let p̃ =
(
p2
1
, p2

2
,… , p2

I

)
and q̃ =

(
q2
1
, q2

2
,… , q2

I

)
, treating p,

q, p̃, and q̃ as row vectors. We have the identities 𝜎2 = ppT , 𝜎3 = pp̃T = p̃pT , 𝜎4 = p̃p̃T , 𝜌11 = pqT , 𝜌12 = pq̃T ,

𝜌21 = p̃qT , and 𝜌22 = p̃q̃T .
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Equation (29) thus becomes

−2ppT + 2pp̃T − p̃p̃T + 2pqT − p̃qT − pq̃T + p̃q̃T > 0, (30)

which simplifies to
(
p p− p̃

)( (p− q)T

[(p− p̃)− (q− q̃)]T

)
< 0. (31)

For I = 2, we can further simplify this condition on p1 and q1, noting p2 = 1− p1 and q2 = 1− q1.

Theorem 1. Consider a locus with I = 2 distinct alleles. For individuals sampled from two populations with allele

frequency vectors p = (p1, 1− p1) and q = (q1, 1− q1), 𝔼[𝑤

1
(p)] > 𝔼[b

1
(p,q)] holds if and only if

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 < q1 < p1 if 0 < p1 ≤ a,

g(p1) < q1 < p1 if a ≤ p1 <
1

2
,

p1 < q1 < g(p1) if
1

2
< p1 ≤ 1− a,

p1 < q1 < 1 if 1− a ≤ p1 < 1,

(32)

where

g(x) = 2x3 − 4x2 + 4x − 1

2x(1− x)
,

and

a = 1

3

⎛
⎜⎜⎝

3

√
3
√
33− 13

22∕3
− 25∕3

3

√
3
√
33− 13

+ 2

⎞
⎟⎟⎠
≈ 0.3522

is the unique real root of 2x3 − 4x2 + 4x − 1.

Proof. We simplify Eq. (29) noting p2 = 1− p1 and q2 = 1− q1. To find the regionwhere𝔼[𝑤

1
(p)] > 𝔼[b

1
(p,q)],

we solve the polynomial inequality

p1 − q1 − 4p2
1
+ 4p1q1 + 4p3

1
− 2p2

1
q1 − 2p1q

2
1
− 2p4

1
+ 2p2

1
q2
1
> 0, (33)

with 0 ≤ p1 ≤ 1 and 0 ≤ q1 ≤ 1. Solving for q1 in terms of p1, we find that the expression in Eq. (33) is 0 at q1 = p1
and at q1 = g(p1), and for fixed p, it is positive when q lies between the two roots. The unique real root for

g(x) = x is at x = 1

2
, so that g(p1) < p1 for p1 <

1

2
and g(p1) > p1 for p1 >

1

2
.

For 0 ≤ p1 <
1

2
, g(p1) < 0 for p1 < a, so that for 0 ≤ p1 ≤ a, the region where the expression in Eq. (33) is

positive includes the full interval (0, p1) for q1. For a ≤ p1 ≤
1

2
, it is positive only in interval (g(p1), p1) for q1.

For
1

2
< p1 < 1, g(p1) = 1 for p1 = 1− a, with g(p1) < 1 for p1 in

[
1

2
, 1− a

)
and g(p1) > 1 for p1 in (1− a, 1].

Hence, for p1 in [
1

2
, 1− a], the expression in Eq. (33) is positive for q1 in (p1, g(p1)), and for p1 in [1− a, 1], it is

positive for q1 in (p1, 1). □

Figure 4A plots the region identified in Theorem 1. That a nonempty region exists indicates that sometimes,

allele frequencies for a biallelic locus produce a within-population dissimilarity that exceeds the between-

population dissimilarity. Note that because the choice of which allele is labeled 1 and which is labeled 2 is

arbitrary, (p1, q1) is included in the region if and only if (1− p1, 1− q1) is also included.

We can calculate the area of the region in the unit square representing the probability ℙ
(
𝔼[𝑤

1
] > 𝔼[b

1
]
)

under the assumption that p1 and q1 are independently and identically distributed with uniform-[0,1] distribu-

tion:
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Figure 4: Values of (p1, q1) for which 𝔼[𝑤] > 𝔼[b] in the case of I = 2 alleles, shaded in color. (A)1, Theorem 1. (B)2, Theorem 2.

ℙ
(
𝔼[𝑤

1
] > 𝔼[b

1
]
)

=
a

∫
p1=0

p1

∫
q1=0

1 dq1 dp1 +

1

2

∫
p1=a

p1

∫
q1=g( p1)

1 dq1 dp1 +
1−a

∫

p1= 1

2

g( p1)

∫
q1= p1

1 dq1 dp1 +
1

∫
p1=1−a

1

∫
q1= p1

1 dq1 dp1

= 2

⎡
⎢⎢⎢⎣

a

∫
p1=0

p1 dp1 +

1

2

∫
p1=a

−4p3
1
+ 6p2

1
− 4p1 + 1

2p1(1− p1)
dp1

⎤
⎥⎥⎥⎦

= −a2 + 2a− 1

2
− 2 log 2− log a− log(1− a)

≈ 0.17179. (34)

To evaluate ℙ
(
𝔼[𝑤

1
] > 𝔼[b

1
]
)
more generally, for each I from 2 to 20, we perform a simulation. In par-

ticular, for each I, we consider independently and identically distributed vectors p and q from the uniform

distribution over the simplex ΔI−1 (the Dirichlet-(1, 1,… , 1) distribution, where the vector of 1’s has length I).

We sample 100,000 replicate pairs (p,q), and for each pair we evaluate if 𝔼[𝑤

1
] > 𝔼[b

1
].

Figure 5A plots the resulting probability. We can observe that for I = 2, the simulated ℙ
(
𝔼[𝑤

1
] > 𝔼[b

1
]
)

accords with the analytical value in Eq. (34). The probability then decreases with increasing I.

5.2 Inequality relationship between 𝔼[𝒘

2
(p)] and 𝔼[b

2
(p,q)]

For arbitrary I, via Eqs. (9) and (22), the expression 𝔼[𝑤

2
(p)] > 𝔼[b

2
(p,q)] is equivalent to

𝜌11 − 𝜎2 > 0. (35)

With 𝜎2 = ppT and 𝜌11 = pqT , Eq. (35) thus becomes

p(p− q)T < 0. (36)

For I = 2, Eq. (36) can be simplified to a condition on p1 and q1, again noting p2 = 1− p1 and q2 = 1− q1.
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Figure 5: The probability ℙ
(
𝔼[𝑤] > 𝔼[b]

)
for simulated pairs of allele frequency vectors (p, q) with I distinct alleles. (A)1. (B)2.

Independent and identical uniform distributions are simulated for each I, 2 ≤ I ≤ 20, by drawing uniformly from the simplexΔI−1

(100,000 replicates).

Theorem 2. Consider a locus with I = 2 distinct alleles. For individuals sampled from two populations with allele

frequency vectors p = (p1, 1− p1) and q = (q1, 1− q1), 𝔼[𝑤

2
(p)] > 𝔼[b

2
(p,q)] holds if and only if

⎧
⎪⎨⎪⎩

0 < q1 < p1 if 0 < p1 <
1

2
,

p1 < q1 < 1 if
1

2
< p1 < 1.

(37)

Proof. With p2 = 1− p1 and q2 = 1− q1, Eq. (35) simplifies to

p1 − q1 − 2p2
1
+ 2p1q1 > 0.

Solving this inequality, we arrive at the result. □

Figure 4B plots the region identified in Theorem 2. This region describes the locations in which allele fre-

quencies for a biallelic locus produce a within-population dissimilarity that exceeds the between-population

dissimilarity. As is true for1, (p1, q1) is included in the region if and only if (1− p1, 1− q1) is also included.

The area of the region in the unit square, representing ℙ
(
𝔼[𝑤

2
] > 𝔼[b

2
]
)
under the assumption that p1

and q1 are independently and identically distributed with uniform-[0,1] distribution, is straightforward:

ℙ
(
𝔼[𝑤

2
] > 𝔼[b

2
]
)

=

1

2

∫
p1=0

p1

∫
q1=0

1 dq1 dp1 +
1

∫

p1= 1

2

1

∫
q1= p1

1 dq1 dp1

= 1

4
. (38)

We evaluateℙ
(
𝔼[𝑤

2
] > 𝔼[b

2
]
)
for each I from 2 to 20 by simulation. For each I, we consider independently

and identically distributed vectors p and q from the uniform distribution over the simplex ΔI−1 (the Dirichlet-

(1, 1,… , 1) distribution), sampling 100,000 replicate pairs (p,q), and evaluating the fraction of pairs for which

𝔼[𝑤

2
] > 𝔼[b

2
].
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Figure 5B plots the resulting probability, illustrating the agreement between the simulated

ℙ
(
𝔼[𝑤

2
] > 𝔼[b

2
]
)
and the analytical value in Eq. (38) for I = 2. The probability then decreases as I

increases.

5.3 Comparison of the 𝔼[𝒘]− 𝔼[b] inequalities for1 and2

The inequality 𝔼[𝑤] > 𝔼[b], where the mean dissimilarity between individuals from the same population

exceeds that between individuals from different populations, holds under different scenarios for 1 and 2.

Comparing Eqs. (34) and (38), we see that for the case of I = 2,𝔼[𝑤

1
] > 𝔼[b

1
] holds over a smaller fraction of the

parameter space than the corresponding inequality 𝔼[𝑤

2
] > 𝔼[b

2
] (Figure 4). Further, if the former inequality

holds, then the latter always holds as well.

In Figure 5, we also observe that the probabilities ℙ
(
𝔼[𝑤] > 𝔼[b]

)
are higher for2 than for1 in sim-

ulations with different numbers of alleles. Hence, use of 2 rather than 1 produces a greater probability that

the within-population genetic dissimilarity exceeds the between-population dissimilarity.

6 The relative magnitudes of 𝔼[𝑤] and 𝔼[b]

We have seen that both for 1 and for 2, it is possible for the expected dissimilarity 𝔼[𝑤] of random pairs

of individuals within a population to exceed the expected dissimilarity 𝔼[b] of random pairs between that

population and a second population. However, we will see that for a pair of populations, the mean of their two

within-population dissimilarities never exceeds their between-population dissimilarity.

For a pair of populations with allele frequency vectors p and q, let 𝔼[𝑤

1
(p,q)] = 1

2
(𝔼[𝑤

1
(p)]+ 𝔼[𝑤

1
(q)]),

and let 𝔼[𝑤

2
(p,q)] = 1

2
(𝔼[𝑤

2
(p)]+ 𝔼[𝑤

2
(q)]).

6.1 Inequality relationship between 𝔼[𝑤

1
](p,q) and 𝔼[b

1
(p,q)]

Theorem 3. 𝔼[𝑤

1
(p,q)] ≤ 𝔼[b

1
(p,q)], with equality if and only if p = q.

Proof. We use Eqs. (3) and (16) to rewrite 𝔼[𝑤

1
(p,q)]− 𝔼[b

1
(p,q)], obtaining

𝔼[𝑤

1
(p)]+ 𝔼[𝑤

1
(q)]

2
− 𝔼[b

1
(p,q)]

= −𝜎2 + 𝜎3 −
1

2
𝜎4 − 𝜏2 + 𝜏3 −

1

2
𝜏4 − 𝜌21 − 𝜌12 + 𝜌22 + 2𝜌11.

Rewriting in terms of the vectors p, q, p̃, and q̃, we have

𝔼[𝑤

1
(p)]+ 𝔼[𝑤

1
(q)]

2
− 𝔼[b

1
(p,q)]

= −(p− q)(p− q)T + (p− q)(p̃− q̃)T − 1

2
(p̃− q̃)(p̃− q̃)T

= − 1

2
‖p− q‖2 − 1

2
‖(p− q)− (p̃− q̃)‖2

≤ 0.

Equality is reached in the last step if and only if p = q. □
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6.2 Inequality relationship between 𝔼[𝑤

2
(p,q)] and 𝔼[b

2
(p,q)]

Theorem 4. 𝔼[𝑤

2
(p,q)] ≤ 𝔼[b

2
(p,q)], with equality if and only if p = q.

Proof. We rewrite 𝔼[𝑤

2
(p,q)]− 𝔼[b

2
(p,q)] using Eqs. (9) and (22):

𝔼[𝑤

2
(p)]+ 𝔼[𝑤

2
(q)]

2
− 𝔼[b

2
(p,q)]

= −𝜎2

2
− 𝜏2

2
+ 𝜌11.

In terms of the vectors p and q, we have

𝔼[𝑤

2
(p)]+ 𝔼[𝑤

2
(q)]

2
− 𝔼[b

2
(p,q)]

= − 1

2
ppT − 1

2
qqT + pqT

= − 1

2
‖p− q‖2

≤ 0,

with equality if and only if p = q. □

6.3 Comparison of the 𝔼[𝑤]− 𝔼[b] inequalities for1 and2

The inequality𝔼[𝑤(p,q)] ≤ 𝔼[b(p,q)], with equality if and only ifp = q, holds for both1 and2. Comparing

the proofs of Theorems 3 and 4, we see that

𝔼[𝑤

1
(p,q)]− 𝔼[b

1
(p,q)] = 𝔼[𝑤

2
(p,q)]− 𝔼[b

2
(p,q)]− 1

2
‖(p− q)− (p̃− q̃)‖2. (39)

The extent to which 𝔼[𝑤

1
(p,q)] < 𝔼[b

1
(p,q)] for p ≠ q, or 𝔼[𝑤

1
(p,q)]− 𝔼[b

1
(p,q)], has a greater absolute

value than the corresponding extent to which 𝔼[𝑤

2
(p,q)] < 𝔼[b

2
(p,q)] for p ≠ q, or 𝔼[𝑤

2
(p,q)]− 𝔼[b

2
(p,q)].

7 Data analysis

7.1 Data

Our theoretical analysis predicts features of dissimilarities 1 and 2 in within-population and between-

population computations. To compare to empirical observations, we examine multiallelic microsatellite data

from the Human Genome Diversity Project (HGDP-CEPH panel). We consider the 1048 individuals and 783

microsatellite loci from Rosenberg et al. (2005), employing the H1048 subset of the HGDP-CEPH panel (Rosen-

berg 2006). We follow previous uses of the HGDP-CEPH panel in considering 53 populations and 7 geographic

regions. We focus on 30 populations for which the number of sampled individuals is greater than 15. Across

these 30 populations, the total number of individuals considered is 813.

7.2 Theoretical computations

For our theoretical calculations, given a population in the data set and a locus, we compute allele frequencies.

We then apply our theoretical formulas to the allele frequency vectors. Note that if a locus is missing genotypes
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in an individual, then we omit that individual from the calculation of population allele frequencies at the locus,

so that we maintain the property that allele frequencies at a locus in a population sum to 1.

7.3 Empirical computations

For empirical calculations, we consider the actual diploid individuals in the HGDP-CEPH data, for within-

population computations comparing all pairs of individuals within a population. For between-population com-

putations, we compare all pairs of individuals, one each from two populations. Pairwise dissimilarities between

diploid genotypes are obtained according to Table 1.We computewithin-population andbetween-population dis-

similarities as the means across relevant pairs, and we compute variances of dissimilarity distributions across

pairs of individuals.

For this analysis, we omit individuals with missing data prior to computation of empirical ASD values. In

between-population comparisons, all allelic types present in one but not the other population are assigned a

frequency of 0 in the population in which they are absent.

We perform the theoretical and empirical calculations for all 783 loci.

7.4 Results of data analysis

Figure 6 compares empirical and theoretical means and variances of within-population dissimilarities across

pairs of individuals, considering 100 randomly sampled loci in 30 populations. Figure 6A compares the empirical

value of 𝔼[𝑤

1
] computed by averaging𝑤

1
values for all pairs of sampled individuals with the theoretical value

predicted from the allele frequencies and Eq. (3). The theoretical calculation generally predicts the empirical

dissimilarity, with most points clustering along the diagonal (r = 0.962). In Figure 6B, a similar plot for 𝔼[𝑤

2
]

using Eq. (9) for the theoretical computation produces closer agreement between the empirical and theoretical

values (r = 0.999).

Figure 6C and D compare empirical and theoretical variances across pairs of individuals for within-

population dissimilarities, using Eqs. (6) and (12) for the theoretical computation. The theoretical variance pre-

dicts the empirical variance, but the agreement is not as close as for the mean (r = 0.676 for Var[𝑤

1
], r = 0.732

for Var[𝑤

2
]).

Figure 7 plots analogous comparisons for between-population dissimilarities, considering a subset of loci

from Figure 6. In Figure 7A, we see a close relationship between empirical 𝔼[b
1
] and theoretical 𝔼[b

1
] similar

to the relationship observed in Figure 6A (r = 0.943). As was seen in Figure 6B, in Figure 7B, we see a stronger

relationship between the empirical value of 𝔼[b
2
] and the theoretical value (r = 1.000).

Figure 7C and D consider relationships between empirical and theoretical between-population variances

for1 and2. As was observed in Figure 6C and D, empirical and theoretical variance are correlated (r = 0.676

for Var[b
1
], r = 0.731 for Var[b

2
]), but the agreement for variances is not as close as for the mean.

Figure 8 empirically examines the inequalities in Theorems 3 and 4 stating that when computed from

allele frequencies, the mean of the within-population dissimilarities for two populations is always less than

the dissimilarity between them. It shows all population pairs from Figures 6 and 7 with a single random locus.

In Figure 8A, we find that the theoretical values of 𝔼[b
1
] and 𝔼[𝑤

1
], computed from allele frequen-

cies alone, follow the predicted inequality, with 𝔼[b
1
] > 𝔼[𝑤

1
]. However, the theorem does not necessarily

apply to dissimilarities computed from actual diploid individuals, and indeed, some exceptions are observed

in which the empirical 𝔼[b
1
] is smaller than 𝔼[𝑤

1
] (Figure 8C). Similar results hold for 𝔼[b

2
] and 𝔼[𝑤

2
] in

Figure 8B and D.

Figure 9 tabulates the fraction of loci for which the empirical within-population dissimilarity of a popula-

tion (denoted Population 1) exceeds the population’s empirical between-population dissimilarity with a second

population (Population 2), or 𝔼[𝑤] > 𝔼[b]. The populations are arranged geographically, following a general

decrease in within-population genetic diversity with migration distance from Africa, as measured by expected
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heterozygosity 1− 𝜎2 (Prugnolle et al. 2005; Ramachandran et al. 2005). In Figure 9A, for 1, if Population 1 is

a population with relatively low within-population heterozygosity, such as a Native American population, then

its within-population dissimilarity rarely exceeds its between-population dissimilarity with a second population

(rightmost columns). The fraction of loci for which 𝔼[𝑤] > 𝔼[b] is greatest for intermediate-heterozygosity

South Asian populations (central columns). If Population 2 is a high-heterozygosity African population, then

for all non-African choices of Population 1, the within-population dissimilarity of Population 1 rarely exceeds

the between-population dissimilarity with an African Population 2 (bottom rows). Similar patterns are seen in

Figure 9B for2, with the additional observation that the within-population dissimilarity of Population 1 often

exceeds the between-population dissimilaritywhen low-heterozygosity Native American populations are placed

in the role of Population 2 (top rows).

Figure 6: Empirical and theoretical mean and variance of within-population allele-sharing dissimilarities. Each panel considers 100

randomly sampled loci (among 783) in 30 populations with sample size greater than 15 (100 × 30 = 3000 data points in each panel).

(A) 𝔼[𝑤

1
]. (B) 𝔼[𝑤

2
]. (C) Var[𝑤

1
]. (D) Var[𝑤

2
]. Empirical values rely on dissimilarity calculations according to Table 1 from pairs of

diploid individuals, and theoretical values are calculated from allele frequencies according to Eqs. (3), (6), (9) and (12).
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Figure 7: Empirical and theoretical mean and variance of between-population allele-sharing dissimilarities. Each panel considers 10

randomly sampled loci in pairs among the 30 populations with sample size greater than 15 (10 ×
(
30

2

)
= 4350 data points in each panel).

The 10 loci are taken from among those used in Figure 6. (A) 𝔼[b
1
]. (B) 𝔼[b

2
]. (C) Var[b

1
]. (D) Var[b

2
]. Empirical values rely on

dissimilarity calculations according to Table 1 from pairs of diploid individuals, and theoretical values are calculated from allele

frequencies according to Eqs. (16), (19), (22) and (25).



20 — X. Liu et al.: Allele-sharing dissimilarities

Figure 8: Empirical and theoretical 𝔼[b] and 𝔼[𝑤]. Each panel considers a random locus, D1S1677, in 435 pairs of populations with

sample size greater than 15. The locus is among those used in Figures 6 and 7. The upper left triangle is the region in which the

between-population dissimilarity of two populations exceeds the mean of the within-population dissimilarities of the two populations,

𝔼[b] > 𝔼[𝑤], as proven for theoretical disimilarities (Theorems 3 and 4). The two ends of a horizontal gray line indicate the 𝔼[𝑤]

values for two populations whose mean within-population dissimilarity is plotted at the midpoint of the line. (A) Theoretical values of1.

(B) Theoretical values of2. (C) Empirical values of1. (D) Empirical values of2.
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Figure 9: Fraction of loci for which 𝔼[b] < 𝔼[𝑤]. Each panel considers all 783 loci in pairs among the 30 populations with sample size

greater than 15. Each cell denotes a pair of populations, with Population 1 considered for the within-population dissimilarity.

Geographical regions are separated by bold black lines. (A)1. (B)2.

8 Discussion

Allele-sharing statistics are often used to quantify genetic dissimilaritywithin and between populations. Because

they typically share a larger number of recent ancestors, individuals from the same population might be pre-

dicted to possess a lower genetic dissimilarity than those from different populations. We have mathematically

explored the circumstances under which this prediction fails, when the genetic dissimilarity within a popu-

lation exceeds the genetic dissimilarity between two populations. The analysis characterizes the properties of

allele frequency vectors that give rise to this counterintuitive scenario, illustrating its occurrence in human

population-genetic data.

When does within-population dissimilarity for a population exceed between-population dissimilarity with

a second population? The conditions that permit this inequality in the case of I = 2 alleles are instructive (The-

orems 1 and 2 and Figure 4). In this case, two populations have unbalanced allele frequencies, with Population

2 more unbalanced than Population 1, but the two populations are similar in their frequencies. In Population

1, dissimilarity is generated from comparisons of homozygotes for one allele and homozygotes for the other

allele. However, because Population 2 has allele frequencies that are more unbalanced than those of Population

1, fewer comparisons of distinct homozygotes occur in the between-population comparison. This phenomenon

results in a within-population dissimilarity in Population 1 that exceeds the between-population dissimilarity.

Beyond I = 2, such an excess is observed in empirical calculations with I ≥ 2 alleles (Figure 9), as well as in

simulations, though with decreasing probability as I increases (Figure 5).

Although a population can possess greater within-population dissimilarity than its between-population dis-

similarity to a second population, we find that for arbitrary numbers of alleles I, it is not possible for both

populations in a pair to possess greater within-population dissimilarity than the between-population dissimilar-

ity (Theorems 3 and 4). In data, “theoretical” dissimilarities obtained by treating allele frequencies in the data as

parametric frequencies of two populations follow this inequality strictly, with greater between-population dis-

similarity than at least one of the two within-population dissimilarities (Figure 8A and B). Similarly, the mean

of the two within-population dissimilarities is strictly less than the between-population dissimilarity in theoret-

ical calculations (Figure 8A and B); while “empirical” dissimilarities calculated from individual genotypes can

violate the inequality, we find that these violations are generally mild (Figure 8C and D).

The results can contribute to understanding unexpected phenomena involving allele-sharing dissimilar-

ities in human populations. We have seen that within-population dissimilarities in Population 1 sometimes
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exceed between-population dissimilarities, often in comparisons that involve a lower-diversity Population 2 and

a higher-diversity Population 1 (Figure 9); in essence, a high-diversity population can possess enough variation

that its inter-individual dissimilarity can exceed the dissimilarity between populations. Our theoretical calcula-

tions provide a basis for this scenario, and in fact, we saw for I = 2 that it is not unlikely in certain parts of the

allele frequency space (Figure 4).

Our theoretical analysis deepens a line of inquiry onmathematical effects on allele-sharing. For each of two

dissimilarity functions, we have obtained probability distributions of within- and between-population allele-

sharing dissimilarities across pairs of individuals as functions of allele frequencies (Tables 3, 4, 6, 7), focusing on

themean and variance of the dissimilarity statistics (Eqs. (3), (6), (9), (12), (16), (19), (22) and (25)). The expressions

for these quantities, and inequalities concerning their relationships (Theorems 1–4), augment previous efforts

on the mathematics of allele-sharing dissimilarities in terms of allele frequencies (Chakraborty and Jin 1993; Tal

2013).

The two variants of allele-sharing dissimilarity that we studied,1 and2, share many features. For I = 2

and I = 3 alleles, the expected values of 𝑤

1
and 𝑤

2
are maximal when all alleles have the same frequency

(Figures 1A and 2A, B). Trends in expectations of b
1
and b

2
at I = 2 are also similar (Figure 3A and B), as are

the regions in which 𝔼[𝑤] > 𝔼[b] for I = 2 (Figure 4), and the simulated probabilitiesℙ
(
𝔼[𝑤] > 𝔼[b]

)
for

I ≥ 2 (Figure 5).

However, some consistent differences between the two dissimilarities are also observed. 2 ≥ 1 for all

genotypes (Table 1), and hence, 𝔼[𝑤

2
] ≥ 𝔼[𝑤

1
] (Figures 1 and 2C and Eq. (15)) and 𝔼[b

2
] ≥ 𝔼[b

1
] (Figure 3C

and Eq. (28)). Although both dissimilarities have 𝔼[𝑤] ≤ 𝔼[Db] (Theorems 3 and 4), 𝔼[𝑤

1
]− 𝔼[b

1
] ≤ 𝔼[𝑤

2
]−

𝔼[b
2
] (Eq. (39)), so that the extent to which 𝔼[𝑤] lies below 𝔼[b] has greater magnitude for1.

The within-population variance across pairs of individuals is not uniformly higher for either dissimilarity

(Figures 1B and 2F); at I = 2, it has different shapes, as Var[𝑤

2
] has two maxima, whereas Var[𝑤

1
] has only

one (Figure 1B). 2 has larger regions in which 𝔼[𝑤] > 𝔼[b] for I = 2 (Figure 4) and for I ≥ 2 (Figure 5).

In the empirical analysis, 2 has a closer match between empirical and theoretical mean values of the dis-

similarity (Figures 6B and 7B). Its patterns in the fraction of loci for which 𝔼[𝑤] > 𝔼[b] align more closely

with the heterozygosity values of the populations, with the probability of 𝔼[𝑤] > 𝔼[b] larger when Popu-

lation 1 is a higher-diversity population and Population 2 is a lower-diversity population (Figure 9B). Notably,

expressions for 𝔼[2] are closely tied to heterozygosity (Eq. (9)) and its between-population analogue (Eq. (22)),

potentially explaining the tighter connection of heterozygosity to its associated observations. Thus, the lesser-

used 2 – which, unlike 1, allows the dissimilarity of an individual and itself to be nonzero (Table 1) – does

possess a more easily interpreted pattern in the probability that 𝔼[𝑤] > 𝔼[b].

Does our analysis suggest a preference for 1 over 2, or vice versa? To summarize, 1 has been used

more frequently than 2, and it also has the property that the dissimilarity of an individual and itself is zero.

The less frequently used 2 does not have this property, but it produces simpler expressions for its within-

population and between-population expectations, with more natural interpretations of those expectations and

their consequences. We conclude that although1 has a number of desirable properties,2 does as well, and it

perhaps merits attention commensurate with that given to1.

This work has several possible extensions. We have focused on the first and second moments of allele-

sharing dissimilarities across pairs of individuals; the full distributions (Tables 3, 4, 6, 7) could also be further

investigated. We examined I = 2 in the greatest detail, but special cases that fix a maximal value of I could also

be considered. We chose the two most frequently used ASD variants, 1 and 2, but a variant designed for

genotypes obtained by observation of band patterns (Chakraborty and Jin 1993) could also be studied.

We have only considered allele-sharing dissimilarity between population pairs at a single locus, and it will

be of interest to investigate dissimilarities that average across many loci. Our theoretical calculations focus

on dissimilarities between two random individuals chosen from specified allele-frequency distributions at a

locus. Although such distributions have nonzero probability only on the discrete values {0, 1
2
, 1} for 1 and

{0, 1
2
,
3

4
, 1} for 2, when an allele-sharing dissimilarity is calculated as an average across L loci, the 2L+ 1

values {0, 1

2L
,
1

L
,
3

2L
,… ,

L−1
L
,
2L−1
2L

, 1} become possible values for 1 (all multiples of
1

2L
in [0,1]), and the 4L
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values {0, 1

2L
,
3

4L
,… ,

4L−3
4L

,
2L−1
2L

,
4L−1
4L

, 1} for 2 (all multiples of
1

4L
in [0,1], other than 1

4L
itself). Thus, the mean

allele-sharing dissimilarity of a random pair of individuals across many loci – computed either theoretically

or empirically – has many possible numerical values, potentially giving rise to continuous approximations for

associated probability distributions.

We note significant caveats in interpreting our empirical analysis in relation to our theoretical compu-

tations. The empirical computations make use of all pairs of individuals drawn from specified samples; each

sampled individual appears in many pairs, so that the empirical analysis does not follow the assumption of

the theoretical analysis that pairs represent independent draws from allele frequency distributions. A second

difference of the empirical and theoretical analyses is that the theoretical analysis assumes that pairs of alle-

leswithin an individual are independent draws from the allele-frequency distribution, whereas inbreeding can

induce dependence of these alleles empirically. Such deviations from the assumptions of the theoretical analysis

in conducting the empirical analysis could be explored in simulations that do and do not permit inbreeding and

reuse of pairs of individuals and in empirical samples large enough to avoid such reuses.

Allele-sharing dissimilarities have long been used in population genetics. The mathematical relationships

we have obtained assist both in predicting their properties in relation to allele frequencies and in understanding

empirical aspects of their values. When counterintuitive phenomena are obtained with such dissimilarities –

such as a greater within-population dissimilarity than the between-population dissimilarity – themathematical

results can potentially provide insight into the unexpected observations.
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