
Journal of Mathematical Biology (2019) 78:155–188
https://doi.org/10.1007/s00285-018-1271-5 Mathematical Biology

Enumeration of compact coalescent histories for matching
gene trees and species trees

Filippo Disanto1 · Noah A. Rosenberg2

Received: 3 January 2018 / Revised: 12 July 2018 / Published online: 16 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Compact coalescent histories are combinatorial structures that describe for a given
gene tree G and species tree S possibilities for the numbers of coalescences of G that
take place on the various branches of S. They have been introduced as a data struc-
ture for evaluating probabilities of gene tree topologies conditioning on species trees,
reducing computation time compared to standard coalescent histories. When gene
trees and species trees have a matching labeled topology G = S = t , the compact
coalescent histories of t are encoded by particular integer labelings of the branches of
t , each integer specifying the number of coalescent events of G present in a branch of
S. For matching gene trees and species trees, we investigate enumerative properties of
compact coalescent histories. We report a recursion for the number of compact coales-
cent histories for matching gene trees and species trees, using it to study the numbers
of compact coalescent histories for small trees. We show that the number of compact
coalescent histories equals the number of coalescent histories if and only if the labeled
topology is a caterpillar or a bicaterpillar. The number of compact coalescent histories
is seen to increasewith tree imbalance: we prove that as the number of taxa n increases,
the exponential growth of the number of compact coalescent histories follows 4n in
the case of caterpillar or bicaterpillar labeled topologies and approximately 3.3302n

and 2.8565n for lodgepole and balanced topologies, respectively. We prove that the
mean number of compact coalescent histories of a labeled topology of size n selected
uniformly at random grows with 3.3750n . Our results contribute to the analysis of the
computational complexity of algorithms for computing gene tree probabilities, and to
the combinatorial study of gene trees and species trees more generally.
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1 Introduction

The study of the relationships between gene trees, which represent the histories of indi-
vidual genomic regions, and species trees, representing the histories of populations of
organisms, has generated new combinatorial structures (Maddison 1997; Degnan and
Salter 2005; Rosenberg and Tao 2008; Than and Nakhleh 2009; Degnan et al. 2012;
Wu 2012, 2016; Degnan and Rhodes 2015). Among these structures are coalescent
histories, structures that for a given gene tree topology G and species tree S represent
possible pairings of the coalescences in G with the branches of S on which the coales-
cences take place (Degnan and Salter 2005; Rosenberg 2007). The use of coalescent
histories in calculations of the probability Prob(G|S) (Degnan and Salter 2005) has
motivated the study of the number of coalescent histories possible for a given gene
tree topology and species tree topology (Degnan and Salter 2005; Rosenberg 2007,
2013; Than et al. 2007; Rosenberg and Degnan 2010; Disanto and Rosenberg 2015,
2016). A variety of enumerative results have been derived, primarily in the case in
which gene trees and species trees have a matching labeled topology.

Building on the approach of Degnan and Salter (2005), Wu (2016) introduced com-
pact coalescent histories as a tool for simplifying gene tree probability computations
(see also Degnan and Rhodes 2015). Given G and S, Wu’s “CompactCH” algorithm
computes Prob(G|S) by grouping into equivalence classes two (or more) coalescent
histories h1 and h2 when, in each branch of S, the numbers of coalescences of G
specified by h1 and h2 are the same. The resulting equivalence classes are the compact
coalescent histories, or compact histories for short. Certain intermediate computations
in the probability formula of Degnan and Salter (2005) are identical for all coalescent
histories with the same compact history, simplifying the probability computation.

Compact coalescent histories appear in sets over which sums are computed
[e.g. Eq. 5 of Wu (2016)]. Hence, for a given G and S, similarly to the way that
evaluation of Prob(G|S) by the method of Degnan and Salter (2005) depends on the
number of coalescent histories, the complexity of the evaluation of Prob(G|S) in Com-
pactCH is affected by the number of compact coalescent histories possible for G and
S. By studying this number, Wu (2016) showed that when the size of the species tree
is fixed and multiple gene lineages can be sampled per species, CompactCH calcu-
lates gene tree probabilities in polynomial time in the number of gene lineages. The
approach of Wu (2016) exchanges the slower summation of Degnan and Salter (2005)
over all coalescent histories with a given compact history for a faster computation that
requires only the number of such coalescent histories.

Here, permitting the size of the species tree to grow, we investigate the number of
compact coalescent histories for gene trees and species trees with a matching labeled
topology G = S = t . In particular, we measure how the growth of the number of
compact coalescent histories of t is affected by its number of taxa and its topology.
In Sect. 3, we present a recursion for the number of compact coalescent histories of
a matching gene tree and species tree. Extending a result of Wu (2016)—whose sup-
plement reported that when t has a caterpillar topology of size |t | = n, the number of
compact coalescent histories of t equals the number of coalescent histories of t—we
show that the number of compact coalescent histories of t equals its number of coales-
cent histories if and only if t is a caterpillar or bicaterpillar topology. Next, in Sect. 4,
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we study the number of compact coalescent histories when t belongs to each of several
families of trees with different degrees of imbalance. We demonstrate that unlike in
the caterpillar and bicaterpillar cases, the number of compact coalescent histories can
be much smaller than the number of coalescent histories when t is not a caterpillar or
bicaterpillar. Moreover, we show that when the number of taxa increases, the number
of compact coalescent histories grows exponentially faster in the families of more
unbalanced trees. Section 5 reports the mean number of compact coalescent histories
for a random labeled topology t of given size drawn under a uniform distribution.
Our results can assist in relating the complexity of algorithms for computing gene
tree probabilities based on compact coalescent histories to those that use an evaluation
based on other combinatorial structures, such as coalescent histories and ancestral
configurations (Wu 2012; Disanto and Rosenberg 2017, 2018).

2 Preliminaries

We investigate the number of compact coalescent histories for rooted binary labeled
trees. We recall basic features of tree structures in Sect. 2.1. In Sect. 2.2, we give
properties of generating functions that will be used for counting compact coalescent
histories.

2.1 Labeled toplogies

A bifurcating rooted tree with labeled taxa (Fig. 1a) is termed a labeled topology, or
“tree” for short. The size of a labeled topology t is its number of taxa |t |. We denote
by [t] the unlabeled topology, or “tree shape,” underlying t . This shape is obtained by
ignoring labels for the taxa of t .

Without loss of generality, we assume an alphabetical order a ≺ b ≺ c ≺ . . . over
the set {a, b, c, . . .} of possible labels for the taxa of a labeled topology, using the first
n labels for the leaves of a tree of size n.

As it is sometimes important to refer to internal nodes of a labeled topology, it
is useful to assign distinct but arbitrary labels to these internal nodes. Unlike the
taxon labels, the internal node labels need not be ordered. The labeling of internal
nodes is merely a convenience that does not distinguish different trees, and only the
taxon labels are important for characterizing if two labeled topologies with the same
unlabeled topology are distinct. In enumerating labeled topologies, only leaves are
considered to be labeled.

We let Tn be the set of labeled topologies of size n. We will require two results
concerning Tn .

Proposition 1 (Felsenstein 1978) For n ≥ 1, the cardinality of Tn is (2n)!/[2n(2n −
1)n!].
Proposition 2 (Flajolet and Sedgewick 2009, Example II.19), The generating function
T (z) = ∑

t :|t |≥1 z
|t |/|t |! = ∑∞

n=1 |Tn|zn/n! of the sequence |Tn|/n! satisfies T (z) =
1 − √

1 − 2z.
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Fig. 1 Coalescent histories for a gene tree and a species tree with a matching labeled topology G = S = t .
a A coalescent history. Arrows map the internal nodes of t = ((a, b), ((c, d), (e, f ))) to the branches of
t . b The gene tree topology G = t realized in the matching species tree S = t according to the coalescent
history in a. The mapping in a specifies the branches of the species tree (thick lines) where the coalescent
events of the gene tree (thin lines) take place

2.2 Exponential growth and analytic combinatorics

One of our main goals is to evaluate features of the growth of sequences of non-
negative integers. Following Flajolet and Sedgewick (2009), we recall a number of
results concerning the asymptotic behavior of sequences.

Definition 3 A sequence of non-negative numbers sn is said to have exponential
growth kn , or equivalently, to have exponential order k, when lim supn→∞

[
(sn)1/n

] =
limn→∞

[
supm≥n

[
(sm)1/m

]] = k.

Equivalently, this relation can be written sn = kng(n), with g a subexponential factor.
If the value k of the limit strictly exceeds 1, then sequence sn grows exponentially in
n, and we say that its exponential order is k.

By these definitions, if the exponential order ks of a sequence sn is strictly smaller
than the exponential order ks̃ of a sequence s̃n , then the sequence of ratios sn/s̃n
converges to 0 exponentially fast as (ks/ks̃)n . If instead sn and s̃n have the same
exponential order, then the increase or decrease of the sequence of ratios sn/s̃n is at
most polynomial in n, and we write sn �� s̃n .

Some of our results will be obtained by applyingmethods of analytic combinatorics
that concern singularities of generating functions (Sections IV and VI of Flajolet and
Sedgewick (2009)). More precisely, entries of a sequence of integers (sn)n≥0 can be
seen as coefficients ([zn] f )n≥0 of the power series expansion f (z) = ∑∞

n=0 snz
n at

z = 0 of a function f (z), the generating function of the sequence. Considering z
as a variable in the complex plane C, a correspondence exists between the dominant
singularity z = ρ of f (z)—the singularity of smallest distance from the origin in
C—and the exponential growth of the coefficients sn . In particular, for n → ∞,
the exponential order of sequence sn is the inverse of the modulus of the dominant
singularity of f (z),

sn = [zn] f (z) ��
(
1

ρ

)n

. (1)
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For instance, consider the generating function T (z) of the sequence |Tn|/n! (Proposi-
tion 2). Due to the branching character of the square root function

√
1 − 2z, z = 1/2

is the point of smallest modulus in the complex plane where T (z) fails to be analytic.
Hence, z = 1/2 is the dominant singularity of T (z). Using Eq. 1, we have

|Tn|
n! �� 2n . (2)

3 Compact coalescent histories for matching gene trees and species
trees

In this section, we define compact coalescent histories, and we provide a characteriza-
tion of the compact coalescent histories of a gene tree and species tree (Sect. 3.1). Next,
we report a recursion for the number of compact coalescent histories of a matching
gene tree and species tree (Sect. 3.2), using this recursion to analyze the number of
compact coalescent histories for small trees (Sect. 3.3). We provide a characterization
of the trees for which the numbers of coalescent histories and compact coalescent
histories are the same (Sect. 3.4).

We consider a gene tree labeled topology G and a species tree labeled topology S
with the same set of leaf labels. The gene tree labeled topology represents the sampling
of a single gene lineage in each of n ≥ 1 species.

A partial order can be placed on nodes and branches of a tree, where we denote
k2 ≤ k1 for a pair of nodes k1, k2 if k2 is descended from k1 in t ; we write k2 < k1
if k2 is descended from k1 and k1, k2 are distinct. We also write b2 ≤ b1 if branch b2
is descended from b1 in t , and b2 < b1 if in addition, b1, b2 are distinct. A node or
branch is trivially descended from itself.

Let tk be the subtree of t generated by node k, including the branch immediately
ancestral to k. Let |tk | be the number of leaves in tk ; we identify node k with the branch
immediately ancestral to it, so that we also describe tk as the subtree generated by this
branch.

3.1 A characterization of compact coalescent histories

We now formally define compact coalescent histories, recalling the definition of coa-
lescent histories (e.g. Than et al. 2007; Rosenberg and Degnan 2010).

Definition 4 Given a gene tree G and a species tree S, a coalescent history of (G, S)

is a function h from the internal nodes of G to the internal branches of S, satisfying
two conditions: (i) for each internal node k in G, all leaves descended from node k in
G descend from branch h(k) in S; (ii) for all pairs of internal nodes k1 and k2 in G, if
k2 is a descendant of k1 in G, then branch h(k2) is descended from branch h(k1) in S.

Here and in our subsequent analysis, we include the root of S as an internal node, and
we consider that a branch broot of S exists that is ancestral to the root. Note that in
condition (ii), h(k2) is permitted to equal h(k1).
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In the case of a matching labeled topology G = S = t , a coalescent history can be
regarded as being associatedwith the single tree t , and the conditions can be simplified:
a coalescent history of t is a function h from the internal nodes of t to the internal
branches of t satisfying: (i) for each internal node k in t , node k descends from branch
h(k) in t ; (ii) for all pairs of internal nodes k1 and k2 in t , if k2 is a descendant of k1
in t , then branch h(k2) is descended from branch h(k1) in t .

Coalescent histories (Fig. 1a) represent the topologically distinct configurations
that a gene tree labeled topology G can assume in the branching structure of a species
tree labeled topology S (Fig. 1b). A coalescent history specifies a possible list of the
species tree branches on which the gene tree coalescent events occur.

Following Wu (2016), an equivalence can be defined over the set of coalescent
histories for (G, S).

Definition 5 Consider a relation in which two coalescent histories h1, h2 of (G, S)

are equivalent when, for each branch b of S, considering all internal nodes k in G,
|{k : h1(k) = b}| = |{k : h2(k) = b}|. Each equivalence class of this relation is
termed a compact coalescent history, or a compact history for short.

In this equivalence relation, h1 is equivalent to h2 when, in each branch of S, h1 and h2
have the same numbers of coalescent events (Fig. 2a). We represent a compact history
of (G, S) by an integer labeling of the internal branches of S, the branch b being
labeled by the number �b of coalescent events in that branch (Fig. 2b). We denote by
m = m(h) the number �root of coalescent events in the root branch broot of compact
history h.

Note that froma compact history, the numbers of lineages ofG entering the branches
of S from below and exiting them above can be extracted. Indeed, in Definition 5, we
could instead define h1 and h2 to be equivalent if and only if for each branch of S,
(i) h1 and h2 have the same numbers of entering lineages, and (ii) h1 and h2 have the
same numbers of exiting lineages (Wu 2016, Lemma 3.1). This alternative perspective
is useful for computing the probability of the set of coalescent histories represented by
the compact history, as gene tree probability computations rely on counts of entering
and exiting lineages (Degnan and Salter 2005; Wu 2016).
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Fig. 2 Equivalence classes of coalescent histories and compact coalescent histories for matching gene trees
and species trees. a Two coalescent histories of the species tree G = S = t = ((a, b), ((c, d), (e, f ))) in
the same equivalence class. For each branch of t , the numbers of incoming arrows in the two coalescent
histories, representing coalescences on the branch, are the same. b The compact coalescent history of the
species tree t representing the equivalence class of the coalescent histories depicted in a. The label for each
branch corresponds to the number of incoming arrows in that branch
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Let (�b)b be an integer labeling of the internal branches of S, where �b is the label
of branch b. We will also treat the label of a branch of S as the label of its immediate
descendant node, so that the labeling is associated with both the internal branches and
the internal nodes of S.

For branch b of S, let Gb be the set of all internal nodes k in G with the following
pair of properties: (i) k represents the most recent common ancestor in G of a group
of two or more taxa descended from branch Sb of S; (ii) all taxa descended from k in
G are descended from Sb. |Gb| is the number of such nodes. The set Gb represents
the set of coalescences of G that have the possibility of occurring on branch b of S.
For the root branch broot of S, we have |Groot| = |G| − 1.

We can then characterize the labelings (�b)b that represent compact histories for
(G, S).

Proposition 6 A labeling (�b)b of S identifies a compact history h of (G, S) if and only
if (i) for all branches b of S other than the root branch, 0 ≤ �b ≤ |Gb| −∑

b′<b �b′ ,
and (ii) �root = |G| − 1 −∑

b �=root �b.

Proof First, we show that a labeling (�b)b that represents a compact history satisfies
(i) and (ii).

For a subtree Sb of S descended frombranch b, the sum
∑

b′≤b �b′ is the total number
of coalescent events in Sb. By definition of a coalescent history, this quantity is bounded
above by the number of internal nodes of the gene tree all of whose descendant taxa in
G descend from Sb in S, or |Gb|. Removing �b from the sum and noting that �b ≥ 0
because �b is a count, we obtain (i). For the case in which b is the root branch of S, the
total number of internal nodes of G all of whose descendant taxa in G descend from
Sroot in S is exactly |G| − 1, so that the inequality �b ≤ |Gb| −∑b′<b �b′ becomes an
equality, and we obtain (ii).

We must now show that any labeling (�b)b that satisfies (i) and (ii) represents a
compact history. It suffices to demonstrate that at least one coalescent history h lies
in the equivalence class represented by (�b)b. By postorder traversal of S, proceed
through the internal branches of S, for each branch b assigning certain nodes k of G
the value h(k) = b in the following manner. (1) If �b = 0, continue to the next branch
of S. (2) If �b > 0, by postorder traversal of G, proceed through the internal nodes k
of G all of whose taxa are descended from b in S. (3) Assign the value h(k) = b to the
first node of G encountered that either has no internal node descendants in G or that
already has all its descendant internal nodes in G assigned values of h. (4) Continue
following (3) until �b nodes k of G have been assigned h(k) = b.

That this construction produces a coalescent history h can be seen as follows.
Because (�b)b satisfies (i) by assumption, for each non-root branch b of S, Steps (1)-
(4) always find �b internal nodes of G to which the label b can be assigned: because of
the postorder traversal of S, the number of unassigned internal nodes of G descended
from b is initially |Gb| − ∑

b′<b �b′ , and �b is no more than this quantity by (i).
Condition (ii) guarantees that all |G|− 1 internal nodes k of G are assigned a value of
h(k), with those unassigned when broot is reached being assigned h(k) = broot. Step
(1) guarantees that condition (i) of the definition of a coalescent history is respected by
h, and Step (2) guarantees that h respects condition (ii) of the definition of coalescent
histories. �
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In Proposition 6, condition (i) indicates that the maximal number of coalescent
events that can happen in an internal branch b of the species tree, other than the root, is
given by the difference between the number |Gb| of coalescences of the gene tree that
could potentially occur on that branch and the number of coalescent events present
in the internal branches descended from b in S. Condition (ii) states instead that the
number of coalescences above the root of S is the total number of coalescences inG, or
|G|−1, minus the number of coalescences in the branches below the root. When b is a
leaf of S, Gb is empty, as no coalescences occur in the branch above a leaf node. Note
that although the definitions of coalescent histories and compact histories consider
only the internal branches of S, we can extend the labeling in compact histories to
include �b = 0 for branches b of S immediately ancestral to leaf nodes. Proposition 6
still applies if compact histories are taken to include leaf nodes of S with labels of 0;
indeed, by (i), �b = 0.

Our main interest is in the case of G = S = t . In this case, the number of internal
nodes of G that could potentially coalesce on branch b of S is |Gb| = |tb| − 1, so that
we have the following corollary.

Corollary 7 A labeling (�b)b of t identifies a compact history h of t if and only if (i)
for all internal branches b of t other than the root branch of t , 0 ≤ �b ≤ |tb| − 1 −∑

b′<b �b′ , and (ii) �root = |t | − 1 −∑
b �=root �b.

Compact coalescent histories are closely related to the population histories of Deg-
nan and Rhodes (2015). A compact coalescent history, like a coalescent history, is
defined for a pair consisting of a gene tree topology and a species tree topology. A
population history in the sense of Degnan and Rhodes (2015) is an integer labeling of
the species tree branches that, like a compact coalescent history, tabulates the numbers
of coalescences of a gene tree that occur on those branches. However, a population
history is defined only given the species tree, and not all population histories of a
species tree can represent possible sets of locations for the coalescences of a specified
gene tree on that species tree; the population histories of a species tree are exactly the
compact coalescent histories associated with the species tree and its matching gene
tree.

3.2 Recursion for the number of compact coalescent histories

For a general pair of trees (G, S), the compact coalescent histories can be enumerated
by classifying into equivalence classes the coalescent histories listed by the exhaustive
recursive enumeration of Rosenberg (2007). In the case ofG = S = t , we can provide
a recursion for the number of compact coalescent histories itself.

We consider a concept of extended compact coalescent histories, which differ from
compact coalescent histories in that it is possible that some of the gene tree coales-
cences of t have not yet occurred in t , including on the root branch of species tree
t ; this extension is useful in case t is a subtree of a larger tree (Fig. 3). Let u be the
number of coalescences that occur in t , including on its root branch. Let m be the
number of coalescences that occur on the root branch of t . The quantities u and m are
constrained, with 0 ≤ m ≤ u ≤ |t | − 1. For compact coalescent histories, we have
u = |t | − 1, as all coalescences of t occur in t , possibly on the root branch.
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Fig. 3 Schematic illustration of quantities in the recursion for the number of compact coalescent histories.
The labels m, m1, and m2 represent the numbers of coalescences on the root branch of a tree t , the root
branch of the left subtree t1, and the root branch of the right subtree t2, respectively. The quantities u, u1,
and u2 represent the total numbers of coalescences in the tree, left subtree, and right subtree, respectively,
including coalescences on the associated root branches

Tree t has “left” and “right” subtrees t1 and t2, where we consider these subtrees to
include their associated root branches. The quantities u1, u2, m1, m2, corresponding
to the numbers of coalescences of the left subtree, the right subtree, the root branch
of the left subtree, and the root branch of the right subtree, respectively, satisfy 0 ≤
m1 ≤ u1 ≤ |t1| − 1 and 0 ≤ m2 ≤ u2 ≤ |t2| − 1. The total number of coalescences
in t is u = u1 + u2 + m, as each coalescence of t must occur in the left subtree of t ,
the right subtree of t , or on the root branch of t .

Let At,u,m be the number of extended compact coalescent histories of t in which u
coalescences occur, of which m occur on the root branch. By definition of extended
compact coalescent histories, At,0,0 = 1 for any tree t , as a tree has a single labeling—
zeroes on all internal branches—if u = 0 and m = 0 and no coalescences occur.
In addition, At,u,m = 0 when u,m fail to satisfy 0 ≤ m ≤ u ≤ |t | − 1. Let Bt

denote the number of compact coalescent histories for a tree t with |t | taxa, and let
Bt,m = At,|t |−1,m be the number among these compact coalescent histories in which
m coalescences occur on the root branch.

Theorem 8 The number of compact coalescent histories for a tree t with |t | ≥ 2 taxa
satisfies

Bt =
|t |−1∑

m=1

At,|t |−1,m . (3)

The number of extended compact coalescent histories for a tree t with |t | ≥ 1 taxa
satisfies

At,u,m =
min(|t1|−1,u−m)∑

u1=max[0,u−m−(|t2|−1)]

u1∑

m1=0

u−m−u1∑

m2=0

At1,u1,m1 At2,u−m−u1,m2 . (4)

The base cases of the recursion are At,0,0 = 1 for the 1-taxon tree, At,0,0 = At,1,1 = 1
for the 2-taxon tree, and At,u,m = 0 when u,m fail to satisfy 0 ≤ m ≤ u ≤ |t | − 1.

Proof Equation 3 follows from the fact that Bt,m = At,|t |−1,m , noting that the number
of coalescences on the root branch of a tree with |t | ≥ 2 taxa satisfies 1 ≤ m ≤ |t |−1.

For Eq. 4, we decompose each extended compact coalescent history for t into an
extended compact coalescent history for t1, an extended compact coalescent history for
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t2, and a set of coalescences on the root branch of t . We must consider all assignments
of (u1, u2,m1,m2) that produce an extended compact coalescent history with u total
coalescences andm coalescences above the root. For each such assignment, the number
of extended compact coalescent histories is At1,u1,m1 At2,u2,m2 .

To determine permissible values for (u1, u2), recall that the total number of coa-
lescences in t1 and t2 together is u1 + u2 = u − m, so that 0 ≤ u1, u2 ≤ u − m.
However, u1 ≤ |t1| − 1, as at most |t1| − 1 coalescences occur in t1, and similarly,
u2 ≤ |t2| − 1. Hence, if as many coalescences as possible are placed in t2 so that
u2 is as large as possible, u1 remains bounded below by u − m − (|t2| − 1). Once
u1 and u2 = u − m − u1 have been specified, (m1,m2) satisfies 0 ≤ m1 ≤ u1 and
0 ≤ m2 ≤ u2.

The nontrivial base case At,1,1 = 1 for the 2-taxon tree follows by noting from
Corollary 7 that this tree has only a single labeling that represents a compact coalescent
history, and that this labeling has u = m = 1. �


Using Theorem 8, we can compute the number of compact coalescent histories
for arbitrary trees t by applying Eq. 3, recursively applying Eq. 4 to complete the
calculation.

3.3 Number of compact coalescent histories for small trees

For small values of n, we use Theorem 8 to exhaustively compute the number of
compact histories for representative labelings of the unlabeled topologies with n taxa.
Table 1 reports these numbers of compact coalescent histories for each unlabeled
topology of size 2 ≤ n ≤ 7, where an unlabeled topology is taken to have a specific
but arbitrary labeling. For the tree shapes considered, the number of compact coa-
lescent histories is always less than or equal to the number of coalescent histories,
with equality only when the two root subtrees are caterpillar trees. As we will see,
this characterization of the condition for equality of the numbers of compact coales-
cent histories and coalescent histories will be shown to hold for arbitrary tree size in
Sect. 3.4.

From the table, we also observe that the number of compact coalescent histories
does not always increase with the number of coalescent histories. The fifth tree shape
of size 7 has more coalescent histories than the sixth tree shape of size 7, but the latter
has more compact coalescent histories. In Sect. 4, we will observe this phenomenon
on a larger scale, identifying two families of trees of increasing size, F1 and F2, such
that the number of coalescent histories grows exponentially faster for trees in F1 than
for trees in F2, whereas the growth of the number of compact coalescent histories for
trees in F1 is exponentially slower than for trees in F2.

Our calculations suggest a correlation between the number of compact histories and
tree balance, with more compact histories occurring for less balanced trees. We can
examine this claim using the Colless (1982) index, iC (t), which measures the degree
of imbalance of a tree t , summing over all internal nodes k of t the absolute value of the
difference between the sizes �k, rk of the left and right subtrees of k. More precisely,
iC (t) = st

∑
k |rk − �k |, where st = 2/[(|t | − 1)(|t | − 2)] is a rescaling factor. The

123



Enumeration of compact coalescent histories for matching… 165

Table 1 Numbers of compact coalescent histories and coalescent histories for small trees

Number of Number of compact Number of Number of compact
Unlabeled coalescent coalescent Unlabeled coalescent coalescent

Size topology histories histories Size topology histories histories

2 1 1 6 25 25

3 2 2 7 132 132

4 5 5 7 138 118

4 4 4 7 130 108

5 14 14 7 112 98

5 13 12 7 113 86

5 10 10 7 106 90

6 42 42 7 84 84

6 42 37 7 84 74

6 37 33 7 74 66

6 28 28 7 70 70

6 26 24 7 65 60

Each unlabeled topology corresponds to a single representative labeled topology t

index iC (t) ranges in the interval iC (t) ∈ [0, 1], assuming values close to 1 for more
unbalanced trees and values close to 0 for more balanced trees.

Figure 4 plots the number of compact histories against iC (t) for the 98 unlabeled
topologies with 10 taxa. Trees with a larger Colless index tend to have more compact
histories. The Pearson correlation coefficient is 0.9691.

For n ≤ 15, we have identified the tree shapes underlying the labeled topologies
with the largest and smallest numbers of compact histories among labeled topologies
of size n. These shapes are not necessarily those with the largest and smallest numbers
of coalescent histories; for example, in Table 1, the shapes with the fewest compact
histories and the fewest coalescent histories differ for n = 6, and the shapes with the
most compact histories and the most coalescent histories differ for n = 7.

For each n for 2 ≤ n ≤ 15, caterpillar shapes are seen to have the most compact
histories, equal to the (n − 1)th Catalan number, their number of coalescent histories
(see Sect. 4). Tree shapes associated with the fewest compact histories for each small n
appear in Fig. 5. These shapes have a recursive structure: the nth tree tn for 2 ≤ n ≤ 15
can be decomposed as

tn = (td , tn−d), (5)

where d is the power of 2 nearest to n/2. In particular, when n is a power of 2,
the observed tree decomposition defines tn to be the completely balanced tree shape.
Interestingly, the family of tree shapes (tn)n≥1 obtained by iteratively applying Eq. 5
already appears in the study of gene trees and species trees. As shown by Disanto
and Rosenberg (2017), for fixed tree size n, the labeled topologies with shape tn

123



166 F. Disanto, N. A. Rosenberg

0.0 0.2 0.4 0.6 0.8 1.0

7.0

7.5

8.0

8.5

Colless index

N
at

ur
al

lo
ga

rit
hm

of
th

e
nu

m
be

r
of

co
m

pa
ct

co
al

es
ce

nt
hi

st
or

ie
s

Fig. 4 The natural logarithm of the number of compact coalescent histories for the 98 tree shapes of size
n = 10, plotted against the Colless index of imbalance

Fig. 5 Tree shapes of size 1 ≤ n ≤ 10 whose labeled topologies have the fewest compact histories among
shapes of size n. In each tree with n ≥ 2, the two root subtrees each minimize the number of compact
coalescent histories among trees of their size. From left to right, the numbers of compact histories are 1,
1, 2, 4, 10, 24, 60, 144, 396, and 1032. For 11 ≤ n ≤ 15, the shapes with the fewest compact histories
continue to follow the recursive decomposition in Eq. 5, with 2796, 7200, 19,800, 51,600, and 139,800
compact coalescent histories for n = 11, 12, 13, 14, and 15, respectively

have the largest number of “root ancestral configurations,” and they also have the
highest probability under the Yule model of speciation (Harding 1971; Hammersley
and Grimmett 1974; Degnan and Rosenberg 2006).

3.4 Trees with the same numbers of compact coalescent histories and coalescent
histories

In this section, we characterize labeled topologies of matching gene trees and species
trees for which the number of compact coalescent histories equals the number of coa-
lescent histories. Because each compact coalescent history represents an equivalence
class of coalescent histories, the number of compact histories is less than or equal to
the number of coalescent histories. Wu (2016) showed that each compact coalescent
history for a caterpillar labeled topology is associated with a single coalescent his-
tory, so that the numbers of compact histories and coalescent histories are equal. A
caterpillar tree has only one possible sequence in which the coalescences can occur,
so that once the locations of the coalescences are specified by the integer labeling of a
compact coalescent history, the particular coalescences associated with the nodes are
determined.

Following Rosenberg (2007), a bicaterpillar tree is a tree whose two root subtrees
are both caterpillar trees (Fig. 6a). A caterpillar of size n ≥ 2 is trivially a bicaterpillar,
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with subtrees of size 1 and n−1. In a bicaterpillar, no internal node other than the root
has the property that both of its immediate descendant nodes are internal nodes; in a
caterpillar, not even the root has this property. Any non-bicaterpillar tree has at least
one non-root internal node both of whose immediate descendant nodes are internal
nodes.

Theorem 9 In a labeled topology t, the number of compact coalescent histories equals
the number of coalescent histories if and only if t is a bicaterpillar.

Proof Consider a bicaterpillar tree t . We must show that each compact history of t is
associated with only a single coalescent history. Consider a compact history of t . In
that compact history, for each of the two caterpillar root subtrees, the list of integer
labels for the nodes in that subtree, including the subtree root, uniquely specifies the
locations of the coalescences in that subtree. The remaining coalescences necessarily
occur above the root of t . Hence, the list of labels for the nodes of t specifies exactly
where all coalescences occur, and only one coalescent history is possible for each
compact history.

For the reverse direction, suppose t is not a bicaterpillar. Then there must exist an
internal node κ other than the root of t whose immediate descendant nodes κ1 and κ2
are internal nodes. These nodes must each have as a descendant a cherry internal node,
an internal node with exactly two leaf descendants. Denote these cherry nodes κ ′

1 and
κ ′
2, with κ ′

1 possibly equal to κ1 and κ ′
2 possibly equal to κ2. Let a and b be leaves that

descend from κ ′
1, and let c and d be leaves that descend from κ ′

2. The compact history
in which the label for κ is 1, the label for the root of t is |t | − 2, and all other nodes
have label 0 has at least two associated coalescent histories. In particular, it is possible
that the single coalescence associated with node κ is (a, b), or that it is (c, d). Hence,
we have two coalescent histories associated with a single compact history, and the
number of compact histories is strictly less than the number of coalescent histories. �


As noted above, Table 1 illustrates that the number of compact coalescent histories
is equal to the number of coalescent histories if and only if t is a bicaterpillar for trees
t of size 2 ≤ n ≤ 7.

4 Number of compact coalescent histories for special families of trees

We now study the number of compact histories in three families of labeled topologies.
We consider bicaterpillar, lodgepole, and completely balanced labeled topologies.

By γp,q , we denote a representative bicaterpillar labeled topology having root sub-
trees of size p ≥ 1 and q ≥ 1 (Fig. 6a). For fixed n ≥ 2, letting q ≥ p, the bicaterpillar
trees have (p, q) = (1, n − 1), (2, n − 2), . . . , (�n/2�, �n/2�).

Denote by λn a representative lodgepole labeled topology with n cherries and
size |λn| = 2n + 1 taxa (Fig. 6b). The shape [λn] satisfies the recursion [λn] =
([λn−1], (•, •)), with [λ0] = •. In other words, [λn] is inductively defined by append-
ing [λn−1] and a tree with two leaves—a cherry—to a common root, beginning with
the 1-taxon tree [λ0]. Lodgepole trees have been introduced by Disanto and Rosenberg
(2015) as an example of a tree family for which the growth of the number of coalescent

123



168 F. Disanto, N. A. Rosenberg

gf

3λ

a b d e f hc g

β 3

2 taxa 3 taxa

a b edc

3 cherries

=

B
depth 3=

C

=

a b dc e

A

γ 2,3

Fig. 6 Families γp,q , λn , and βn of labeled topologies. a The bicaterpillar labeled topology γ2,3. Topology
γp,q has |γp,q | = p+q taxa. b The lodgepole labeled topology λ3, where |λn | = 2n+1. c The completely
balanced labeled topology β3, where |βn | = 2n

histories is faster than exponential in the number of taxa. In particular, the number of
coalescent histories of λn grows asymptotically like the double factorial (2n + 1)!!.

Finally, in contrast with maximally unbalanced trees γ1,n−1, we consider com-
pletely balanced trees. We denote by βn a representative completely balanced labeled
topology of size |βn| = 2n taxa (Fig. 6c), with shape defined by [β0] = • and
[βn] = ([βn−1], [βn−1]). The number of coalescent histories in the family βn is avail-
able only by a recursion (Rosenberg 2007), and the asymptotic growth of this number
is not known.

Setting c(γp,n−p), c(λn), and c(βn) as the numbers of compact histories for γp,n−p,
λn , and βn respectively, in Sects. 4.1, 4.2, and 4.3 we show that for increasing values
of n, the exponential growth of the sequences c(γp,n−p), c(λn), and c(βn)with respect
to tree sizes |γp,n−p|, |λn|, and |βn| is given by

c(γp,n−p) �� (kγ )|γp,n−p |, with kγ = 4, (6)

c(λn) �� (kλ)
|λn |, with kλ =

√

5
√
5 + 11

2
≈ 3.3302, (7)

c(βn) �� (kβ)|βn |, with 2.855 < kβ < 2.858. (8)

A remarkable consequence of Eq. 7 is that although the growth of the number of
coalescent histories in the lodgepole family is faster than exponential, the number of
compact histories in the family grows “only” exponentially, as determined by Eq. 7.
Furthermore, although the number of coalescent histories in the lodgepole family
grows much faster than in the caterpillar family (Disanto and Rosenberg 2015), the
growth of the number of compact histories in the lodgepole family is exponentially
slower than for caterpillars.

In accord with the cases of the small trees illustrated in Fig. 4, we also observe
a trend in the values of the exponential orders kγ , kλ, and kβ and the values of
the Colless indices iC (γ1,n−1), iC (λn), and iC (βn). For maximally unbalanced and
completely balanced trees, we have iC (γ1,n−1) = 1 and iC (βn) = 0. For n ≥ 1,
iC (λn) = 2/[2n(2n − 1)] × [1 + ∑n

i=2(2i − 3)] = (n2 − 2n + 2)/[n(2n − 1)],
from which iC (λn) → 1/2 as n → ∞. For large n, among the families we consider,
the unbalanced caterpillars have the most compact histories, the completely balanced
trees have the fewest, and the lodgepole trees, with an intermediate level of balance,
have an intermediate number of compact histories.
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4.1 Bicaterpillar trees �p,n−p

We showed in Sect. 3.4 that the number c(γp,n−p) of compact coalescent histories
for γp,n−p equals the number of coalescent histories of γp,n−p. This fact enables the
computation of c(γp,n−p) and its exponential growth.

Theorem 10 For the bicaterpillar tree γp,n−p, (i) the number of compact coalescent
histories satisfies

c(γp,n−p) = CpCn−p, (9)

where Cn = (2n
n

)
/(n+1) is the nth Catalan number, and (ii) the exponential growth of

the number of compact coalescent histories satisfies c(γp,n−p) �� (kγ )|γp,n−p |, where
kγ = 4.

Proof (i) The number of coalescent histories for c(γp,n−p)was shownbyRosenberg
(2007, Theorem 3.10) to be CpCn−p. The claim follows from the equivalence
of compact histories and coalescent histories for bicaterpillars.

(ii) We compute the exponential growth of the number of compact coalescent his-
tories first for the caterpillar γ1,n−1. Eq. 9 yields c(γ1,n−1) = Cn−1. From(2n
n

) �� 4n and |γ1,n−1| = n, it follows that c(γ1,n−1) �� 4n .
Rosenberg (2007, Corollary 3.11) showed that for fixed n ≥ 2, over the

range 1 ≤ p ≤ �n/2�, the number of coalescent histories for the bicaterpil-
lar γp,n−p (Eq. 9) is greatest when p = 1, and it decreases monotonically
from Cn−1 to C�n/2�C�n/2� as p increases from 1 to �n/2�. Hence, considering
bicaterpillars with n taxa, the Catalan number Cn−1 is both the largest number
of coalescent histories and the largest number of compact histories. Note that
because Cn �� 4n , the product C�n/2�C�n/2�, representing the smallest number
of coalescent histories and compact histories possible for a bicaterpillar with n
taxa, also satisfiesC�n/2�C�n/2� �� 4�n/2�4�n/2� = 4n . Thus, because the number
of compact histories satisfies c(γp,n−p) �� 4n both for the n-taxon bicaterpillar
with the fewest compact histories and for the n-taxon bicaterpillar with the most
compact histories, it does so for any n-taxon bicaterpillar, irrespective of the
value of p. �


The pattern that the number of compact histories increases with increasing imbal-
ance that is seen in comparing caterpillar, lodgepole, and completely balanced families
is also observed with bicaterpillars as p changes. The Colless index for γp,n−p is

iC (γp,n−p) = (n − 2p) + [∑p
i=2(i − 2)

]+ [∑n−p
i=2 (i − 2)

]

(n − 1)(n − 2)

= 2[p − ( n2 + 1)]2 + n2−6n+4
2

(n − 1)(n − 2)
. (10)

For fixed n, this quantity decreases as p increases from 1 to �n/2�. At p = 1, it has
the maximal value of iC (γ1,n−1) = 1. At p = �n/2�, it is near 1/2: iC (γn/2,n/2) =
(n−4)/[2(n−1)] for evenn and iC (γ(n−1)/2,(n+1)/2) = (n2−6n+13)/[2(n−1)(n−2)]
for odd n.

123



170 F. Disanto, N. A. Rosenberg

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

N
at

ur
al

 lo
ga

rit
hm

 o
f t

he
 n

um
be

r
of

 c
om

pa
ct

 c
oa

le
sc

en
t h

is
to

rie
s

Colless index

n=50

n=40

n=30

n=20

n=10

Fig. 7 The natural logarithm of the number of compact coalescent histories for bicaterpillar tree shapes
γp,n−p (Eq. 9), plotted against the Colless index of imbalance (Eq. 10). For each of five values of n, the
size of plotted points increases as p ranges from 1 to �n/2�, indicating that bicaterpillars with larger p have
smaller Colless indices and fewer compact histories
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Fig. 8 The 10 compact histories possible for the lodgepole labeled topology λ2

Fig. 7 plots the logarithm of the number of compact histories (Eq. 9) against the
Colless index (Eq. 10) for each p from 1 to �n/2�, for n = 10, 20, 30, 40, and 50.
Following Eqs. 9 and 10, the values of both log c(γp,n−p) and iC (γp,n−p) decrease
as p increases. We can also observe from the figure the relatively constant value in
p for log c(γp,n−p) suggested by the fact that c(γp,n−p) has exponential order 4 in n
irrespective of p. For fixed p, with each increment of 10 in n, the figure illustrates that
this constant value increases by a value close to log(4n+10/4n) = 10 log 4 ≈ 13.8629,
the value predicted by the exponential order 4 of c(γp,n−p) at fixed p.

4.2 Lodgepole trees �n

In this section, we study in detail the number c(λn) of compact histories of the lodge-
pole labeled topology λn . We prove Eq. 7, and we derive an explicit formula, Eq. 18,
for c(λn).

We say that a compact history h of λn generates a compact history h′ of λn+1 if
the restriction of h′ to the subtree λn of λn+1 agrees with h when we ignore the label
assigned by h to the root branch of λn . For instance, exactly 6 of the 10 compact
histories of λ2 depicted in Fig. 8 are generated by the compact history h of λ1 =
(a, (b, c)) that has m(h) = 2 and label 0 for the branch above the cherry (b, c).
According to this definition, each compact history h′ of λn+1 is generated by exactly
one compact history h of λn .
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Fig. 9 Generation of compact coalescent histories of lodgepole labeled topologies. aGeneration of compact
histories of λn+1 from a compact history of λn . Let h be a compact history of λn with label m = m(h)

for its root branch. The compact histories h′ of λn+1 generated by h are determined by choosing two
parameters: (i) the label, 0 or 1, for the branch above the cherry root subtree of λn+1, and (ii) the label
� ∈ [0,m] for the branch above the root subtree λn of λn+1. If the label in (i) is chosen to be 0, then the
label m(h′) = m + 2 − � of the root branch in λn+1 ranges in the interval m(h′) ∈ [2,m + 2]. Similarly,
if the label chosen in (i) is 1, then the label m(h′) = m + 1 − � ranges in m(h′) ∈ [1,m + 1]. b The first
levels of the generating tree (Eq. 11). A node (m) at depth n in the generating tree accounts for a compact
history of λn with root branch labeled by m. The root of the generating tree has label (0), as the lodgepole
λ0 with 1 taxon has no coalescent events. Nodes descending from a generic node (m) are determined by
Eq. 11. The 10 nodes at depth 2 account for the compact histories of λ2 of Fig. 8

To enumerate the compact histories of the lodgepole family, we use a generating
tree approach (Barcucci et al. 1999; Banderier et al. 2002). We associate each compact
history with a labeled node in a tree that represents all possible choices for producing
the compact histories: the generating tree. More precisely, the generating tree of the
compact histories of the lodgepole family is characterized by the following properties.

Definition 11 The generating tree of the compact coalescent histories of the lodgepole
family (λn)n≥0 is the rooted tree in which (i) the node associated with a compact
history h of λn for which m(h) = m has depth n and label (m), and (ii) a node (m′)
directly descends from a node (m), written (m) � (m′), when (m′) is associated with
a compact history of λn+1 generated by the compact history of λn corresponding to
the node (m).

The first levels of the generating tree appear in Fig. 9b. Nodes correspond to the
compact histories of λ0, λ1, and λ2; each of the 10 depth-2 nodes is associated with
a compact history of λ2 from Fig. 8. As previously observed, 6 of the 10 compact
histories of λ2 are generated by the compact history of λ1 with root label 2. Indeed, in
Fig. 9B, 6 nodes at depth 2 descend directly from node (2) at depth 1. Different nodes
in the generating tree can share the same label, as different compact histories can have
the same label for their root branch (Fig. 8).

For an arbitrary compact history h of λn , the value of m(h) = m provides informa-
tion about the number of compact histories of λn+1 generated by h, or, equivalently,
about the number of nodes at depth n + 1 in the generating tree that descend from
the node (m) at depth n associated with h. Moreover, taking the integer m as input,

123



172 F. Disanto, N. A. Rosenberg

the construction in Fig. 9a determines the value m(h′) for all the compact histories h′
generated by h.

The next result iteratively characterizes the structure of the generating tree.

Proposition 12 The generating tree of the compact coalescent histories of the lodge-
pole family (λn)n≥0 can be produced iteratively, level by level, by the following rule:
(i) the root of the generating tree is labeled by (0), and (ii) each node with label
(m) in the generating tree has exactly 2m + 2 descendants, which are labeled by
(2), (3), . . . , (m + 2) and (1), (2), . . . , (m + 1). In symbols,

{
(0) ≡ root;
(m) � (2), (3), . . . , (m + 2), (1), (2), . . . , (m + 1).

(11)

Proof According to the construction of compact histories described in Fig. 9A, each
compact history h of λn with root label m generates exactly 2m + 2 different compact
histories h′ of λn+1: one for each value of m(h′) ∈ {2, 3, . . . ,m + 2}, when the node
above the cherry root subtree of λn+1 has label 0, and one for each value of m(h′) ∈
{1, 2, . . . ,m + 1}, when the node above the cherry root subtree of λn+1 has label 1. In
particular, this construction characterizes the nodes of the generating tree that directly
descend from an arbitrary node (m): for each integer m ≥ 0, the descendants of each
node (m) present in the generating tree are (2), (3), . . . , (m+2), (1), (2), . . . , (m+1).
Setting to (0) the label for the root—the node at depth 0—of the generating tree, the
characterization of descendant nodes yields the procedure given inEq. 11 for iteratively
producing the generating tree of the compact histories of the lodgepole family. �


As an example, starting from the root node (0) of the generating tree and applying
Eq. 11,wefind (0) � (2), (1),whichgives thefirst level of the tree ofFig. 9B.Asecond
application then gives (2) � (2), (3), (4), (1), (2), (3) and (1) � (2), (3), (1), (2),
from which we recover the second level of the tree.

To count the number of compact histories of the nth lodgepole tree, we make use
of the equivalence between the number of nodes with label (m) produced at depth n
in the generating tree determined by Eq. 11 and the number cm,n of compact histories
of λn with root branch labeled by m.

Let L(x, z) = ∑∞
n=0

∑|λn |−1
m=0 cm,n xmzn be the bivariate generating function count-

ing nodes (m) at depth n in the generating tree. Note that for each n ≥ 0, because
each compact history has label from 1 to at most |λn| − 1 above the root, we have
∑|λn |−1

m=0 cm,n = c(λn). Hence, L(1, z) = ∑∞
n=0 c(λn)z

n is the generating function
associated with the sequence c(λn). A functional equation that characterizes L(1, z)
can be determined from the structure of the generating tree described in Proposition 12.

Proposition 13 The generating function L(1, z) = ∑∞
n=0 c(λn)z

n satisfies the func-
tional equation

L(1, z) = 1 + zL(1, z)2 + zL(1, z)3 ≡ φ
(
z, L(1, z)

)
. (12)

Proof We first derive an equation for the bivariate generating function L(x, z), which
is then used to prove Eq. 12. From Proposition 12, each time that an expression xmzn
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is counted in the generating function L(x, z)—written xmzn ∈ L in what follows—
the terms (

∑m+2
j=2 x j +∑m+1

j=1 x j )zn+1 appear in L(x, z) as well. Summing over all
possible xmzn ∈ L , we obtain

L(x, z) = 1 +
⎡

⎣
∑

xmzn∈L

( m+2∑

j=2

x j +
m+1∑

j=1

x j
)

zn+1

⎤

⎦

= 1 + x2z
∑

xmzn∈L

(1 − xm+1)zn

1 − x
+ xz

∑

xmzn∈L

(1 − xm+1)zn

1 − x

= 1 + (x2z + xz)

[
L(1, z) − xL(x, z)

1 − x

]

, (13)

where the 1 = x0z0 term in Eq. 13 accounts for the root of the generating tree (Eq. 11).
The root does not appear in the sum on the right-hand side because it is not descended
from any node; in summing over all xmzn ∈ L to produce L(x, z) on the left, no term
gives rise to x0z0 on the right. Collecting terms yields

L(x, z)

[

1 + x2z(1 + x)

1 − x

]

= 1 + L(1, z)

[
xz(1 + x)

1 − x

]

, (14)

from which we can derive an equation for L(1, z) by applying the “kernel” method
(Banderier et al. 2002).

Take X = X(z) such that

1 + X2z(1 + X)

1 − X
= 0. (15)

By replacing x with X in Eq. 14, the left-hand side cancels, giving

0 = 1 + L(1, z)

(

− 1

X

)

,

where we note that Xz(1+X)
1−X = − 1

X to produce the right-hand side. We then obtain
L(1, z) = X , which together with Eq. 15 yields Eq. 12. �


From Eq. 12, it is possible to determine the dominant singularity ρ of L(1, z), and
thus, from Eq. 1, the exponential growth of the sequence c(λn) �� (1/ρ)n . Following
Section VII.6.1 of Flajolet and Sedgewick (2009), given m ≥ 1 generating functions
y1(z), . . . , ym(z) satisfying a system of m non-linear polynomial equations

⎧
⎪⎨

⎪⎩

y1 = φ1(z, y1, . . . , ym)
...

...
...

ym = φm(z, y1, . . . , ym),

(16)

the value ρ of the common dominant singularity of y1, . . . , ym can be determined
from the algebraic expressions for φ1, . . . , φm through the “characteristic system”
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associated with Eq. 16. Eq. 64 in Section VII.6.1 of Flajolet and Sedgewick (2009)
enables the calculation of the characteristic system of Eq. 16.

In our case, setting y1(z) = L(1, z), φ1 = φ, and m = 1, the associated character-
istic system of Eq. 12 is

{
τ = φ(ρ, τ) = 1 + ρτ 2 + ρτ 3

0 = 1 − ∂φ(ρ,τ )
∂τ

= 1 − 2ρτ − 3ρτ 2,
(17)

and the following theorem holds.

Theorem 14 In the lodgepole family (λn)n≥0, (i) the exponential growth of the number
of compact coalescent histories satisfies c(λn) �� (kλ)

|λn |, where

kλ =
√

5
√
5 + 11

2
≈ 3.3302,

and (ii) when n ≥ 1, the number c(λn) can be computed as

c(λn) = 1

n

n−1∑

i=0

2i+1
(
2n

i

)(
n

i + 1

)

. (18)

Proof (i) By solving Eq. 17 in positive real numbers, we obtain ρ = (5
√
5 − 11)/2,

and c(λn) �� (1/ρ)n . Because the lodgepole λn has |λn| = 2n + 1 taxa, the
number of compact histories in the lodgepole family grows like (1/ρ)(|λn |−1)/2,
or

c(λn) �� (
√
1/ρ)|λn |, (19)

with respect to the number of taxa |λn|. Setting kλ = √
1/ρ, Eq. 19 yields the

result.
(ii) The exact formula for c(λn) follows from an application of Lagrange inversion

to the functional equation of Proposition 13. The complete derivation of Eq. 18
from Eq. 12 can be found in Deutsch (2000), where a class of lattice paths is
shown to be enumerated by a generating function satisfying Eq. 12. �


Note that computing the exponential order 1/ρ of the sequence c(λn) directly
from Eq. 18 is not straightforward, and the value of ρ is indeed not reported by
Deutsch (2000). Fig. 10 shows numerical values of c(λn)1/|λn | converging to the value
of kλ ≈ 3.3302 that determines the exponential growth of the sequence c(λn) with
respect to tree size |λn|.

4.3 Completely balanced treesˇn

This section studies the number c(βn) of compact histories for the completely balanced
labeled topology βn . We prove Eq. 8, deriving a recursive procedure for calculating
c(βn).

Denote by cm,n the number of compact histories of βn with root branch labeled by
m. Consider the family of polynomials Bn(x) = ∑|βn |−1

m=0 cm,nxm , where each term
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Fig. 10 Values of c(λn)1/|λn |
for 0 ≤ n ≤ 100. The dashed
horizontal line has ordinate kλ,
with kλ ≈ 3.3302 as in
Theorem 14. The integers c(λn)

representing the number of
compact coalescent histories for
the lodgepole family are
computed from Eq. 18. As

c(λn) �� k|λn |
λ , for increasing n,

the sequence c(λn)1/|λn |
approaches kλ

0 20 40 60 80 100
0

1

2

3

4

n

xm in Bn(x), written xm ∈ Bn , accounts for a compact history h of βn withm(h) = m.
Note that Bn(1) = ∑|βn |−1

m=0 cm,n = c(βn).
The next proposition gives a recursive procedure for calculating the polynomial

Bn+1(x).

Proposition 15 The family of polynomials Bn(x) = ∑|βn |−1
m=0 cm,nxm satisfies the

recursion

Bn+1(x) = x [Bn(1) − x Bn(x)]2

(1 − x)2
, (20)

with B0(x) = 1.

Proof The construction of compact histories described in Fig. 11 translates into alge-
braic terms, determining the following recurrence for the polynomial Bn+1(x):

Bn+1(x) =
∑

xm1∈Bn

∑

xm2∈Bn

m1∑

�1=0

m2∑

�2=0

xm1+m2+1−�1−�2 (21)

= x

⎡

⎣

⎛

⎝
∑

xm1∈Bn

m1∑

j=0

x j

⎞

⎠

⎛

⎝
∑

xm2∈Bn

m2∑

j=0

x j

⎞

⎠

⎤

⎦

= x

⎛

⎝
∑

xm∈Bn

1 − xm+1

1 − x

⎞

⎠

2

= x [Bn(1) − x Bn(x)]2

(1 − x)2
. (22)

In particular, the nested sums in Eq. 21 encode the generation of a generic compact
history h ≡ xm1+m2+1−�1−�2 ∈ Bn+1 by appending to a common root two arbitrary
compact histories h1 ≡ xm1 ∈ Bn and h2 ≡ xm2 ∈ Bn (step i of Fig. 11), and then
choosing new labels �1 ∈ [0,m1] and �2 ∈ [0,m2] for the two branches descending
from the root of h (step ii). Eq. 22 follows fromEq. 21 through algebraicmanipulations.

�

By applying Eq. 20 four times, we obtain B1(x) = x , B2(x) = x + 2x2 + x3,

B3(x) = 16x + 32x2 + 40x3 + 32x4 + 17x5 + 6x6 + x7, and B4(x) = 20736x +
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a b c d

0 1

= 2m2
m1 = 2

a b c d

0 1

A B C D E F G H

h1 == h2

m1

a b c d

0 1

a b c d

0 1

m2

h

0,..., 0,...,

Fig. 11 Compact histories of completely balanced labeled topologies. Each compact history h of βn+1
is uniquely obtained by (i) appending two compact histories h1, h2 of βn to a common root node, and
(ii) choosing labels �1 and �2 for the two branches descending from the root of h. If m1 = m(h1) and
m2 = m(h2) are the labels of the root branches of h1 and h2 respectively, then �1 ranges in the interval
�1 ∈ [0,m1], and �2 ranges in the interval �2 ∈ [0,m2]. Once �1, �2 have been fixed, the label of the root
branch in h is determined bym(h) = m1+m2 +1−�1−�2. After step (ii), taxa of h1 and h2 are relabeled
to obtain a proper completely balanced labeled topology (capital letters). The labeling is applied such that
one set of labels is given to the taxa in h1 and another set to the taxa in h2. Note that even when h1 = h2
(as in the figure), if �1 �= �2, then switching the values for �1 and �2 generates a different compact history
of βn+1

41472x2 + 57600x3 + 64512x4 + 60160x5 + 47616x6 + 32480x7 + 19200x8 +
9824x9+4288x10+1552x11+448x12+97x13+14x14+ x15. For example, the term
448x12 ∈ B4 indicates that β4 has exactly 448 compact histories with root branch
labeled by m = 12. Using these calculations, we find that the first entries of the
sequence c(βn) = Bn(1) are c(βn) = 1, 1, 4, 144, and 360000 for n = 0, 1, 2, 3, and
4, respectively. The sequence c(βn) grows exponentially as specified by the following
theorem.

Theorem 16 In the completely balanced family (βn)n≥0, (i) the exponential growth of
the number of compact coalescent histories satisfies c(βn) �� (kβn )

|βn |, where

kβ = exp

⎡

⎣
∞∑

j=0

2− j log(1 + e j )

⎤

⎦ ,

and en = B ′
n(1)/Bn(1) = (

∑|βn |−1
m=0 mcm,n)/c(βn) is the expected value of m(h) in

a compact coalescent history h chosen uniformly at random from the set of compact
coalescent histories of βn. Furthermore, (ii) kβ satisfies the bounds 2.855 < kβ <

2.858.

Proof (i) From Eq. 20, we have

c(βn+1) = Bn+1(1) = [Bn(1)+B ′
n(1)]2 = (1+en)

2Bn(1)
2 = (1+en)

2c(βn)
2,

(23)
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where the second equality follows from a double application of l’Hopital’s rule
to the limit

Bn+1(1) = lim
x→1

x[Bn(1) − x Bn(x)]2
(1 − x)2

.

Setting yn = log c(βn), from Eq. 23, we obtain

yn+1 = 2yn + 2 log(1 + en).

This linear recursion has solution

yn = 2n y0 +
n−1∑

j=0

2n− j log(1 + e j ) = 2n
[

y0 +
∞∑

j=0

2− j log(1 + e j )

]

−
∞∑

j=n

2n− j log(1 + e j ), (24)

where, because the two series in Eq. 24 have positive terms, they both converge
being bounded from above. More precisely, for j ≥ 0, the inequality 1 + e j ≤
1+ (2 j −1) = 2 j holds, from the interpretation of e j as the mean value ofm(h)

for a random compact history h of a balanced tree with 2 j taxa. Hence, for each
fixed n ≥ 0, the following upper bound for the series in Eq. 24 holds

∞∑

j=n

2n− j log(1 + e j ) ≤ 2n
∞∑

j=n

log(2 j )

2 j
< 2n

∞∑

j=n

j

2 j
= 2n

[ ∞∑

j=0

j

2 j
−

n−1∑

j=0

j

2 j

]

= 2n
[

2 − 2n − n − 1

2n−1

]

= 2n + 2. (25)

The second equality in Eq. 25 uses the fact that
∑k

j=0 j/2 j = 2−k(2k+1−k−2)
for each integer k ≥ −1, which follows by setting x = 1 into

k∑

j=0

( x

2

) j
j = x

2

k∑

j=0

( x

2

) j−1
j = x

2

[

2
k∑

j=0

( x

2

) j
]′

= x

[
1 − (x/2)k+1

1 − x/2

]′
= x[2k+1 − 2(k + 1)xk + kxk+1]

2k(2 − x)2
.

Switching back to c(βn) = eyn , and noting that c(β0) = 1 and |βn| = 2n ,
Eq. 24 yields
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c(βn) =
[

c(β0) exp

( ∞∑

j=0

2− j log(1 + e j )

)]2n

exp

[

−
∞∑

j=n

2n− j log(1 + e j )

]

= 1

an
(kβ)|βn |,

where an = exp[∑∞
j=n 2

n− j log(1 + e j )] and kβ is the quantity defined in the
statement of the theorem.
Note that the sequence an is bounded by polynomial functions of the size

|βn| = 2n . Indeed, from the trivial inequality e j ≥ 1 (with j ≥ 1) and from
Eq. 25, for n ≥ 1 we have

4 = e2 log 2 ≤ an < e2n+2 = e2n e2 = e2 log2 |βn | e2

= e2 log |βn |/ log 2 e2 = |βn|2/ log 2 e2.

Hence, the exponential growth of the sequence c(βn) is determined by c(βn) ��
(kβ)|βn | as claimed.

(ii) The value of the constant kβ can be bounded by using the first terms of the
sequence en . For n ≤ 14, we perform the exact computation of the values of en
using the recursion of Proposition 15 for the polynomials Bn(x). By using the
exact sequence of rational numbers (en)0≤n≤14, symbolic calculations give

2.8550 < exp

[ 14∑

j=0

2− j log(1 + e j )

]

< 2.8551.

From this inequality, we obtain the bounds for kβ claimed in the statement of
the theorem:

2.8550 < exp

[ 14∑

j=0

2− j log(1 + e j )

]

< kβ

= exp

[ 14∑

j=0

2− j log(1 + e j )

]

exp

[ ∞∑

j=15

2− j log(1 + e j )

]

< 2.8551 exp

[ ∞∑

j=15

2− j log(1 + e j )

]

< 2.8551 e1/1024 < 2.8580,

where we have used the inequality
∑∞

j=15 2
− j log(1+ e j ) = [∑∞

j=15 2
15− j log

(1 + e j )]/215 < 32/215 = 1/1024 derived directly from Eq. 25. �

Because the lower and upper bounds for kβ given in Theorem 16 are quite close

to each other, we can take their mean as an approximation for kβ , that is, kβ ≈
(2.855 + 2.858)/2 = 2.8565 (Fig. 12). Finally, we observe that by computing more
terms of the sequence en—here we have used the first n ≤ 14 terms—the same
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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n

c
β n

1
nβ

Fig. 12 Values of c(βn)1/|βn | for 0 ≤ n ≤ 14. The dashed horizontal line has ordinate 2.8565 given by
the mean of the lower and upper bounds found for the exponential order kβ for the increase in the number
of taxa of compact histories for the completely balanced trees (Eq. 8). The integers c(βn) are computed as
c(βn) = Bn(1), that is, by setting x = 1 in the polynomials Bn(x) obtained recursively fromProposition 15.

The last few points are very closely approximated by the horizontal line. As c(βn) �� k|βn |
β , for increasing

n, the sequence c(βn)1/|βn | approaches kβ

approach used in the proof of the theorem can be applied to obtain even more accurate
estimates of kβ . In particular, because en increases slowly with respect to the number
of taxa |βn| = 2n—the values of en are 0, 1, and 2 for n = 0, 1, and 2, respectively,
and they are approximated by 3.1667, 4.6033, 6.4180, 8.7404, 11.7342, 15.6085,
20.6332, 27.1578, 35.6357, 46.6559, 60.9835, and 79.6133 for n = 3, 4, . . . , 14—
the calculation of a few more terms of the sequence en can lead to stricter bounds
for kβ .

5 Mean number of compact coalescent histories

In Sect. 4, we found that the sequence of the number of compact histories can have
different exponential orders for different tree families, as seen in the values of kγ = 4
(Eq. 6), kλ ≈ 3.3302 (Eq. 7), and kβ ≈ 2.8565 (Eq. 8) for the bicaterpillar, lodgepole,
and balanced families, respectively. Motivated by these observations, we now study
the exponential growth of the mean number En[c] of compact histories of a labeled
topology selected uniformly at random in the set of labeled topologies Tn . By using
generating functions, we show that the mean grows like

En[c] �� 3.375n, (26)

where the asymptotic constant 3.375 is close to the mean (kγ + kλ + kβ)/3 ≈ 3.3955.
We start our proof of Eq. 26 by considering all possible labeled topologies of size

n, where cm,n now denotes the total number of compact histories with root branch
labeled by m. Define cn = ∑n−1

m=0 cm,n to be the total number of compact histories of
all trees of size n. Let
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F(x, z) =
∞∑

n=1

n−1∑

m=0

cm,nxmzn

n! = z + x

2
z2 +

(
x

2
+ x2

2

)

z3

+
(
9x

8
+ 5x2

4
+ 5x3

8

)

z4 +
(
7x

2
+ 4x2 + 21x3

8
+ 7x4

8

)

z5 + · · ·

be the bivariate exponential generating function associated with integers cm,n , where
each term xmzn/n! in F(x, z), written xmzn/n! ∈ F , accounts for a compact history
h of size n with m(h) = m. The function F(x, z) is characterized by the following
proposition.

Proposition 17 The generating function F(x, z) = ∑∞
n=1

∑n−1
m=0

cm,n xmzn

n! satisfies the
functional equation

F(x, z) = z + x [F(1, z) − xF(x, z)]2

2(1 − x)2
. (27)

Proof Observe that we can write F(x, z) as the sum

F(x, z) = z + 1

2

∑

xm1 zn1
n1 ! ∈F

∑

xm2 zn2
n2 ! ∈F

m1∑

�1=0

m2∑

�2=0

xm1+m2+1−�1−�2 zn1+n2

(n1 + n2)!
(
n1 + n2

n1

)

.

(28)
The initial z in Eq. 28 accounts for the term x0z1/1! in F associated with the com-
pact history of the one-taxon tree. Mirroring the construction of compact histories of
size larger than one from smaller compact histories described in Fig. 13, the nested
sums and the factor 1/2 in Eq. 28 take into account the presence in F of exactly(n1+n2

n1

)
/2 copies of the term xm1+m2+1−�1−�2 zn1+n2/(n1 + n2)!, for each fixed pair

(xm1 zn1/n1!, xm2 zn2/n2!) ∈ F×F and for each choice of (�1, �2) ∈ [0,m1]×[0,m2].
Specifically, each copyof xm1+m2+1−�1−�2 zn1+n2/(n1 + n2)! is associatedwith a com-
pact history h that, as in Fig. 13a, can be decomposed into the compact histories h1 and
h2 associated with terms xm1 zn1/n1! and xm2 zn2/n2!, and in which the two branches
descending from the root are labeled by �1 and �2, respectively.

From Eq. 28, algebraic manipulations give

F(x, z) = z + 1

2
x

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

∑

xm1 zn1
n1! ∈F

zn1

n1!
m1∑

j=0

x j

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

∑

xm2 zn2
n2 ! ∈F

zn2

n2!
m2∑

j=0

x j

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

= z + x [F(1, z) − xF(x, z)]2

2(1 − x)2
,
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1 00

C DA

new  labels

h

Fig. 13 Generation of compact histories from compact histories of smaller trees. aGeneration of a compact
history for a tree from compact histories for its two root subtrees. b Generating the same compact history
twice when h1 = h2 and �1 = �2. c, d Generating the same compact history twice when h1 = h2 and
�1 �= �2. Each compact history h of size |h| > 1 is obtained as in a by (i) appending to a common root
node a pair (h1, h2) of compact histories, and (ii) choosing labels �1, �2 for the two branches descending
from the root of h. If m1 = m(h1) and m2 = m(h2) are the labels of the root branches of h1 and h2,
respectively, then �1 ranges in the interval �1 ∈ [0,m1], and �2 ranges in �2 ∈ [0,m2]. The label of the
root branch in h is thus m(h) = m1 +m2 + 1− �1 − �2, which provides the exponent assigned to variable
x in Eq. 28. After step (ii), taxa of h1 and h2 are relabeled to obtain a proper labeled topology underlying h.
As in Sect. 2.1, we impose without loss of generality a linear order ≺ for the labels of the taxa of a tree. For
the relabeling procedure, we choose |h1| elements among the |h| = |h1| + |h2| new labels possible for the
taxa of h, where we are using |h|, |h1|, and |h2| here to indicate the number of taxa in the trees underlying

h, h1, and h2, respectively. There are
( |h|
|h1|
)
different choices, producing the binomial coefficient in Eq. 28.

The elements chosen relabel h1, and the remaining elements relabel h2. With respect to the order ≺, the i th
label of h1 is assigned the i th label selected. Similarly, the i th label of h2 is assigned the i th label that was
not selected. This construction generates each compact history exactly twice. For this reason, the factor 1/2
appears in Eq. 28 before the summations. More precisely, if the pair (h1, h2) considered in step (i) of the
procedure has h1 �= h2, then each resulting compact history has a copy when we take the pair (h2, h1). If

h1 = h2, and we take �1 = �2 in step (ii), then the
( |h|
|h1|
)
relabelings generate each compact history twice,

as can be seen in b by switching the labels assigned to h1 and h2. Finally, if h1 = h2 and we set �1 �= �2
in step (ii), then each compact history generated has an equivalent one obtained as in c and d by switching
both the values of �1 and �2 and the labels assigned to h1 and h2

where the last equality uses

∑

xm zn
n! ∈F

zn

n!
m∑

j=0

x j =
∑

xm zn
n! ∈F

zn(1 − xm+1)

n!(1 − x)
= 1

1 − x

⎛

⎜
⎝

∑

xm zn
n! ∈F

zn

n! − x
∑

xm zn
n! ∈F

xmzn

n!

⎞

⎟
⎠

= F(1, z) − xF(x, z)

1 − x
.

�

Setting

f ≡ F(1, z) =
∞∑

n=1

n−1∑

m=0

cm,nzn

n! =
∞∑

n=1

cnzn

n! , (29)

the equation for F(x, z) given in Proposition 17 yields the next result.

Proposition 18 The exponential generating function f ≡ F(1, z) = ∑∞
n=1

cnzn

n! of the
total number of compact coalescent histories of all trees of size n satisfies the equation

f = z − (27/2)z2 − 4 f 2 − 4 f 3 + 18z f ≡ ψ(z, f ). (30)
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Proof FromEq. 27,we deriveEq. 30 by applying the “quadratic”method.As described
by Flajolet and Sedgewick (2009, SectionVII.8.2), thismethod can be used for solving
functional equations of the form

[g1F(x, z) + g2]2 = g3, (31)

where the functions g j = g j (x, z, f ) are given explicitly, and both F(x, z) and f =
f (z) are unknown generating functions. Rearranging terms and completing the square,
Eq. 27 can be rewritten as

[
x3/2F(x, z)√

2(1 − x)
− 1 − 2x + x2 + x2 f√

2(1 − x)x3/2

]2

=
[
1 − 2x + x2 + x2 f√

2(1 − x)x3/2

]2

− x f 2

2(1 − x)2
−z.

(32)
This equation has the form given in Eq. 31 when we set

(g1, g2, g3) =
(

x3/2√
2(1 − x)

,−1 − 2x + x2 + x2 f√
2(1 − x)x3/2

,

[
1 − 2x + x2 + x2 f√

2(1 − x)x3/2

]2

− x f 2

2(1 − x)2
− z

)

.

Following the quadratic method, suppose there exists a substitution x = X = X(z)
for which the left-hand side of Eq. 32, g1(X , z, f )F(X , z) + g2(X , z, f ), cancels.
This substitution cancels the right-hand side of Eq. 32 as well and, because of the
square in the left-hand side of the equation, its derivative with respect to x . Note that
because f is a function of z only, both the substitution x = X and the derivative of g3
with respect to x do not affect f . We thus have a system of two equations,

{
g3(X , z, f ) = 0
∂g3(X ,z, f )

∂x = 0,
(33)

which implicitly determines the two unknown functions X and f . The derivative
produces

∂g3(X , z, f )

∂x
= −3 + 4X − X2 − 2X2 f

2X4 .

Solving Eq. 33 for f and z yields f = − (X−1)(X−3)
2X2 and z = X−1

X3 , from which we

eliminate X to obtain f = z − (27/2)z2 − 4 f 2 − 4 f 3 + 18z f , as claimed. �


Identifying f with its power series expansion (Eq. 29), we observe that the terms of
f with order at most i ≥ 2 that appear in the left-hand side of Eq. 30 can be determined
from the terms of f of order at most i − 1 present in the right-hand side of Eq. 30. For
example, setting i = 3 and writing c∗

n ≡ cn/n!, Eq. 30 gives
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(c∗
1z + c∗

2z
2 + c∗

3z
3 + c∗

4z
4 + · · · )

= z − (27/2)z2 − 4(c∗
1z + c∗

2z
2 + c∗

3z
3 + c∗

4z
4 + · · · )2

− 4(c∗
1z + c∗

2z
2 + c∗

3z
3 + c∗

4z
4 + · · · )3

+18z(c∗
1z + c∗

2z
2 + c∗

3z
3 + c∗

4z
4 + · · · ),

where the terms of the right-hand side given in bold are the terms of the expansion of
f that affect the computation of the terms in bold on the left-hand side. In other words,
Eq. 30 can be used for recursively computing the coefficients [zn] f = cn/n! of the
generating function f . Denoting by p(i) the polynomial obtained from a polynomial
p(z) by deleting terms of order larger than i in z, the polynomial fi recursively defined
by ⎧

⎨

⎩

f0 = 0
f1 = z

fi = [
z − (27/2)z2 − 4 f 2i−1 − 4 f 3i−2 + 18z fi−1

](i)
, i ≥ 2,

(34)

gives the expansion of f up to the term of order i . For instance, for i = 2 and i = 3
we have f2 = z + z2/2, and f3 = z + z2/2 + z3, respectively.

Increasing the value of i , from the polynomials fi we obtain the expansion

f =z+z2/2+z3+3z4+11z5+(91/2)z6+204z7+969z8+4807z9+(49335/2)z10+· · · ,

(35)
in which coefficients cn/n! grow like

cn
n! �� (1/ρ)n, (36)

with ρ corresponding to the dominant singularity of f . From the calculation of the
value of ρ, the following theorem determines the exponential growth of the mean
number of compact histories in a labeled topology of size n selected uniformly at
random.

Theorem 19 The exponential growth of the mean number of compact coalescent
histories in a labeled topology of size n selected uniformly at random satisfies
En[c] �� 3.375n.

Proof We proceed as in Section VII.6.1 of Flajolet and Sedgewick (2009), calculating
the value of ρ (Eq. 36) as the positive solution of the characteristic system associated
with the functional equation (Eq. 30) satisfied by f :

{
τ = ψ(ρ, τ) = ρ − (27/2)ρ2 − 4τ 2 − 4τ 3 + 18ρτ

0 = 1 − ∂ψ(ρ,τ)
∂τ

= 1 + 8τ + 12τ 2 − 18ρ.
(37)

This characteristic system has been obtained by Eq. 64 of Flajolet and Sedgewick
(2009), interpreting our Eq. 30 as their Eq. 61. By solving Eq. 37 in positive real
numbers, we obtain ρ = 4/27, with 1/ρ = 27/4 = 6.75.
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Fig. 14 Values of (En [c])1/n for 1 ≤ n ≤ 100. The dashed horizontal line has ordinate 3.375 given by
the exponential order of the sequence En [c] (Theorem 19). The expectation En [c] is calculated as the ratio
cn/|Tn |, where cn = n! ([zn ] f ) is the total number of compact histories of size n and |Tn | is the number
of labeled topologies with n taxa (Proposition 1). The nth coefficient [zn ] f in the expansion (Eq. 35)
is the coefficient of the term of order n in the polynomial f100, obtained recursively as in Eq. 34. As
En [c] �� 3.375n , for increasing n, the sequence (En [c])1/n approaches 3.375

The mean number of compact histories in a labeled topology of size n selected
uniformly at randomcanbe computed asEn[c] = cn/|Tn|,with |Tn| as inProposition1.
From Eqs. 36 and 2, the mean En[c] grows like

En[c] = cn/n!
|Tn|/n! �� (27/4)n

2n
= (27/8)n = 3.375n,

as claimed. �

Figure 14 shows numerical values of (En[c])1/n approaching the exponential order

3.375 of the sequence En[c].

6 Discussion

Considering gene trees and species trees with amatching labeled topologyG = S = t ,
we have studied the number of compact histories of labeled topologies t . We have
focused on the exponential growth of the number of compact histories, both when t
belongs to special tree families of increasing size and when t is a random labeled tree
topology of given size drawn under a uniform distribution. We also characterized the
set of labeled topologies in which the coalescent histories are the same as the compact
coalescent histories.

In Sect. 4, in addition to the caterpillar trees γ1,n−1 already studied byWu (2016),we
considered three other tree families: the bicaterpillar trees γp,n−p, the lodgepole trees
λn , and the completely balanced tress βn . Whereas for the caterpillar and bicaterpillar
trees, the number of compact histories grows like c(γp,n−p) �� (kγ )|γp,n−p |, with
kγ = 4, for the lodgepole trees, it grows exponentially like c(λn) �� (kλ)

|λn |, where
kλ ≈ 3.3302. Notably, although the growth of the number of coalescent histories in
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the family λn is faster than exponential (Disanto and Rosenberg 2015), the number of
compact histories grows “only” exponentially—in fact, exponentially slower than in
the family γp,n−p. In terms of the relative complexity of the two gene tree probability
algorithms CompactCH (Wu 2016) and COAL (Degnan and Salter 2005), this result
demonstrates that when gene trees and species trees have a particular matching labeled
topology t , the number of compact coalescent histories processed by CompactCH for
calculating the gene tree probability can be much smaller—although still exponential
in the size of t—than the number of coalescent histories used by COAL for computing
the same probability.

The study of the number c(βn) of compact histories in the family of completely
balanced trees βn appears to be more difficult. Indeed, whereas for the caterpillar
γ1,n−1 and the lodgepole λn , explicit formulas, Eqs. 9 and 18, could be obtained for
enumerating compact histories, in the completely balanced case, the exact enumeration
proceeds only recursively. However, the bounds given in Eq. 8 determine the numerical
value of the exponential order kβ of the sequence c(βn) with a precision of 2 decimal
digits, kβ = 2.8565±0.0015. Theoretical results describing the growth of the number
of coalescent histories in the family βn are not known. It is of interest to examine
if the generating tree and generating function approaches used here for enumerating
compact histories could be extended to the framework of coalescent histories.

By comparison of the values of kγ , kλ, and kβ , it can be observed that in more
unbalanced trees, the number of compact histories tends to be larger. This correlation
is supported by the exhaustive calculation of the number of compact histories for
unlabeled topologies of small size (Sect. 3.3) and by the analysis of bicaterpillar trees
with different levels of balance (Sect. 4.1). More generally, our results prove that
for different tree families, the growth of the number of compact histories can be
exponentially faster or slower than for other families. An average case analysis of the
number of compact histories is conducted in Sect. 5, where it is shown that the expected
number of compact histories of a labeled topology of size n selected uniformly at
random grows like 3.3750n . Interestingly, the constant 3.3750 is not far from the
mean (kγ + kλ + kβ)/3 ≈ 3.3955.

Note that because coalescent histories are at least as numerous as compact histories,
the value 3.375 provides a lower bound for the exponential order of the sequence
of the mean number of coalescent histories of a labeled topology of size n chosen
uniformly at random. This lower bound is unlikely to be precise, as sequences of the
number of coalescent histories in specific families substantially exceed this value in
exponential order. For example, for caterpillar and bicaterpillar families, the agreement
of the number of compact histories with the number of coalescent histories gives
an exponential order of 4 for sequences of the number of coalescent histories. An
exponential order of 4 has also been associated with caterpillar-like families that
begin with a seed tree t (0) and for n ≥ 1 sequentially build a family of trees t (n) by
appending t (n−1) and a single taxon to a shared root (Rosenberg 2013; Disanto and
Rosenberg 2016). Moreover, as noted above, the number of coalescent histories for
the lodgepole family grows faster than exponentially (Disanto and Rosenberg 2015).

Many enumerative problems concerning compact histories remain open. For
instance, to understand the computational complexity of gene tree probability algo-
rithms, it would be of interest to obtain comparative results relating numbers of
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compact histories not only to numbers of coalescent histories, but also to enumer-
ations of the ancestral configurations (Wu 2012; Disanto and Rosenberg 2017) and
“nonequivalent” ancestral configurations (Wu 2012; Disanto and Rosenberg 2018)
that arise in alternative probability methods. It would also be of interest to have an
explicit characterization of those labeled topologies that, for a given number of taxa,
possess the largest and smallest numbers of compact histories. Results from Sect. 3.3
suggest that the maximally asymmetric caterpillar trees might have the largest number
of compact histories, whereas for small n, trees with the smallest number appear to
follow a recursive decomposition that appears in other settings (Eq. 5).

We have considered compact coalescent histories only for matching gene trees
and species trees. For non-matching trees, the characterization in Sect. 3.4 of cases in
which the numbers of compact histories and coalescent histories are equal does not
have a natural extension. For caterpillar gene trees and arbitrary species trees, they
continue to be equal: because coalescences in a caterpillar gene tree must follow a
unique sequence, the only nonzero labels in a compact history must be associated with
species tree internal nodes that all lie on a single path in which any two distinct nodes
k1, k2 satisfy k1 < k2 or k2 < k1. Proceeding from the “smallest” node in this path
to the species tree root, the nonzero labels in the compact history indicate the gene
tree coalescences in the specified unique sequence, identifying only one coalescent
history. This reasoning of Wu (2016) for matching caterpillar gene trees and species
trees applies to caterpillar gene trees with arbitrary species trees as well.

However, the equivalence of coalescent histories and compact coalescent his-
tories seen with caterpillar gene trees and arbitrary species trees does not extend
to the other settings in which the equivalence holds for matching trees. The case
of bicaterpillar (and caterpillar) species tree (((((a, b), e), f ), c), d), bicaterpillar
gene tree ((((a, b), c), d), (e, f )), and a compact history with label 1 above subtree
(((a, b), e), f ), 4 above the species tree root, and 0 above all other species tree internal
nodes provides a counterexample that shows that the numbers of compact histories
and coalescent histories need not agree both for the case in which the species tree is a
caterpillar or bicaterpillar and for the case in which the gene tree is a non-caterpillar
bicaterpillar: two coalescent histories are indicated by the compact history, one with
the coalescence above subtree (((a, b), e), f ) joining (a, b), and the other in which it
joins (e, f ). At the same time, many combinations of a gene tree and a non-matching
species tree, neither of which is caterpillar or bicaterpillar, can have the same num-
bers of compact histories and coalescent histories. In the many cases in which all
cherries in the gene tree involve taxa on opposite sides of the species tree—gene tree
(((a, b), (c, d)), ((e, f ), (g, h))) and species tree (((a, c), (e, g)), ((b, d), ( f , h))),
for example—only one coalescent history exists, only one compact history exists, and
the numbers of compact histories and coalescent histories are trivially equal.

We note that in parallel to the introduction of compact coalescent histories by Wu
(2016), a related concept of the population histories of a species tree—equivalent
to the compact coalescent histories for a species tree and matching gene tree—was
defined by Degnan and Rhodes (2015) for analyzing non-matching caterpillar trees.
Using population histories, Degnan and Rhodes (2015, Remark 15) demonstrated that
given a caterpillar species tree, the number of coalescent histories, and hence the
(equivalent) number of compact coalescent histories, is always larger for the matching
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gene tree than for a non-matching caterpillar gene tree.We have not compared compact
histories for distinct gene trees with a fixed species tree, and we defer a deeper analysis
of compact histories of non-matching gene trees and species trees for future work.
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