INVESTIGATION

Choosing Subsamples for Sequencing Studies by
Minimizing the Average Distance to the Closest Leaf

Jonathan T. L. Kang,*' Peng Zhang,' Sebastian ZolIner,* and Noah A. Rosenberg*

*Department of Biology, Stanford University, Stanford, California 94305, TCenter for Inherited Disease Research, Johns Hopkins
University, Baltimore, Maryland 21224, and *Department of Biostatistics and Department of Psychiatry, University of Michigan, Ann
Arbor, Michigan 48109

ABSTRACT Imputation of genotypes in a study sample can make use of sequenced or densely genotyped external reference panels
consisting of individuals that are not from the study sample. It also can employ internal reference panels, incorporating a subset of individuals
from the study sample itself. Internal panels offer an advantage over external panels because they can reduce imputation errors arising from
genetic dissimilarity between a population of interest and a second, distinct population from which the external reference panel has been
constructed. As the cost of next-generation sequencing decreases, internal reference panel selection is becoming increasingly feasible.
However, it is not clear how best to select individuals to include in such panels. We introduce a new method for selecting an internal
reference panel—minimizing the average distance to the closest leaf (ADCL)}—and compare its performance relative to an earlier algorithm:
maximizing phylogenetic diversity (PD). Employing both simulated data and sequences from the 1000 Genomes Project, we show that ADCL
provides a significant improvement in imputation accuracy, especially for imputation of sites with low-frequency alleles. This improvement in

imputation accuracy is robust to changes in reference panel size, marker density, and length of the imputation target region.
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WING to the existence of genetic variation within spe-

cies, geneticists routinely make choices about which
individuals, inbred strains, or representatives of populations
or breeds merit prioritization for genotyping or DNA sequenc-
ing. Often such choices, though typically made by informal
criteria, reflect an explicit or implicit goal of maximizing the
potential for extrapolating the information in the genotyped
or sequenced individuals to all members of a breed, popula-
tion, or species of interest.

Genotype imputation algorithms infer unobserved geno-
types by matching a set of markers to the haplotype patterns
observed in a reference sample (Li et al. 2009; Marchini and
Howie 2010), adding a new dimension to these choices. Ref-
erence panels are used to facilitate genotype imputation in
other individuals beyond the members of the panels them-
selves, and they often can be optimally selected to maximize
the imputed genotypic information obtained about those other
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individuals of interest (Kang and Marjoram 2012; Zhang et al.
2013; Peil et al. 2015). The evaluation of alternative ways to
select imputation reference panels thus provides an approach
for making sample choices for major genotyping or sequencing
studies more systematically generalizable.

When conducting genotype imputation studies in a popu-
lation sample, reference panels generally have been selected
from databases external to the sample, such as the 1000
Genomes Project Consortium (2010) and the International
HapMap Consortium (2005) databases. As a result of the
rapidly decreasing cost of sequencing, however, it has be-
come increasingly possible to carry out internal reference
panel selection, in which additional sequencing is performed
on a subset of the study sample, and the sequenced subset is
then used to impute the remaining haplotypes. The use of
reference sequences that originate from the study sample
itself can reduce the potential mismatch of ancestral back-
grounds between sample and reference populations, decreas-
ing imputation errors. It also allows for genetic variants
unique to the sample population to be imputed successfully
(Fridley et al. 2010; Zhang et al. 2013).

Previous studies have observed that a mismatch of pop-
ulation origins between reference panels and study samples
can reduce imputation accuracy compared with when they
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originate from the same or similar populations (Huang et al.
2009, 2011; Li et al. 2010; Pasaniuc et al. 2010; Shriner et al.
2010; Surakka et al. 2010). Jewett et al. (2012) demon-
strated, using a coalescent model, that with other variables
held constant, smaller internal reference panels are often
likely to outperform larger external reference panels despite
the difference in panel size. Empirical studies also have
shown that using an internal reference panel drawn from
a subset of the sample under study, in addition to an external
reference panel, gives rise to an increase in imputation accu-
racy over using the external reference panel alone (Fridley
et al. 2010; Sampson et al. 2012; Duan et al. 2013; Kreiner-
Mgller et al. 2015, Pistis et al. 2015).

The value of internal reference panels for imputation
studies raises the question of how an internal panel should
be selected. Two recent studies have proposed maximizing
phylogenetic diversity (PD) as a criterion for internal refer-
ence panel selection (Kang and Marjoram 2012; Zhang et al.
2013). In this approach, the PD of a set of haplotypes is de-
fined as the total branch length of a tree spanned by the
haplotypes (Faith 1992; Hartmann and Steel 2007). Given
a panel size, the goal is to select the subset of haplotypes
whose subtree yields the longest total branch length. Concep-
tually, the idea of seeking a maximally diverse subset of hap-
lotypes in the reference panel aims to sample haplotypes that
best cover the full range of haplotypes observed in the sam-
ple. The maximum-PD panel, by choosing haplotypes from
different regions of the tree of haplotypes (Figure 18), is more
likely than a random panel to supply the necessary diversity
to impute sites localized in a subgroup within the entire sam-
ple population. Zhang et al. (2013) showed, using simulated
sequence data and data from the 1000 Genomes Project, that
by using the maximum-PD panel, higher imputation accuracy
is obtained, and more sites are imputed as polymorphic in the
sample population, than if the reference panel consists of
randomly selected haplotypes.

Despite the utility of maximizing PD as a method for the
selection of an internal reference panel, other approaches
focusing on different principles might be preferable. Because
the algorithm explicitly selects haplotypes that are genetically
distant from one another, long, pendant branches of the tree, if
present, are likely to be chosen (Bordewich et al. 2008). The
haplotypes associated with such branches might not be rep-
resentative of the sample at large. These haplotypes might
contain a large amount of sequencing error or missing data,
and their inclusion in the reference panel might not contrib-
ute substantially to an increase in imputation accuracy. Even
if they have high-quality data, such haplotypes are relatively
unique in the sample, and therefore might assist as imputa-
tion templates only for a small number of sampled lineages.

PD can be viewed as emphasizing diversity in the internal
reference panel rather than representativeness. To determine
whether an alternative focused on identifying the most repre-
sentative subsample for use as the internal reference panel is
preferable, we adapted another method borrowed from phy-
logenetic studies (Matsen et al. 2013): minimizing the average
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Figure 1 Reference panels for an example tree with n = 20 haplotypes. (A)
An example tree. (B) The maximum-PD panel. (C) The minimum-ADCL panel.
In B and C, the haplotypes selected for a given panel size k are represented
by a dot at the tips. In C, each selected haplotype is assigned a color, and all
other branches share a color with the closest selected haplotype.

distance to the closest leaf (ADCL), an approach that identifies
reference haplotypes based on their genetic proximity to the
rest of the sample haplotypes. We compare the imputation
accuracy of the maximum-PD, minimum-ADCL, and random
reference panels on both simulated data and data from the
1000 Genomes Project, and find that the minimum-ADCL
panel consistently provides higher imputation accuracy, irre-
spective of changes to parameters such as reference panel size,
marker density, and sequence length.

Methods
Maximizing PD

Given a tree of n haplotypes, to select a reference panel of
haplotypes whose subtree spans the longest branch length,
Zhang et al. (2013) applied a well-known greedy algorithm
(Pardi and Goldman 2005; Steel 2005) that takes as inputs
the tree and a parameter k = n, the desired number of
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haplotypes for the panel. Let X be the k-element subset of the
sample haplotypes chosen for the reference panel, and let Tx
be the subtree spanned by the haplotypes in X. The algorithm
first selects the haplotype pair that is phylogenetically most
distant (i.e., largest pairwise branch length) and adds both
haplotypes to X. Tx now consists of a single pair of branches.
Sequentially, the haplotype that is the most distant from Ty is
placed into X, updating Tx with each inclusion. This process
continues until the required k haplotypes have been selected
(Figure 1B).

Pardi and Goldman (2005) and Steel (2005) proved that
among all possible subsets of size k = n haplotypes from the
study sample, the greedy algorithm achieves the globally
maximal PD. Thus, selection of the most diverse reference
panel is computationally efficient because there is no need
to exhaustively examine all possible panels of size k to arrive
at the correct solution. In addition, because the selection
algorithm is greedy, the haplotypes in the reference panel
can be ranked by their order of inclusion, in which every
haplotype added contributes a nonincreasing amount of
PD. The maximum-PD panels of sizes 2 to k form a series of
nested sets, and all previously selected haplotypes in a panel
smaller than k also will be included in a panel of size k.

Minimizing ADCL

Overview of ADCL: Instead of focusing on diversity in the
selected set and targeting the potential for accurate imputa-
tion of unusual haplotypes, the minimum-ADCL algorithm
focuses on representativeness, aiming to maximize imputa-
tion accuracy of typical haplotypeslikely to appearin a sample.

identify haplotypes
that maximize PD

identify genotypes with
a top-ranked haplotype

diploid PD panel

The problem can be viewed as choosing haplotypes that are,
on average, genealogically close to the remaining haplotypes
not included in the reference panel. As in the case of PD, the
algorithm takes as inputs a tree of the n haplotypes in the
study sample, and a parameter k < n, indicating the desired
reference panel size.

Let H be the set of n haplotypes, and let X be the selected
k-element subset of H. The objective is then to find X such
that the branch-length distance from a randomly chosen
haplotype in H to its closest neighboring haplotype in X
is minimized over all possible k-element subsets of H (Matsen
et al. 2013). Note that because the haplotypes in X are also in
H, each of these haplotypes is its own closest neighbor, and
we can equivalently consider either H or H\X. In essence, the
goal is to return a set of reference panel haplotypes that
occupy the most central positions within clusters of the tree
(Figure 1c).

In a detailed study of ADCL, Matsen et al. (2013) demon-
strated that unlike when choosing the subset that maximizes
PD, the greedy algorithm need not give rise to the globally
optimal ADCL solution. It is therefore necessary to produce
alternative algorithms that seek to minimize ADCL. Note that
because the greedy algorithm is not applicable, the haplo-
types selected cannot be ranked by their order of inclusion:
a haplotype included in a subset of size smaller than k is not
necessarily also included in a subset of size k (Figure 1c).

Adapted partitioning-around-medoids (PAM) algorithm

for minimizing ADCL: Matsen et al. (2013) described two
algorithms that, for a given set of haplotypes, seek to produce

Internal Reference Panels for Imputation 501



Table 1 Mean and SD across 50 data sets of the number of
haplotypes shared by the minimum-ADCL panels produced by
the initial run of the adapted PAM algorithm and runs with
modified starting seeds

Replicate Mean SD

1 179.40 4.1991
2 178.56 4.9494
3 179.38 4.5838
4 179.00 4.7208
5 178.58 4.8910

For the five replicates, each with a different starting seed, we compared
the minimum-ADCL panels from the initial run of the adapted PAM algorithm
and the minimum-ADCL panels using the different seed. This table shows the mean
(of 200) and SD of the number of shared haplotypes across the 50 data sets.

the subset of size k that minimizes ADCL. The first approach
leverages similarities between the problem of minimizing
ADCL and the technique known as k-medoids clustering
(Kaufman and Rousseeuw 1987). In the k-medoids problem,
a set of data points is partitioned into k clusters, where k is
predetermined. Within each cluster, a single point is desig-
nated as the center. The k-medoids clustering method is sim-
ilar to k-means clustering, except that in k-medoids, each
cluster center must be chosen from the original set of data
points, whereas k-means permits any location to be a cluster
center. The objective function to be minimized in the k-
medoids problem is the distance from a random data point
to the center of the cluster to which it is assigned. A cluster
center can be viewed as the data point most representative of
the remainder of the data points within the cluster.

It is then clear how the problem of minimizing ADCL is
analogous to the k-medoids problem. A data point is a haplo-
type, and distances between data points are branch-length
(patristic) distances between haplotypes. The k cluster cen-
ters are akin to the k haplotypes that are selected.

Aswith minimizing ADCL, there is no greedy algorithm that
solves the k-medoids problem, and obtaining the globally
optimal solution has been demonstrated to be NP-hard
(Sheng and Liu 2004). A widely used k-medoids heuristic
algorithm is the partitioning-around-medoids (PAM) algo-
rithm (Theodoridis and Koutroumbas 2008), which works
by randomly selecting k medoids from the original set of n
data points and then minimizing the objective function via
hill-climbing. One iteration of the algorithm consists of loop-
ing over all k(n — k) possible pairs containing a medoid and
nonmedoid, exchanging the medoid statuses of the points
in the pair, and recording the new value of the objective
function from the updated arrangement. Among all k(n — k)
proposed exchanges, the single exchange that leads to the
lowest-cost configuration is chosen. The algorithm then enters
a new iteration, and the process repeats until no further
changes to the set of medoids take place.

The first approach Matsen et al. (2013) considered
for minimizing ADCL is an adaptation of the PAM algorithm.
First, the set X of haplotypes included in the reference panel is
initialized by randomly selecting, without replacement, k
haplotypes from the initial set H of n haplotypes. Next, the
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Figure 3 A Venn diagram showing the number of polymorphic sites
returned by each panel type, from a total of 12,851 masked sites. Eight-
hundred and eighty-eight sites were monomorphic in all three panels.

following loop over the haplotypes x1, ..., xx € X is executed
until no exchanges occur for one complete iteration over
every x; € X:

1. For a haplotype x; € X, remove it from X, and attempt to
replace it with every other y € H\X in its place.

2. Keep the best such exchange if it decreases ADCL.

3. Continue with x;,; € X. In the case of x;, continue with x;.

This method for minimizing ADCL differs from the original
formulation of the PAM algorithm in that it evaluates potential
exchanges one medoid at a time instead of examining all
k(n — k) medoid-nonmedoid pairs before finding the exchange
that most decreases the objective function (Matsen et al.
2013). Because each step in the iteration causes the value
of ADCL to either stay constant or decrease, the solution is
guaranteed to converge on a local minimum. However, the
algorithm remains a heuristic approach, and the minimum-
ADCL solution it achieves could depend on the specific hap-
lotypes selected during random initialization. Hence, the
global minimum might not always be found.

Alongside the adapted PAM algorithm, Matsen et al.
(2013) also developed a second approach: an exact but more
computationally intensive algorithm that is guaranteed to
find the global-minimum ADCL solution. Both algorithms
were implemented in the rppr binary in the pplacer suite of
programs. Comparing between the two, Matsen et al. (2013)
demonstrated that for their simulated test sets, the adapted
PAM algorithm only rarely gets trapped in local minima. For
computational efficiency, we therefore chose to use the adap-
ted PAM algorithm rather than the slower exact algorithm,
first testing that, in our setting, multiple runs of the adapted
PAM algorithm with different initial seeds select a large per-
centage of the same haplotypes (see Results).

Simulated sequence data

To evaluate how the maximum-PD and minimum-ADCL
panels perform relative to each other, we analyzed simu-
lated data sets produced by the coalescent-based sequence
sampling program ms (Hudson 2002), closely following the
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parameters used by Zhang et al. (2013) to ensure that the
results are comparable.

First, we independently generated 50 data sets, each con-
sisting of two thousand 1-Mb haplotypes, assuming a constant
effective population size of N, = 10,000, a mutation rate of
w = 1078 per site per generation, and a recombination rate of
p = 1078 per site per generation. Parameter values provided
to ms were as follows: nsam = 2000, nreps = 50, -t = 400,
-r = 400, and nsites = 10°. From the simulated data sets, we
removed all singleton sites to ensure that the sequence data
were truly imputable. Within a data set, if the n = 2000
haplotypes contained g polymorphic sites after excluding
the singletons, then we randomly selected, without replace-
ment, s = 300 of the ¢ sites, each with minor allele frequency
(MAF) greater than 0.1. These markers were considered gen-
otyped. The remaining q — s sites were masked. Markers with
MAF = 0.1 were excluded from being treated as genotyped so
as to mimic the phenomenon that rarer variants have been
less frequently included in typical SNP arrays.

Following Zhang et al. (2013), we calculated the pairwise
Hamming distances between the n = 2000 haplotypes in
each of the 50 data sets based on the genotype information
at only the s = 300 randomly selected markers. With these
distances, we then used the software RapidNJ (Simonsen
et al. 2008) to construct a neighbor-joining tree (Saitou and
Nei 1987) of the haplotypes. Note that it was possible, as
a result of random sampling, for two or more haplotypes to
be identical at all s markers. In such a case, a leaf in the tree
would represent more than one haplotype, although the mul-

tiplicity of each haplotype was retained for the purpose of
assembling a reference panel.

Using the Python library DendroPy (Sukumaran and
Holder 2010), we calculated the patristic distance matrix
for each neighbor-joining tree. We then applied the greedy
algorithm to select the reference panel of size k = 200 that
maximizes PD. Furthermore, on each neighbor-joining tree,
we used the rppr binary in pplacer (Matsen et al. 2013) to
execute the adapted PAM algorithm, returning a reference
panel of size k = 200 that minimizes ADCL. In cases for which
either algorithm selected a leaf representing more than one
haplotype, one of the haplotypes was randomly chosen to be
included in the panel.

To model diploid samples, we also created diploid reference
panels for use with both the maximum-PD and minimum-ADCL
algorithms. First, making the simplest possible assumption
about the pairing of haplotypes within populations, we ran-
domly paired the n = 2000 haplotypes into 1000 diploid
genomes. For the diploid PD panel, following Zhang et al.
(2013), we included diploid individuals carrying at least one
of the top-ranked haplotypes into the panel until we reached
the desired panel size k. More specifically, we proceeded down
the list of k haplotypes in the maximum-PD panel, ranked
based on the order of inclusion. At each step, we selected both
the top-ranked haplotype and the haplotype with which it was
paired (and which was not necessarily top ranked) for the
diploid panel, if they had not already been picked previously.
We continued this process until k/2 diploid genomes were
selected, for a total of k haplotypes.
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Unlike in maximum-PD panels, haplotype sets in minimum-
ADCL panels are not nested. Therefore, we cannot use the same
process to construct the diploid ADCL panel. To address this
problem, we first constructed, again using rppr, a half-sized mini-
mum-ADCL panel of size k/2 = 100. Each haplotype in the half-
sized panel, along with the haplotype with which it was paired,
was then included in the diploid panel. In the event that both
haplotypes of a diploid genome were in the half-sized panel, they
were each chosen only once. If the diploid panel was not fully
filled at the end of this process, then haplotype pairs were ran-
domly taken from the previously unselected diploid genomes
until the requisite panel size of k/2 diploid genomes was reached.

For comparison, for each of the 50 data sets, we also
generated 1000 random reference panels by sampling, with-
out replacement, k = 200 of the original n = 2000 haplo-
types, giving a total of 1004 reference panels. A diagram of
the simulation pipeline appears in Figure 2.

For each of the k haplotypes in a reference panel, we
unmasked the genotypes at the ¢ — s masked sites and used
the resulting full sequences as a reference to perform imputa-
tion, under the assumption that the haplotypes represent
sequences with resolved phasing. Following Zhang et al.
(2013), to avoid edge effects and to improve imputation accu-
racy, within each 1-Mb haplotype, we imputed only the middle
100-kb segment while still retaining the markers in both 450-kb
flanking regions (Li et al. 2010). Similar to Zhang et al. (2013),
we used the program minimac (Howie et al. 2012) to perform
imputation. The parameter values entered into minimac were
as follows: --rounds = 5 and --states = 200.

For each choice of reference panel, we evaluated imputation
accuracy at the r imputed sites over the n/2 diploid genomes,
applying a discordance metric. These r imputed sites consisted
of all masked sites within the middle 100-kb segment, regard-
less of whether they were polymorphic in the reference panel.
Atimputed sitej in diploid genome i, we define g;; and g;; to be
the true and imputed genotypes, respectively. Both g;; and g;
take on values in {0,1,2}, corresponding to the number of
copies of an arbitrarily chosen allele at that specific site. The
discordance rate D across all sites is given by

n/2 r

> Z\gu &l

1
p="L
nr
We also compute the discordance rate H across all true het-

erozygous genotypes (g; = 1):

n/2 r

Z Z Lg,—11g5 — &l

i=1 j=1
Tl/2 r

2 Z Z lgl]:1

i=1 j=

H =

In addition, based on the MAF values of their constituent
alleles, as computed in the full set of 2000 haplotypes, we
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Figure 5 Box plots of discordance rates between imputed and simulated
genotypes using the five different reference panel types. The mean dis-
cordance rate across the 50 replicates for each comparison group is in-
dicated by a diamond, and the median discordance rate is indicated by
a horizontal line. The x-axis separates the comparison over all sites, all
heterozygous sites, and heterozygous sites falling into three different
MAF groups.

further split the true heterozygous sites into three mutually
exclusive MAF bins: 0 < MAF < 0.1 (low), 0.1 = MAF < 0.2
(medium), and 0.2 = MAF = 0.5 (high). This separation was
made to evaluate how the PD and ADCL algorithms perform
across the spectrum of rare to common variants. Note also
that the calculations of D and H sum over all n/2 diploid
genomes, irrespective of whether they have one, both, or
neither of their haplotypes represented in the reference
panel. These computations evaluate both errors from mis-
taken imputations in markers that are polymorphic in the
reference panel and errors arising from imputing a polymor-
phic marker as monomorphic in the full set of haplotypes
because it is monomorphic in the reference panel.

1000 Genomes Project sequence data

We also applied both the PD and ADCL algorithms to sequence
data from the 1000 Genomes Project (available at http://csg.
sph.umich.edu/abecasis/MACH/download/1000G-Phasel-
Interim.html). Following Zhang et al. (2013), we considered
n = 762 phased haplotypes from 381 diploid individuals of
European ancestry: 87 Utah residents of Northern and Western
European ancestry, 93 Finnish from Finland, 89 British from
England and Scotland, 14 Iberians from Spain, and 98 Toscani
from Italy.

We first removed all singleton sites from the data, and we
then selected thirty 1-Mb segments that were approximately
evenly spaced across chromosome 20, avoiding the centro-
mere, telomeres, and adjacent areas. Study samples then were
created using a similar procedure to that employed for the
simulated data. For each of the 30 segments, we randomly
selected s = 400 markers with MAF > 0.1 in the full set of 762
haplotypes, and masked the genotypes of the remaining
sites. We then chose k = 120 haplotypes to include in the
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Table 2 Mean discordance rates between imputed and simulated genotypes, using the maximum (haploid) PD, minimum (haploid) ADCL,

diploid PD, and diploid ADCL panels

Haploid panels Diploid panels
PD (%) ADCL (%) P-value PD (%) ADCL (%) P-value
All 0.2003 0.1476 1.342 x 1072 0.2648 0.2304 2.597 X 1073
Heterozygotes 1.1295 0.7888 1.921 X 1072 1.4554 1.2523 1.360 X 1073
MAF (0, 0.1) 3.0374 2.1160 1.606 X 1072 3.8164 3.2103 1.871 X 10~4
MAF [0.1, 0.2) 0.4363 0.3190 2.792 X 1073 0.6947 0.5582 0.0857
MAF [0.2, 0.5] 0.3518 0.2386 2.567 X 10—° 0.4676 0.4335 0.4174

This table is obtained from the data in Figure 5. The comparison is performed over all sites, all heterozygous sites, and heterozygous sites falling into three different MAF
groups. Also shown are the P-values of the two-tailed Wilcoxon signed-rank tests comparing the discordance rates of the PD and ADCL reference panels.

maximum-PD and minimum-ADCL reference panels, as well
as in 1000 randomly generated panels. For each choice of
reference panel used for each segment, we imputed the mid-
dle 100 kb, retaining the markers in both 450-kb flanking
regions. We then evaluated D and H analogously to the
experiments with the simulated data.

The k = 120 haplotypes were selected for the maximum-
PD and minimum-ADCL reference panels in two ways. First,
we built a neighbor-joining tree for each of the thirty 1-Mb
segments based on only the information contained within
the segment, and then we performed the panel-selection
algorithms on the tree. In this procedure, which we call
separate panel selection, each segment has its own distinct
maximum-PD panel and minimum-ADCL panel. Second, we
also considered combined panel selection, performing panel
selection on a single tree built from the combined informa-
tion in all 30 segments. In this case, each of the 30 segments
shares the same maximum-PD and minimum-ADCL panels.
Combined panel selection can be viewed as a small-scale
version of a whole-genome analysis, in which the combined
information from across a genome is used to choose refer-
ence individuals suitable for imputation for the whole
genome.

Results
Stability of the adapted PAM algorithm

Before considering the actual imputation results produced by
the different algorithms for reference panel selection, we
empirically validated the stability of the adapted PAM algo-
rithm in choosing the minimum-ADCL panel. Beyond the
initial run for each of our 50 simulated data sets, we repeated
the selection of the minimum-ADCL panel five additional
times. For each repetition, we executed the adapted PAM
algorithm with a different starting seed, and then determined
the number of haplotypes that were shared by the minimum-
ADCL panels from both the initial run and the run with the
modified seed.

When comparing two panels of 200 reference haplotypes
drawn from a set of 2000 sample haplotypes, let m be the
number of haplotypes that are shared by both panels (0 =
m = 200). For each of the five replicates, we calculated the
mean value of m across the 50 data sets, comparing each

replicate to the initial run. All five mean values of m were
observed to be ~179 (Table 1); for comparison, the mean of
the hypergeometric distribution describing the number of
haplotypes shared between two panels of size 200 indepen-
dently drawn from a pool of 2000 is 20, with SD = 4.03.
Therefore, despite changing the specific haplotypes used
in randomly initializing the adapted PAM algorithm, most
haplotypes eventually chosen for inclusion in the minimum-
ADCL panel remain the same. This result suggests that
the adapted PAM algorithm is reasonably stable, and in
subsequent analyses, we considered only a single starting
seed.

Polymorphic sites in reference panels

For each of the 1004 reference panels, we evaluated the
number of masked sites within the imputed 100-kb segment
that were polymorphic. This calculation is important be-
cause only sites that are polymorphic in the reference panel
can produce a meaningful imputation result for the re-
mainder of the study sample. Summing across all 50 data
sets, we detected a total of 12,851 masked sites within the
100-kbsegment of interest. We then compared how many of
those masked sites appear as polymorphic in the maximum-
PD panel, the minimum-ADCL panel, and a single random
panel.

Of the 12,851 masked sites, 8879 sites (69.09%) were
polymorphic in all three reference panel types. Of the 3972
remaining sites, 1138 (8.86%) were polymorphic in both the
maximum-PD and minimum-ADCL panels, 244 (1.90%) were
polymorphic in both the maximum-PD and random panels,
and 374 (2.91%) were polymorphic in both the minimum-
ADCL and random panels. In addition, 464 (3.61%), 473
(3.68%), and 391 (3.04%) sites were polymorphic in only
the maximum-PD, minimum-ADCL, and random panels, re-
spectively. Finally, 888 (6.91%) of the masked sites were
monomorphic in all three panels (Figure 3).

Overall, 10,725 sites (83.46%) were polymorphic in the
50 maximum-PD panels, 10,864 sites (84.54%) were poly-
morphic in the 50 minimum-ADCL panels, and 9888 sites
(76.94%) were polymorphic in the 50 random panels. Using
the two-tailed Wilcoxon signed-rank test, we found that
both the maximum-PD and minimum-ADCL methods of
panel selection identify substantially more polymorphic sites
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compared to choosing the reference panel randomly (P =
7.686 X 10719 and P = 8.175 X 10719, respectively).

Polymorphic sites in imputed data sets

The maximum-PD and minimum-ADCL selection algorithms
resulted in similar numbers of polymorphic sites as a fraction
of the total number of masked sites in their respective refer-
ence panels. We next evaluated the number of imputed sites
the two methods recovered as polymorphic. In each of the 50
simulated data sets, we calculated the percentage of masked
sites that were polymorphic in the imputed sample using the
maximum-PD panel, the minimum-ADCL panel, the diploid
PD panel, the diploid ADCL panel, and the same random panel
used to assess the number of polymorphic sites within the
reference panels.

Figure 4 compares the proportion of polymorphic sites im-
puted with combinations of the five reference panel types. In
each panel of Figure 4, the random panel is used as a baseline
for evaluating two of the other four panel-selection methods.

We used the two-tailed Wilcoxon signed-rank test to
evaluate differences in the fraction of sites identified as poly-
morphic by the different panel types. Both the maximum-PD
and minimum-ADCL panels recovered a significantly larger
percentage of polymorphic sites compared with their respec-
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tive diploid panels (P = 3.448 X 10~ and P = 2.309 X 1077,
respectively). The minimum-ADCL panel also outperformed
the maximum-PD panel (P = 4.944 X 10~%). However, com-
paring the 50 diploid PD and 50 diploid ADCL panels, the
percentage of imputed sites that are polymorphic in the
imputed data sets showed no significant difference (P =
0.1625).

Discordance rates

As a measure of imputation accuracy, for each of the 50
simulated data sets, we separately calculated the discordance
rate D across all sites that were imputed with the maximum-
PD panel, the minimum-ADCL panel, the diploid PD panel,
and the diploid ADCL panel. For a baseline, we also calcu-
lated the mean discordance rate over the 1000 randomly
selected reference panels. We were mainly interested in com-
paring the performance between the maximum-PD and
minimum-ADCL panels, as well as between the diploid
PD and diploid ADCL panels.

The discordance rates are shown in Figure 5, and their
mean values are summarized in Table 2. Again using the
two-tailed Wilcoxon signed-rank test, the minimum-ADCL
panel exhibited significantly lower discordance rates than
the maximum-PD panel (P = 1.342 X 10~°). The diploid



Table 3 Mean discordance rates between imputed and simulated genotypes for all sites, using the maximum (haploid) PD, minimum

(haploid) ADCL, diploid PD, and diploid ADCL panels under different input parameter choices

Haploid panels Diploid panels

PD (%) ADCL (%) P-value PD (%) ADCL (%) P-value
Reference panel size, k
k =100 0.5150 0.3502 5213 X 1072 0.6174 0.5284 2.257 X 107>
k =200 0.2003 0.1476 1.342 x 10~° 0.2648 0.2304 2.597 x 10~3
k =300 0.0907 0.0811 2.767 X 1073 0.1501 0.1354 0.0167
k =400 0.0499 0.0498 0.7391 0.0924 0.0895 0.3417
k =500 0.0298 0.0312 0.2112 0.0584 0.0605 0.1765
Number of markers per megabase, s
s =200 0.2561 0.1810 1.378 X 1078 0.3409 0.2901 1.173 X 1074
s =300 0.2003 0.1476 1.342 x 10~° 0.2648 0.2304 2.597 x 10-3
s =400 0.1647 0.1255 2.548 x 1078 0.2291 0.1946 4.176 X 107>
s =500 0.1529 0.1193 9.347 x 10~10 0.2105 0.1863 7.284 X 1074
s =600 0.1503 0.1138 4.130 X 107° 0.1970 0.1746 6.975 X 107>
Imputation length
100 kb 0.2003 0.1476 1.342 x 10~° 0.2648 0.2304 2.597 x 10-3
500 kb 0.2104 0.1494 7.789 x 10~10 0.2650 0.2307 5.575 X 107©
1 Mb 0.2159 0.1538 7.790 x 10-10 0.2755 0.2392 2.040 X 108
2 Mb 0.2495 0.1653 7.789 x 1010 0.2914 0.2551 8.263 X 107°

This table is obtained from the data in Figure 6 (A, C, and E). Also shown are the P-values of the two-tailed Wilcoxon signed-rank tests comparing the discordance rates of the
PD and ADCL reference panels. The discordance rates and P-values from the initial analysis using k = 200, s = 300, and imputation length = 100 kb are given in bold, with the

values obtained from Table 2.

ADCL panel also had lower discordance rates than the diploid
PD panel (P = 2.597 X 10~3). The minimum-ADCL, maxi-
mum-PD, diploid ADCL, and diploid PD panels all provided
lower discordance rates than the mean of the 1000 randomly
selected panels (P = 7.789 X 1071°0,9.928 X 10710, 8.797 X
10719 and 4.920 X 1077, respectively).

To generate a discordance measure for low-frequency
variants, we also calculated the discordance rate H across
the heterozygous sites with 0 < MAF < 0.1. From Figure 5
and Table 2, it can be seen that the mean discordance rates
are higher for low-MAF loci than they are for high-MAF loci.
Nevertheless, compared to the maximum-PD panel, the
minimum-ADCL panel still achieved significantly higher imputa-
tion accuracy on low-MAF heterozygotes (P = 1.606 X 10~9).
The same relationship also held between the diploid ADCL
and diploid PD panels (P = 1.871 X 10~%). As was observed
when considering all variants, the minimum-ADCL, maximum-
PD, diploid ADCL, and diploid PD panels all had lower
discordance rates than the mean of the 1000 random panels
(P =7.790 X 10710, 1,264 X 1072, 7.790 X 10719 and
2.244 X 1079, respectively).

Discordance rates under different simulation settings

Following Zhang et al. (2013), to investigate how different
parameter choices might have affected the simulation results,
we repeated the analysis taking into consideration (1) differ-
ent reference panel sizes k, (2) different marker densities s,
and (3) different target-sequence lengths. When varying a pa-
rameter, we kept the other two parameters constant at their
default values used in the initial analysis (reference panel
size k = 200, number of markers per megabase s = 300,

imputation length = 100 kb). The baseline for comparison
here is the mean discordance rate over the 50 randomly se-
lected reference panels. This number is smaller than the 1000
randomly selected reference panels used to calculate the
baseline mean discordance rate in the initial analysis, owing
to runtime considerations that arise when performing a large
number of imputations using the random panels. Box plots
of the results are shown in Figure 6, and mean discordance
rates of the various panel types over all sites and over the
low-frequency variants are shown in Table 3 and Table 4,
respectively.

We first evaluated the influence of reference panel size on
imputation accuracy, considering cases with k = 100, 300,
400, and 500 (compared to the initial analysis with k = 200).
We observed that as the panel size k increased, discordance
rates decreased across all reference panel types. However, we
also observed a decrease in the difference in performance
between the ADCL and PD algorithms in both the haploid
(maximum-PD and minimum-ADCL) and diploid cases. In
other words, the gain in imputation accuracy obtained
by minimizing ADCL instead of maximizing PD diminished
with large reference panel sizes.

Next, we examined how the initial genotyping density of
the markers affected imputation accuracy by considering
instances with s = 200, 400, 500, and 600 (compared to
the initial choice of s = 300). Here, across all reference panel
types, the discordance rates decreased slightly with increas-
ing marker density s. Nevertheless, for all densities, both the
haploid and diploid ADCL panels consistently outperformed
their PD counterparts in terms of imputation accuracy across
all sites, as well as across only the low-frequency variants.
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Table 4 Mean discordance rates between imputed and simulated genotypes for all heterozygous sites with 0 < MAF < 0.1, using the
maximum (haploid) PD, minimum (haploid) ADCL, diploid PD, and diploid ADCL panels under different input parameter choices

Haploid panels Diploid panels

PD (%) ADCL (%) P-value PD (%) ADCL (%) P-value
Reference panel size, k
k =100 7.2099 5.0056 3.358 X 108 8.5331 7.3942 3.960 X 1074
k =200 3.0374 2.1160 1.606 x 10~° 3.8164 3.2103 1.871 x 10~4
k =300 1.4783 1.2425 1.484 x 10~4 2.1964 1.9086 3.817 X 1074
k =400 0.8394 0.8156 0.2972 1.3786 1.2816 0.0757
k =500 0.5494 0.5413 0.7502 0.9160 0.9010 0.7138
Number of markers per megabase, s
s =200 3.4597 2.3336 3.467 X 107° 4.3339 3.5993 8.581 X 107°
s =300 3.0374 2.1160 1.606 x 10~° 3.8164 3.2103 1.871 x 104
s =400 2.6079 1.9485 3.270 X 107° 3.5185 2.9342 1.173 X 107>
s =500 2.4951 1.8300 1.810 x 10~° 3.4146 2.8719 7.874 X 107>
s =600 2.4121 1.7891 7.368 X 107° 3.2507 2.7438 1.528 X 107>
Imputation length
100 kb 3.0374 2.1160 1.606 x 10—° 3.8164 3.2103 1.871 x 10~4
500 kb 2.8998 2.0484 7.790 x 10-10 3.5755 3.0995 1.605 X 1076
1 Mb 3.0180 2.1204 7.790 x 10-10 3.7531 3.2439 1.231 x 1078
2 Mb 3.4652 2.2648 7.790 x 10-10 3.9769 3.4637 9.806 X 1079

This table is obtained from the data in Figure 6 ®, b, and p. Also shown are the P-values of the two-tailed Wilcoxon signed-rank tests comparing the discordance rates of the
PD and ADCL reference panels. The discordance rates and P-values from the initial analysis using k = 200, s = 300, and imputation length = 100 kb are given in bold, with the

values obtained from Table 2.

Finally, we considered whether the length of the target
imputation region has an effect on imputation accuracy. We
imputed segments of length 500 kb and 1 and 2 Mb (compared
to the initial imputation length choice of 100 kb). In all cases,
a flanking 450-kb region was added to each end of the
sequence to avoid edge effects. We observed that discordance
rates remained relatively constant across different imputation
lengths. Again, the ADCL panels produced significantly lower
discordance rates compared to the PD panels regardless of the
specific choice of imputation length.

Discordance rates with 1000 Genomes Project
sequence data

To confirm that our findings on the simulated data set are also
observed when using actual sequence data, we performed

a similar analysis for thirty 1-Mb segments generated on
chromosome 20 using 381 diploid individuals of European
ancestry from the 1000 Genomes Project. We were again
interested in comparing the difference in imputation accuracy
achieved by the minimum-ADCL and maximum-PD panels
using the mean discordance rate over 1000 randomly selected
reference panels as a baseline for comparison. We considered
two ways of selecting the reference panels: separate panel
selection, in which the 30 segments each had distinct sets of
panelsderived from the information in local 1-Mb regions, and
combined panel selection, in which all 30 segments shared the
same set of panels derived from the combined information
across all segments. The discordance rates are shown in
Figure 7, and their mean values are summarized in Table 5.
For the three different panel types, Figure 8 compares the

Figure 7 Box plots of discordance rates
between imputed and actual genotypes
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Table 5 Mean discordance rates across 30 segments between imputed and 1000 Genomes Project genotypes, using maximum-PD
and minimum-ADCL panels from both separate and combined panel selection

Separate panel selection

Combined panel selection

PD (%) ADCL (%) P-value PD (%) ADCL (%) P-value
All 0.8643 0.8087 2.367 X 1073 0.9013 0.8647 0.0364
Heterozygotes 3.9253 3.6041 9.301 X 1073 4.0812 3.8529 0.0364
MAF (0, 0.1) 11.3202 10.2176 0.0234 11.9321 11.3188 0.0667
MAF [0.1, 0.2) 3.1695 2.7525 0.0274 2.9994 2.9473 0.9321
MAF [0.2, 0.5] 1.7302 1.5598 8.035 X 104 1.7573 1.6543 0.0876

This table is obtained from the data in Figure 7 and Figure 8. The comparison is performed over all sites, all heterozygous sites, and heterozygous sites falling into three
different MAF groups. Also shown are the P-values of the two-tailed Wilcoxon signed-rank tests comparing the discordance rates of the PD and ADCL reference panels.

discordance rates examined in each of the 30 segments over
all imputed sites, as well as over only the low-frequency
variants.

Applying the two-tailed Wilcoxon signed-rank test, we
observed that when using separate panel selection,
the minimum-ADCL algorithm produced significantly lower
discordance rates than the maximum-PD algorithm across all
imputed sites (P = 2.367 X 1073%), as shown in Table s.
Focusing solely on the low-frequency variants, the minimum-
ADCL panel continued to produce better imputation accuracy
than the maximum-PD panel (P = 0.0234). With combined
panel selection, the same trend held. The minimum-ADCL
algorithm outperformed the maximum-PD algorithm across
all imputed sites (P = 0.0364), with the improvement in per-
formance close to significant across only the low-frequency
variants (P = 0.0667).

Discussion

The decreasing cost of modern sequencing has enhanced the
practicality of generating a reference panel from the haplo-

types that are already present in the study sample. It generally
remains prohibitive, however, to perform full sequencing for
large numbers of haplotypes. Given this constraint in resour-
ces, whatis the optimal approach for selecting the subset of the
study sample to sequence to achieve the best imputation
results? We explored two objective functions for optimization,
with the aim of ensuring high imputation accuracy.

Maximizing PD as a way of ensuring that the total genetic
diversity of a sample is well represented is one sensible
approach. This type of panel-selection method achieves lower
imputation discordance rates than assembling reference pan-
els from randomly selected haplotypes (Kang and Marjoram
2012; Zhang et al. 2013). Nevertheless, it has not been clear
whether PD represents the best objective function for panel
selection.

Minimizing ADCL attempts to ensure that the subset of the
study sample selected for the panel is representative of the
total diversity present, albeit using a different approach. It is
conceptually similar to a clustering problem, in that the
number of clusters is predetermined, and the algorithm
returns the cluster to which each haplotype belongs, as well
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as the haplotype that is the most central within its cluster. This
haplotype isthen included in the reference panel. Unlike when
maximizing PD, the problem of selecting nonrepresentative
branches is mostly avoided by minimizing ADCL because the
algorithm tends to not select long, pendant branches of the
tree (Figure 1c).

For both simulated and actual sequence data, we observed
that minimizing ADCL does in fact provide an improvement in
imputation accuracy compared to maximizing PD. When look-
ing at the overall discordance-rate measures, minimizing ADCL
produced a significantly lower discordance rate over all sites
compared to maximizing PD. This result held across various
choices of genotyping density and imputation length, suggest-
ing that the observed result is robust to such changes. It is only
with increasing panel sizes that the gain in imputation accuracy
obtained by minimizing ADCL decreased compared to maxi-
mizing PD. This outcome potentially could be due to the
diminishing returns, in terms of representative variants, con-
tributed by each additional haplotype in the reference panel.
Consider the extreme case, where all the haplotypes in the
study sample are included in the reference panel. In such
asituation, both algorithms return trivially identical imputation
results.

One metric of particular interest is the performance of an
algorithm in the imputation of low-frequency variants. Al-
though early genome-wide association (GWA) studies fo-
cused on identifying common variants associated with
particular diseases or phenotypic traits, the focus of GWA
studies has increasingly shifted toward an interest in rare
genetic variants (Asimit and Zeggini 2010; Cirulli and Goldstein
2010; Eichler et al. 2010). As such studies improve in their
ability to detect the effects of rare variants on phenotype
(Li et al. 2013; Lee et al. 2014), it is paramount that the
imputation process carried out alongside them generates rea-
sonably accurate imputed genotypes with low-frequency
variants.

In this context, from Table 2 and Table 5, we observe,
based on differences in the mean discordance rates, that
minimizing ADCL improved on maximizing PD by the
largest absolute amount in the low-MAF bin (0 < MAF <
0.1), in both the simulated and actual data. This result might
be explained by the fact that the discordance rates obtained
when imputing low-frequency variants are relatively high to
begin with, and can be potentially reduced to a much greater
extent with an improved choice of algorithm for panel selec-
tion. Over all sites, as well as for heterozygous sites in the
high-MAF bin (0.2 = MAF = 0.5), the improvement in im-
putation accuracy by minimizing ADCL is limited by the al-
ready low discordance rates. Our analyses are consistent in
suggesting that the minimum-ADCL algorithm can contribute
to reducing imputation errors in GWA studies that seek to
identify the effects of low-frequency variants on phenotypic
traits.

In summary, we have demonstrated that internal reference
panel selection via minimizing ADCL produces empirically
improved imputation accuracy compared to maximizing PD,
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particularly for low-frequency variants. This finding applies to
both simulated and actual sequence data and is robust to
changes in the choice of initial parameter values. Note that
both ADCL and PD represent intermediate criteria that pro-
vide practical objective functions, where the ultimate goal is
maximizing imputation accuracy or other aspects of imputa-
tion performance. Although both algorithms produce consid-
erably better imputation performance measures than the use
of random panels, neither is guaranteed to produce the
maximal value of such measures over all possible panels.
Further, both approaches currently rely on imperfect assump-
tions, such as the assumption that haplotype phase is known. It
remains to be determined whether a single simple criterion
exists that could lead to identification of the best possible
panel for maximizing imputation performance.
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