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A simple derivation of the mean of the Sackin index of tree balance under the uniform model on
rooted binary labeled trees
An asymptotic large-𝑛 expectation under the uniform model,
E𝑈 [𝑆𝑛] ∼

√

𝜋𝑛3∕2, was studied by Blum et al. [16] (see also the table on

𝜌
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In recent years, Mathematical Biosciences has reported several studies
of the properties of tree balance statistics, measures that report the
extent to which nodes of an evolutionary tree are ‘‘balanced’’ in having
subtrees with similar numbers of descendants [1–3]. For trees with a
fixed number of leaves, these and related studies [4–6] have examined
features such as the minima and maxima of two of the earliest and
most popular tree balance statistics—the Sackin [7] and Colless [8]
indices—and the means and variances of these statistics under two of
the most popular probability models for evolutionary tree shapes, the
Yule–Harding and uniform models.

The Sackin index sums path lengths from leaves to the root, con-
sidering all leaves [9, p. 53]. For binary trees, the Colless index sums
the absolute difference between the numbers of leaves in the two sub-
trees descended from internal nodes, considering all internal nodes [9,
p. 53]. In the Yule–Harding model for 𝑛 taxa, beginning with a single
species and proceeding iteratively, species are all equally likely to be
the next to speciate, inducing a particular probability distribution on
rooted binary labeled trees with 𝑛 leaves [9, p. 43]. In the uniform

odel, all rooted binary labeled trees with 𝑛 leaves are equiprobable [9,
. 50].

Mathematical properties of the Sackin and Colless indices under
he Yule–Harding and uniform models have long been of interest,
ith an initial derivation of the mean of the Colless index under

he Yule–Harding model [10] and several subsequent studies [11–16]
receding the recent wave of investigations. Hence, in returning to
hese indices, with all the attention that had previously been focused
n them, Mir et al. [1] were evidently surprised to discover that one
f their formulas—a fundamental result that solves one of the most
atural problems that might be posed concerning a tree balance index—
ppeared to be novel. They wrote ‘‘we obtain an exact formula for the
xpected value of the Sackin index under the uniform model, a result that
eems to be new in the literature.’’

Formally, for 𝑛 ≥ 2, consider the set RB(𝑋) of rooted binary labeled
rees whose leaves are bijectively labeled by 𝑛 distinct labels in a
et 𝑋 [9, p. 12]. RB(𝑋) contains rb(𝑛) = (2𝑛 − 3)!! = (2𝑛 − 3)(2𝑛 −
5)⋯ (5)(3)(1) = (2𝑛 − 2)!∕[2𝑛−1(𝑛 − 1)!] trees [9, eq. 2.2].

efinition 1. Consider a rooted binary labeled tree 𝑇 ∈ RB(𝑋). For
ach leaf 𝑥 ∈ 𝑋, let 𝓁(𝑥) give the length in edges of the directed path
rom the root 𝜌 of 𝑇 to leaf 𝑥. The Sackin index for 𝑇 is

𝑇 =
∑

𝑥∈𝑋
𝓁(𝑥).

efinition 2. For 𝑛 ≥ 2, given a probability distribution 𝜃 on the set
f rooted binary labeled trees RB(𝑋) with |𝑋| = 𝑛, let 𝑆𝑛 denote the
andom variable obtained by randomly choosing 𝑇 ∈ RB(𝑋) according
o 𝜃 and computing the value 𝑆𝑇 .
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p. 14 of [17], in which the uniform model corresponds to the 𝛽 = −1.5
case of the more general beta-splitting model, and the table entry
̄(−1.5) =

√

𝜋𝑛1∕2 gives the asymptotic mean path length to the root
for a node chosen at random in a tree under the uniform model).

The exact E𝑈 [𝑆𝑛] was only recently obtained by Mir et al. [1].

heorem 3 ([1, Theorem 22]). The expectation of the Sackin index under
he uniform model on rooted binary labeled trees of 𝑛 leaves is

E𝑈 [𝑆𝑛] = 𝑛
[

(2𝑛 − 2)!!
(2𝑛 − 3)!!

− 1
]

=
𝑛! (𝑛 − 1)!
(2𝑛 − 2)!

[

22𝑛−2 −
(

2𝑛 − 2
𝑛 − 1

)]

.

The proof by Mir et al. [1] of Theorem 3 begins with enumerations
f classes of trees defined by the path length to the root from a leaf
ode with a specified label. The enumerations give rise to a sum that
s solved after much algebra with the help of three sums evaluated by
utomatic summation algorithms.

The purpose of this note is to produce a new, simple proof of
heorem 3 characterizing the expected value of the Sackin index under
he uniform model. To provide the new proof, we use the fact that
axa are exchangeable in the uniform model [9, p. 52], so that the
robability under the model of a rooted binary labeled tree 𝑇 in RB(𝑋)
an be computed from the shape of 𝑇 , disregarding the labels.

efinition 4. A probability distribution 𝜃 on RB(𝑋) satisfies the
xchangeability property if for each rooted binary labeled tree 𝑇 in
B(𝑋) and each permutation 𝜎 of its leaf labels, P𝜃(𝑇 ) = P𝜃(𝜎(𝑇 )).

The exchangeability of the uniform model enables use of a result
rom Than & Rosenberg [18]. A subset 𝐴 of the label set 𝑋 is said to
epresent a cluster in a labeled tree 𝑇 if for some node 𝑣 of 𝑇 , the leaves
escended from 𝑣 are bijectively labeled by the elements of 𝐴 [9, p. 18].

roposition 5 ([18, Lemma 6], [9, Proposition 3.5]). If a probability
istribution 𝜃 on RB(𝑋) satisfies the exchangeability property, then

𝜃[𝑆𝑛] =
𝑛−1
∑

𝑘=1

(

𝑛
𝑘

)

𝑘𝑝𝑛(𝑘),

here 𝑛 = |𝑋|, and 𝑝𝑛(𝑘) is the probability that a given subset 𝐴 ⊆ 𝑋 with
𝐴| = 𝑘, 1 ≤ 𝑘 ≤ 𝑛, is a cluster of a tree of 𝑛 leaves sampled from RB(𝑋)
according to 𝜃.

This result is obtained by noting that for 𝑇 ∈ RB(𝑋), the sum
𝑆𝑇 =

∑

𝑥∈𝑋 𝓁(𝑥) that computes the Sackin index, proceeding over leaves
article under the CC BY license

https://doi.org/10.1016/j.mbs.2021.108688
http://www.elsevier.com/locate/mbs
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2021.108688&domain=pdf
https://doi.org/10.1016/j.mbs.2021.108688
http://creativecommons.org/licenses/by/4.0/


M.C. King and N.A. Rosenberg Mathematical Biosciences 342 (2021) 108688

l
𝑇

f

l
n
w
r
t
l
h

P
1

𝑝

P

E

i

E

o

f

C
o

E

d

w
2
P
2

r
o
c
r
d
a
t
s
r
t

e
𝑝
1
i
i

of 𝑇 , can be converted to a sum over edges of 𝑇 . In particular, for each
eaf 𝑣 of 𝑇 and each edge 𝑒 ancestral to 𝑣, 𝑣 appears in the cluster of

immediately descended from 𝑒. Each edge of 𝑇 contributes a count
to 𝑆𝑇 equal to the size of the subtree rooted below the edge. Hence,
∑

𝑥∈𝑋 𝓁(𝑥) =
∑𝑛−1

𝑘=1 𝑘𝐿𝑘 where 𝐿𝑘 counts the number of clusters in 𝑇
with size 𝑘 leaves. Taking the expectation of 𝐿𝑘 over all trees sampled
rom RB(𝑋) and using E𝜃[𝐿𝑘] =

(𝑛
𝑘

)

𝑝𝑛(𝑘), the proposition follows.
The probabilities 𝑝𝑛(1) and 𝑝𝑛(𝑛) satisfy 𝑝𝑛(1) = 𝑝𝑛(𝑛) = 1, as each

leaf (|𝐴| = 1) is a cluster of each tree in RB(𝑋), as is the full set of
eaves (|𝐴| = 𝑛). For 2 ≤ 𝑘 ≤ 𝑛 − 1, 0 < 𝑝𝑛(𝑘) < 1. In particular, the
umber of rooted binary labeled trees for the 𝑘 leaves in a cluster 𝐴
ith |𝐴| = 𝑘 is rb(𝑘); treating the cluster 𝐴 as a node, the number of

ooted binary labeled trees that contain the remaining 𝑛− 𝑘 leaves and
he cluster 𝐴 is rb(𝑛 − 𝑘 + 1). As each rooted binary labeled tree of 𝑛
eaves has probability 1∕ rb(𝑛) under the uniform model, we therefore
ave the following result.

roposition 6 ([18, eq. 10], [9, eq. 3.4]). Under the uniform model, for
≤ 𝑘 ≤ 𝑛,

𝑛(𝑘) =
rb(𝑘) rb(𝑛 − 𝑘 + 1)

rb(𝑛)
=

(𝑛−1
𝑘−1

)

(2𝑛−2
2𝑘−2

)

.

We now provide the proof of Theorem 3.

roof of Theorem 3. By Propositions 5 and 6,

𝑈 [𝑆𝑛] =
𝑛−1
∑

𝑘=1

(

𝑛
𝑘

)

𝑘𝑝𝑛(𝑘)

=
𝑛−1
∑

𝑘=1

(

𝑛
𝑘

)

𝑘

(𝑛−1
𝑘−1

)

(2𝑛−2
2𝑘−2

)

=
𝑛! (𝑛 − 1)!
(2𝑛 − 2)!

𝑛−2
∑

𝑘=0

(

2𝑘
𝑘

)(

2(𝑛 − 1) − 2𝑘
(𝑛 − 1) − 𝑘

)

. (1)

This expression is simplified by a ‘‘remarkable property of the ‘middle’
elements of Pascal’s triangle’’ [19, eq. 5.39], the identity

4𝑚 =
𝑚
∑

𝑗=0

(

2𝑗
𝑗

)(

2𝑚 − 2𝑗
𝑚 − 𝑗

)

. (2)

Adding a term for 𝑘 = 𝑛−1 to the sum in Eq. (1), we take 𝑚 = 𝑛−1
n the ‘‘remarkable’’ Eq. (2), obtaining

𝑈 [𝑆𝑛] =
𝑛! (𝑛 − 1)!
(2𝑛 − 2)!

[

4𝑛−1 −
(

2𝑛 − 2
𝑛 − 1

)(

0
0

)]

. □

The identity in Eq. (2) is quickly obtained by expressing coefficients
f the series expansion for 𝑓 (𝑧) = (1 − 4𝑧)−1 in two different ways.

Trivially, [𝑧𝑚]𝑓 (𝑧) = 4𝑚. We also have 𝑓 (𝑧) = 𝑔(𝑧)2 for 𝑔(𝑧) = (1−4𝑧)−1∕2.
Taking the series expansion of 𝑔(𝑧), we have [𝑧𝑗 ]𝑔(𝑧) =

(2𝑗
𝑗

)

, so that the
identity follows from [𝑧𝑚]𝑓 (𝑧) =

∑𝑚
𝑗=0

(

[𝑧𝑗 ]𝑔(𝑧)
) (

[𝑧𝑚−𝑗 ]𝑔(𝑧)
)

.
The asymptotic mean of the Sackin index can be computed by

application of Stirling’s formula to the expression in Theorem 3; we can
also quickly deduce the asymptotic mean by rewriting the expression
in Theorem 3 in terms of a Catalan number. Recalling that the Catalan
number 𝐶𝑛 satisfies 𝐶𝑛 = 1

𝑛+1

(2𝑛
𝑛

)

, we obtain the following alternate
ormula.

orollary 7. The expectation of the Sackin index under the uniform model
n rooted binary labeled trees of 𝑛 leaves is

𝑈 [𝑆𝑛] =
4𝑛−1
𝐶𝑛−1

− 𝑛.

We compute the asymptotic expression for the mean Sackin in-
ex from the asymptotic expression for the Catalan numbers, 𝐶𝑛 ∼

4𝑛∕(𝑛3∕2
√

𝜋).
2

Corollary 8. As 𝑛 → ∞, the expectation of the Sackin index under the
uniform model on rooted binary labeled trees of 𝑛 leaves satisfies

E𝑈 [𝑆𝑛] ∼
√

𝜋𝑛3∕2.

With the considerable attention devoted to the Sackin index in
nearly 50 years since its introduction, we can add to the surprise of
Mir et al. [1] in finding that their result on its expectation under the
uniform model has a simple proof.

Interestingly, two reviewers pointed us to additional proofs. Coro-
nado et al. [6] obtained a closed form for a class of recurrences that
includes a recurrence for the mean Sackin index. The Sackin index
satisfies a stochastic recurrence 𝑆𝑛 = 𝑆𝑘 +𝑆𝑛−𝑘 + 𝑛 [9, eq. 3.12]. Under
the uniform model, the probability that the ‘‘left’’ subtree of a rooted
binary tree with 𝑛 leaves has 𝑘 leaves, 1 ≤ 𝑘 ≤ 𝑛 − 1, is [17, eq. 5],

𝑞𝑛(𝑘) = 𝑞𝑛(𝑛 − 𝑘) = 1
2

(

𝑛
𝑘

)

rb(𝑘) rb(𝑛 − 𝑘)
rb(𝑛)

=
𝐶𝑘−1 𝐶𝑛−𝑘−1

𝐶𝑛−1
.

The expected Sackin index then has recurrence

E𝑈 [𝑆𝑛] =
(𝑛−1
∑

𝑘=1
𝑞𝑛(𝑘)E𝑈 [𝑆𝑘] + 𝑞𝑛(𝑛 − 𝑘)E𝑈 [𝑆𝑛−𝑘]

)

+ 𝑛, (3)

ith E𝑈 [𝑆1] = 0. Noting that ∑𝑛−1
𝑘=1 𝑞𝑛(𝑘)E𝑈 [𝑆𝑘] + 𝑞𝑛(𝑛 − 𝑘)E𝑈 [𝑆𝑛−𝑘] =

∑𝑛−1
𝑘=1 𝑞𝑛(𝑘)E𝑈 [𝑆𝑘], the recurrence is solved by the special case of

roposition 6 of Coronado et al. [6] with 𝑋1 = 0, 𝑎1 = 1, 𝑎𝓁 = 0 for
≤ 𝓁 ≤ 𝑛 − 1, and 𝑏𝓁 = 0 for all 𝓁, recovering Theorem 3.

Fuchs & Jin [20] reported the mean depth of a leaf chosen at
andom under the uniform model on rooted binary labeled trees—
r E𝑈 [𝑆𝑛]∕𝑛. They exploited an oft-noted mapping [16,17,21] that
onnects the rooted binary labeled trees and the Catalan trees, a class of
ooted binary unlabeled trees in which left and right descendants are
istinguished and internal nodes have either a left descendant node,
right descendant node, or both. In a uniform probability model on

he Catalan trees, quantities related to the Sackin index have long been
tudied [22,23]; Fuchs & Jin [20] obtained and solved a version of the
ecurrence in Eq. (3), reporting their Theorem 4 in a form similar to
hat of our Corollary 7.

Note that our new proof provides a method for evaluating the
xpected Sackin index for any probability model for which the quantity
𝑛(𝑘) can be calculated. For the Yule–Harding model, 𝑝𝑛(𝑘) = 2𝑛∕[𝑘(𝑘+
)
(𝑛
𝑘

)

] [9, eq. 3.5]. As was noted by Steel [9, eq. 3.11], the approach
n our proof of Theorem 3 provides a computation of the mean Sackin
ndex under the Yule-Harding model as well, 𝐸𝑌𝐻 [𝑆𝑛] = 2𝑛

∑𝑛
𝑘=2

1
𝑘 .
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