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Abstract An ancestral configuration is one of the combinatorially distinct sets of
gene lineages that, for a given gene tree, can reach a given node of a specified species
tree. Ancestral configurations have appeared in recursive algebraic computations of
the conditional probability that a gene tree topology is produced under themultispecies
coalescentmodel for a given species tree. Formatching gene trees and species trees, we
study the number of ancestral configurations, considered up to an equivalence relation
introduced by Wu (Evolution 66:763–775, 2012) to reduce the complexity of the
recursive probability computation. We examine the largest number of non-equivalent
ancestral configurations possible for a given tree size n. Whereas the smallest number
of non-equivalent ancestral configurations increases polynomially with n, we show
that the largest number increases with kn , where k is a constant that satisfies 3

√
3 ≤

k < 1.503. Under a uniform distribution on the set of binary labeled trees with
a given size n, the mean number of non-equivalent ancestral configurations grows
exponentially with n. The results refine an earlier analysis of the number of ancestral
configurations considered without applying the equivalence relation, showing that use
of the equivalence relation does not alter the exponential nature of the increase with
tree size.
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1 Introduction

Under the multispecies coalescent model for the evolution of gene trees conditional on
species trees, symmetries and identities among gene tree probabilities and algebraic
perspectives for examining the probability computations have contributed to advances
in understanding the properties of evolutionary descent in closely related species (All-
man et al. 2011). Calculations of the probabilities of gene tree topologies can proceed
by one of two computational approaches: non-recursive (Degnan and Salter 2005) or
recursive (Wu 2012). Both methods involve combinatorial and probabilistic compo-
nents, in which probabilities are evaluated for each element of a set of objects that can
be defined purely in mathematical terms. Computational complexity is affected both
by the size of the underlying set of objects and by the complexity of the probability
calculation.

In the recursive approach, the relevant combinatorial set consists of ancestral con-
figurations, each of which represents a set of gene lineages that can be extant at a given
node of the species tree (Wu 2012). We have previously studied the set of ancestral
configurations possible for a given gene tree and matching species tree, showing that
the largest number of ancestral configurations across labeled tree topologies of a fixed
tree size n increases exponentially with n (Disanto and Rosenberg 2017).

To lower the computation time of the recursive evaluation of gene tree probabilities,
Wu (2012) introduced an equivalence relation that, taking into account symmetries in
tree shapes, reduces the set of ancestral configurations to a potentiallymuch smaller set
of non-equivalent ancestral configurations. The computation of gene tree probabilities
can then make use of intermediate steps calculated for the elements of this smaller set,
rather than for the full set of ancestral configurations.

Here, for gene trees and species trees with a matching labeled topology t , we study
the number of non-equivalent ancestral configurations that can appear at the nodes of
a species tree t . We determine the number of non-equivalent ancestral configurations
when t belongs to special families of trees characterized by balanced and unbalanced
patterns. We study the largest number of non-equivalent ancestral configurations pos-
sible for a given tree size n, showing that this number grows exponentially with kn ,
where k is a constant that satisfies 3

√
3 ≤ k < 1.503. Although tree families exist

for which the number of non-equivalent ancestral configurations grows polynomially
in n (Wu 2012), we show that under a uniform distribution on the set of labeled trees
of size n, the mean number of non-equivalent ancestral configurations of a random
labeled tree shape also grows exponentially in n. Finally, we compare our results on
the number of non-equivalent ancestral configurations with corresponding results for
the full set of ancestral configurations (Disanto and Rosenberg 2017). Although by
definition, the non-equivalent ancestral configurations are no more numerous than
ancestral configurations that do not take into account the equivalence relation—and
indeed, are intended to be less numerous—the base k for the maximal number of
non-equivalent ancestral configurations kn across trees of size n is bounded below by
a constant only slightly smaller than the corresponding base for the maximal number
of ancestral configurations.
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Fig. 1 A matching gene tree and species tree with labeled topology t . a A tree t of size 6 isomorphic to
the gene tree and species tree in b and c. Tree t is uniquely determined by the labeling of its leaves and
by its unlabeled shape. It is convenient to assign arbitrary labels to the internal nodes of t as well. We use
letters g, h, i, j, k in this case. Each lineage (edge) of t is identified by the lowest node it intersects; for
example, lineages h and i descend from lineage j . b A possible realization R1 of a gene tree (dotted lines)
in a species tree (solid lines). The gene tree and the species tree have a matching topology that follows (a).
At species tree node j , the ancestral configuration is {c, d, i}. At node k, the configuration is {g, h, i}. c A
non-equivalent realization R2 of the gene tree in a in the matching species tree. At species tree nodes j and
k, the configurations are {h, e, f } and {a, b, j}, respectively

2 Preliminaries

We study the number of non-equivalent ancestral configurations of rooted binary
labeled trees. We start by giving definitions and preliminary results. In Sect. 2.1,
we recall some properties of rooted binary labeled trees. In Sect. 2.2, we discuss prop-
erties of the exponential growth of sequences of nonnegative numbers. Following Wu
(2012), Sect. 2.3 defines ancestral configurations for a gene tree and a species tree
with a matching labeled topology t . In Sect. 2.4, we recall related enumerative results
of Disanto and Rosenberg (2017).

2.1 Labeled Topologies

A labeled topology t of size |t | = n is a bifurcating rooted tree with n labeled leaves,
also termed “taxa” (Fig. 1a). We sometimes refer to labeled topologies simply as
“trees.” We define a total order a ≺ b ≺ c ≺ . . . for the set {a, b, c, . . .} of labels of
the leaves of a tree, proceeding alphabetically. That is, without loss of generality, we
assume that a tree of size n has its taxa labeled using the first n symbols that appear
in the order ≺.

We represent labeled topologies in Newick notation (Felsenstein 2004), in which
t = (t1, t2) is the tree obtained by appending trees t1 and t2 to a common root
node. For example, ((a, b), ((c, d), (e, f ))) gives the Newick notation for the tree
depicted in Fig. 1a. We term non-leaf nodes of a tree “internal” nodes. By “sub-
tree” of a tree t , we mean a node of t together with all its descendants; a “root
subtree” of t is a subtree—one of two possible—immediately descended from the root
of t .

For two trees t1, t2, we say that t1 is isomorphic to t2 and write t1 ∼= t2 when, after
their leaf labels are removed, t1 and t2 have the same unlabeled topology. Moreover,
given trees t1 and t2 with |t1| ≥ |t2|, we say that a subtree t of t1 is equal to t2 up
to “rescaling” labels when, respecting the order ≺, we can replace the labels of t to
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obtain t2. For instance, the largest root subtree ((c, d), (e, f )) of the tree depicted
in Fig. 1a is equal to ((a, b), (c, d)) up to rescaling, as we can replace the labels
c → a, d → b, e → c, f → d. Note that alphabetical order is preserved in this
replacement.

We denote by Tn the set of trees of size n and by T = ⋃∞
n=1 Tn the set of all trees

of any size. The number of trees of size n ≥ 2 is given by

|Tn| = (2n − 3)!! = 1 × 3 × 5 × · · · × (2n − 3) (1)

(Felsenstein 1978), which assuming n ≥ 1 can be rewritten

|Tn| = (2n − 2)!
2n−1(n − 1)! = (2n)!

2n(2n − 1)n! . (2)

We will have occasion to employ a uniform probability distribution over the set of
trees of fixed size. In this distribution, each tree of size n has probability 1/|Tn|.

2.2 Exponential Growth of a Sequence

As in Flajolet and Sedgewick (2009), we say that a sequence of positive numbers an
is of exponential order k or, equivalently, has exponential growth kn , when

lim sup
n→∞

[(an)1/n] = lim
n→∞[ sup

m ≥ n
[(am)1/m]] = k.

This relation holds when an = kns(n), where s is a subexponential factor, so that
lim supn→∞[s(n)1/n] = 1. According to these definitions, a sequence an grows expo-
nentially in n if its exponential order strictly exceeds 1.

The exponential order of a sequence describes its asymptotic growth. It follows
from the definition that if (an) has exponential order ka and (bn) has exponential order
kb > ka , then an/bn converges to 0 exponentially fast as (ka/kb)n for n → ∞. When
two sequences (an) and (bn) have the same exponential order, we write an 	
 bn . If
an 	
 bn and limn→∞(an/bn) = 1, we write an ∼ bn .

2.3 Ancestral Configurations

This section defines the set of ancestral configurations of a gene treeG in a species tree
S. In our setting, exactly one gene lineage is selected from each species. We assume
a matching labeled topology t for G and S.

Consider a realization R of a gene tree G in a species tree S, with G = S = t
(Fig. 1). Equivalently, R is one of the possible evolutionary scenarios for gene tree G
on species tree S. Given a node κ of t , we denote by C(κ, R) the set of gene lineages,
i.e., edges ofG, that are present in S at the point right before node κ looking backward
in time. Following Wu (2012), we call the set C(κ, R) the ancestral configuration of
G at node κ of S.
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For the tree t in Fig. 1a, if we consider the realization R1 of the gene tree G = t
in the species tree S = t depicted in Fig. 1b, then we see that C(k, R1) = {g, h, i}
is the ancestral configuration of the gene tree at node k of the species tree. The gene
lineages g, h, and i are those present in the species tree at the point right before the root
node k. Similarly, the ancestral configuration of the gene tree at node j of the species
tree is given by the set of gene lineages C( j, R1) = {c, d, i}. In Fig. 1c, a different
realization R2 of the same gene tree is described. The ancestral configuration at the
root k of the species tree is in this case C(k, R2) = {a, b, j}, whereas the ancestral
configuration at node j is C( j, R2) = {h, e, f }.

We denote the set of all possible realizations of the gene tree G = t in the species
tree S = t by �(G, S). By considering all elements R ∈ �(G, S), for a given node κ

of t we define the set of all possible ancestral configurations at node κ ,

C(κ) = {C(κ, R) : R ∈ �(G, S)}, (3)

and the number of such configurations,

c(κ) = |C(κ)|. (4)

In particular, c(κ) counts the number of ways the gene lineages of G can reach the
point right below node κ in S, when all possible realizations of G in S are taken
into account. For example, if we set t as in Fig. 1a, then we have C(g) = {{a, b}}
and C( j) = {{c, d, e, f }, {h, e, f }, {c, d, i}, {h, i}}. At the root node k, the set of all
possible ancestral configurations is

C(k) = {{g, j}, {a, b, j}, {g, c, d, e, f }, {a, b, c, d, e, f }, {g, h, e, f }, {a, b, h, e, f },
{g, c, d, i}, {a, b, c, d, i}, {g, h, i}, {a, b, h, i}}.

Note that two different realizations R1, R2 ∈ �(G, S) can generate the same ancestral
configuration C(κ, R1) = C(κ, R2) at an internal node κ .

Following Disanto and Rosenberg (2017), for each internal node κ , our definition
of ancestral configuration excludes the case {κ} ∈ C(κ). This choice accords with the
fact that each configuration at node κ is considered at the point right below node κ

in the species tree, with no time for the gene lineages from the left and right subtrees
of κ to coalesce together. With the exception that we say that a leaf or 1-taxon tree
has 0 ancestral configurations, our definition is identical to that of Wu (2012), which
assigns these cases 1 ancestral configuration.

Under our assumption of a matching gene tree and species tree G = S = t , the
set C(κ) defined in (3) and its cardinality c(κ) (4) depend only on node κ and tree t .
When we refer to an element of C(κ), we use the term configuration at node κ of t .
When κ is the root node, we use the term root configuration to describe an element
of C(κ). Also, considering the union of all the sets C(κ) of configurations across all
internal nodes κ of t , we can count the total number of configurations.
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2.4 The Number of Configurations

We recall some of the results of Disanto and Rosenberg (2017) on the number of
configurations possessed by a tree. These results are used to measure the decrease
in the number of configurations when, as in Wu (2012), an equivalence relation is
introduced in Sect. 3 to merge topologically equivalent configurations.

(i) If A, B are two sets of sets, define A⊗ B = {a ∪ b : a ∈ A, b ∈ B}. For a given
tree t with |t | > 1, the set C(r) of configurations at the root r of t satisfies the
following decomposition

C(r) = {{r�, rr }} ∪ [
C(r�) ⊗ {{rr }}

] ∪ [{{r�}} ⊗ C(rr )
] ∪ [

C(r�) ⊗ C(rr )
]
,

where r� and rr , respectively, denote the left and right children of r .
(ii) For a given tree t with |t | > 1, the number c(r) of possible configurations at the

root node r of t can be recursively computed as

c(r) = [c(r�) + 1][c(rr ) + 1] = 1 + c(r�) + c(rr ) + c(r�) c(rr ), (5)

where we set c(r) = 0 when |t | = 1. At each node κ of t , the number of configu-
rations c(κ) is bounded as c(κ) ≤ c(r). Thus, the total number of configurations
c = ∑

κ c(κ) satisfies c(r) ≤ c ≤ (2|t | − 1)c(r). In particular, the quantities c
and c(r) are equal up to a factor that is at most polynomial in |t |, and they have
the same exponential order when measured across families of trees of increasing
size.

(iii) Denote by Mn(r) and Mn , respectively, the largest number of root configurations
and the largest total number of configurations that a tree of size n can have. The
exponential growth of the sequences Mn(r) and Mn is Mn(r) 	
 Mn 	
 kn0 ,
where k0 is a constant, k0 ≈ 1.5028.

(iv) A completely balanced tree of size n = 2h has �kn0� − 1 root configurations. A
caterpillar tree of size n has n − 1 root configurations.

(v) For a tree of given size n leaves selected uniformly at random, the mean number
of root configurations c(r) and the mean total number of configurations c have
exponential growth En[c(r)] 	
 En[c] 	
 (4/3)n with n.

3 Equivalent and Non-equivalent Configurations

Wu (2012) introduced an equivalence relation over the set of configurations at a given
node of a species tree, using this equivalence relation to evaluate the probability of
a gene tree topology by performing computations over the sets of non-equivalent
configurations of the gene tree at species tree nodes (e.g., Eq. (7) of Wu (2012)).
Following the definition of Wu (2012), in this section, we introduce the notion of
equivalent configurations for gene trees and species trees with matching topology t .
Under certain assumptions on t , in Sect. 3.3, we provide a recursion analogous to the
one in (5) for counting non-equivalent configurations at the root of t .

123



390 F. Disanto, N. A. Rosenberg

3.1 An Equivalence Relation

We begin with some notation. If κ is a node of a tree t , denote by tκ the subtree of t
generated by κ (i.e., κ and all nodes below it). If X is a set of nodes of a subtree tκ , the
restriction tκ(X) of tκ to X is the tree shape obtained by removing from tκ all nodes
that remain strictly below the nodes belonging to X . For instance, if t j is the subtree
generated by node j in the tree t in Fig. 1a and X = {h, e, f }, then t j (X) is obtained
by removing nodes c and d from t j , and thus is the caterpillar tree shape of size 3.
Similarly, if X = {a, b, h, i}, then tk(X) is the balanced tree shape of size 4.

The definition of equivalent configurations given by Wu (2012) reduces to the
following one when gene trees and species trees are matching. Given a tree t and a
node κ , two configurations γ1, γ2 at node κ , γ1, γ2 ∈ C(κ), are equivalent at κ—with
the equivalence denoted by γ1 ∼κ γ2—when the tree shape tκ(γ1) is isomorphic to
the tree shape tκ(γ2). For instance, in Fig. 1a, we have {h, e, f } ∼ j {c, d, i} and
{a, b, j} ∼k {g, h, i}. The set of non-equivalent configurations at a given node κ is
denoted by C∗(κ), and its cardinality is c∗(κ) = |C∗(κ)|.

The notion of equivalent configurations groups together at a given node config-
urations for which exactly the same topological constraints apply in ordering the
coalescent events of their gene lineages. In other words, gene lineages of equivalent
configurations at a node κ of a species tree have completely topologically equivalent
transitions when they move from node κ backward in time (upward in the species
tree).

For instance, consider the tree in Fig. 1a, where the configurations {a, b, j} and
{g, h, i} at node k satisfy {a, b, j} ∼k {g, h, i}. Consider the mapping φ(a) =
h, φ(b) = i, φ( j) = g, φ(g) = j, φ(k) = k. The transition in Fig. 1c that along
the root branch of the species tree transforms the set of gene lineages {a, b, j} into
the single lineage k corresponds topologically to the transition in Fig. 1b that trans-
forms {g, h, i} into k. Indeed, the two trees tk({a, b, j}) with nodes {a, b, j, g, k} and
tk({g, h, i}) with nodes {g, h, i, j, k} are isomorphic through φ.

As described in Fig. 2, for a given tree t , the effective computation of non-equivalent
configurations can be performed recursively as in the algorithm STELLS (Wu 2012)
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Fig. 2 Merging of equivalent configurations at node κ = j . a At node j , the set C̃( j) =
{{h, i}, {h, e, f }, {c, d, i}, {c, d, e, f }} of configurations is computed from the non-equivalent configura-
tions at the child nodes h and i by using (6). b Two equivalent configurations appear in C̃( j), namely
{h, e, f } ∼ j {c, d, i}. Configuration {c, d, i} is merged into {h, e, f } (or vice versa). c The configurations
in C∗( j) = {{h, e, f }, {h, i}, {c, d, e, f }} are used to determine configurations at node k. In particular,
{g, h, e, f } ∈ C̃(k) and {g, c, d, i} /∈ C̃(k), as {c, d, i} has been merged into {h, e, f }. Configuration
{g, c, d, i}, which is not present in C̃(k), is represented by the equivalent configuration {g, h, e, f } ∼k
{g, c, d, i}. Similarly, {a, b, c, d, i} /∈ C̃(k), and it is represented by {a, b, h, e, f } ∼k {a, b, c, d, i}
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Fig. 3 Computing the number of non-equivalent configurations in two trees of size 8. By using (7), at
each internal node κ , |C̃(κ)| is computed from the number of non-equivalent configurations at the nodes
descending from κ . When |C̃(κ)| > c∗(κ), c∗(κ) appears in parentheses. a A tree considered in Table A1
by Wu (2012). Adding |t | = 8 to the value

∑
κ |C̃(κ)| = 32 to take into account the fact that Wu (2012)

counts a configuration for each leaf, whereas our definition does not do so, we produce entry 40 of the table
ofWu (2012). b The completely balanced tree of size 8 considered in Table 1 byWu (2012). Adding |t | = 8
to

∑
κ |C̃(κ)| = 28, we produce entry 36. The numbers c∗(κ) satisfy recursion (10)

by scanning t from bottom to top with a postorder traversal. At each visited node κ ,
we first compute the set

C̃(κ) = {{κ�, κr }}∪ [
C∗(κ�)⊗{{κr }}

]∪ [{{κ�}}⊗C∗(κr )
]∪ [

C∗(κ�)⊗C∗(κr )
]
(6)

from the sets of non-equivalent configurations of the two child nodes κ�, κr (Fig. 2a
with κ = j). Next, we merge all the equivalent configurations present in C̃(κ) into a
single representative, one for each class of equivalence of the relation∼κ , to determine
the set C∗(κ) of non-equivalent configurations at κ (Fig. 2b). Only the configurations
in C∗(κ) are used to determine configurations at the parent node of κ (Fig. 2c). Note
that from (6), the cardinality of the set C̃(κ) ⊇ C∗(κ) satisfies

c∗(κ) ≤ |C̃(κ)| = 1 + c∗(κ�) + c∗(κr ) + c∗(κ�) c
∗(κr ). (7)

Following this procedure in Fig. 3, we report the quantities |C̃(κ)| and c∗(κ) at each
internal node κ of two trees of size 8.When |C̃(κ)| > c∗(κ), the latter value is given in
parentheses. The same trees are considered in the enumerations provided in Table A1
(Fig. 3a) and Table 1 (Fig. 3b) by Wu (2012).

In the next sections, we study the number c∗(κ) = |C∗(κ)| of pairwise non-
equivalent configurations at a given node κ of a fixed or random tree t ∈ Tn selected
uniformly as well as the total number of non-equivalent configurations c∗ = ∑

κ c
∗(κ)

in t . To measure the strength of the equivalence relation ∼κ , we focus on c∗(r), the
number of non-equivalent configurations at the root κ = r of t , comparing our results
with those in Sect. 2.4.

When there is no need to distinguish between the number of non-equivalent root
configurations and the total number of non-equivalent configurations, we simply write
“number of non-equivalent configurations.” It is then understood that a statement
applies to both root and total non-equivalent configurations. Similarly, “number of
configurations” stands for both “number of root configurations” and “total number of
configurations.”
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Fig. 4 Natural logarithm of the number of non-equivalent root configurations for all possible tree shapes
of size 2 ≤ n ≤ 10. The value for n = 1, log(0), is omitted. Points corresponding to the largest and smallest
numbers of root configurations for each n are connected by the top and bottom lines, respectively

3.2 Non-equivalent Root Configurations in Small Trees

For small values of n, it is possible to exhaustively compute the number of non-
equivalent root configurations c∗(r) for representative labelings of each of the
unlabeled topologies of size n. In Fig. 4, each dot corresponds to the logarithm of
the number of non-equivalent root configurations for a certain tree shape of size deter-
mined by its x-coordinate. The points associated with the largest values of c∗(r) are
connected by the top line, whose growth appears to be linear in n. Indeed, as we show
in Sect. 4, tree families exist for which the growth of the number of non-equivalent
root configurations is exponential in the tree size.

The tree shapes whose labeled topologies possess the largest number of non-
equivalent root configurations among trees of fixed size n ≤ 20 appear in Fig. 5.
For 12 ≤ n ≤ 20, each shape in the sequence is produced by connecting the tree
with three taxa and the tree of size n− 3 already in the sequence to a shared root. This
pattern is used in Sect. 4.3 to determine a lower bound for the exponential growth of the
sequence M∗

n (r) describing the largest number of non-equivalent root configurations
among trees at fixed n.

n = 5 n = 8n = n = 6 7 n = 9 n = 10 n = 11 ≤ n ≤12 20

The tree of size 

non-equivalent root configurations

with the 
n − 3

largest 
 number

of

Fig. 5 Tree shapes of size 5 ≤ n ≤ 20 with the largest number of non-equivalent root configurations.
For n = 4, both unlabeled topologies have c∗(r) = 3. For 12 ≤ n ≤ 20, the tree with the largest value
of c∗(r) is obtained by appending a caterpillar of size 3 and the tree of size n − 3 with the largest value of
c∗(r) to a common root node. From n = 2 to n = 20, the largest values of c∗(r) follow the sequence 1, 2,
3, 5, 7, 11, 15, 23, 33, 47, 69, 99, 141, 207, 297, 423, 621, 891, 1269
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For values of n ≤ 20, the tree shape that minimizes the number of non-equivalent
root configurations is the caterpillar topology. The number of non-equivalent root
configurations in the caterpillar of size n is n−1 (Wu 2012). The bottom line in Fig. 4,
which connects points corresponding to the smallest number of non-equivalent root
configurations for a tree with n taxa, grows with log(n − 1).

These observations show that tree topology can have a considerable impact on
the number of non-equivalent configurations possible at a given tree size. Indeed,
Sect. 4 investigates the effect of symmetries in a tree on its number of non-equivalent
configurations. In Sect. 5, we show that although tree families (e.g., caterpillars) exist
for which the growth of the number of non-equivalent configurations is polynomial
in the tree size n, the expected number of non-equivalent configurations in a labeled
topology selected uniformly at random in Tn grows exponentially in n.

3.3 A Recursion for the Number of Non-equivalent Root Configurations

In this section, we provide a recursive procedure for computing the number of non-
equivalent root configurations in trees satisfying certain topological constraints. We
later use this recursion to study the number of non-equivalent root configurations for
several families of trees.

Let r be the root of a tree t . We denote by rS and rL the nodes descending from
r that generate the smaller, trS , and the larger, trL , root subtrees of t (we will soon
see that if the root subtrees of t have equal size, then we can choose either labeling).
As depicted in Fig. 6, suppose subtree trS can be displayed inside subtree trL by a
configuration at node rL ; that is, assume there is a configuration γ at node rL such
that

r S

a b c

r L

e f g h i j kd

r St

t r L

r

t
Fig. 6 A tree t in which the smaller root subtree trS can be displayed as trS

∼= trL (γ ) in the larger root
subtree trL through a configuration γ at node rL . The configuration γ is determined by the black squares
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trS ∼= trL (γ ). (8)

Note that it immediately follows that when (8) is satisfied, if trS and trL have the same
size, then they must have the same unlabeled shape, and it does not matter which is
assigned the label trS and which is assigned trL . It is trivial that (8) is satisfied when
trS ∼= trL , by the configuration γ that simply consists of all leaves of trL .

When condition (8) is satisfied, as shown in “Appendix 1,” the number of non-
equivalent configurations c∗(r) at the root r of a tree t with |t | > 1 can be directly
computed from the corresponding numbers at the children rS and rL :

c∗(r) = [c∗(rS) + 1][c∗(rL) + 1] − c∗(rS)
2

[c∗(rS) + 1]

= 1 + c∗(rS)
2

+ c∗(rL) + c∗(rS) c∗(rL) − [c∗(rS)]2
2

, (9)

where c∗(r) = 0 if |t | = 1. Note that if the smaller root subtree has size |trS | = 1,
then condition (8) is technically not satisfied, as each configuration at node rL has at
least 2 elements (unless |t | = 2). However, in this case as well, with |trS | = 1 and
c∗(rS) = 0, formula (9) holds, yielding c∗(r) = 1 + c∗(rL).

4 Non-equivalent Configurations for Special Tree Families

In this section, we study the number of non-equivalent configurations for special
families of trees. We consider completely unbalanced caterpillar trees in Sect. 4.1 and
completely balanced trees in Sect. 4.2. The number of non-equivalent configurations in
the caterpillar family has been investigated byWu (2012). For the completely balanced
family, we show that the number of non-equivalent configurations grows exponentially
in the tree size, though in a manner slower than the exponential growth of the number
of configurations (see point (iv) in Sect. 2.4). By considering a particular family of
unbalanced trees, in Sect. 4.3, we bound the exponential growth of the sequenceM∗

n (r)
of the largest number of non-equivalent root configurations for a given tree size n.

4.1 Completely Unbalanced Trees

Consider the family of caterpillar trees. Recursive application of (9) shows that, as was
already observed by Wu (2012), the number of non-equivalent root configurations in
the caterpillar with n taxa is n − 1. In particular, for caterpillar trees, trS has only one
leaf, and c∗(r) = 1 + c∗(rL). For a caterpillar tree of size n, subtree rL is simply a
caterpillar tree of size n − 1. Noting that c∗(r) = 1 for a two-taxon caterpillar tree,
we can iterate to obtain c∗(r) = n − 1 for an n-taxon caterpillar tree. Considering all
internal nodes of an n-taxon caterpillar, each of which has one fewer non-equivalent
configuration than the number of leaves it subtends, the total number of non-equivalent
configurations in the caterpillar of size n is

∑n
k=2(k − 1) = n(n − 1)/2.

We have thus found a family of trees for which the growth of the number of
non-equivalent configurations is polynomial in the tree size. This result suggests that
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En[c∗(r)]—the expected number of non-equivalent root configurations in a random
tree selected uniformly among those of size n—could, in theory, grow as a subexpo-
nential function of n. We study the growth of this expectation in Sect. 5, showing that
En[c∗(r)] in fact grows exponentially in n.

4.2 Completely Balanced Trees

Now consider the family of completely balanced trees b0, b1, b2, . . ., where bh is the
completely balanced tree of size n = 2h (Fig. 3b). Each tree bh satisfies condition
(8), as trS ∼= trL . Because of this equivalence of unlabeled shapes, c∗(rS) = c∗(rL).
Therefore, denoting by γh the number of non-equivalent root configurations in bh ,
from (9) we have the recursion

γh+1 = γ 2
h

2
+ 3γh

2
+ 1, (10)

where γ0 = 0. Setting xh = (γh + 1)/2, this recursion can be written

xh+1 = x2h + xh + 1

2
, (11)

with x0 = 1/2. The sequence (xh) can be studied as in “Appendix 2.” A constant k∗
0

exists for which
xh ∼ (k∗

0)
(2h). (12)

The constant k∗
0 can be approximated using the recursive definition of xh , summing

terms in a series

k∗
0 =

(
1

2

)

exp

[ ∞∑

i=0

2−i−1 log

(

1 + 1

2xi
+ 1

2x2i

)]

≈ 1.2460. (13)

Switching back to γh , we obtain

γh = 2xh − 1 ∼ 2(k∗
0)

(2h) = 2(k∗
0)

n,

where n = 2h = |bh |.
The following proposition summarizes our result.

Proposition 1 Consider the family of completely balanced trees (bh), with n = 2h =
|bh |. Its sequence of the number of non-equivalent root configurations, c∗(r), grows
asymptotically as c∗(r) ∼ 2(k∗

0)
n, where k∗

0 ≈ 1.2460 (13). In particular, c∗(r)
and the sequence of the total number of non-equivalent configurations, c∗, both have
exponential growth (k∗

0)
n.

Proof It remains to show that for tree family (bh), the exponential growth of the total
number of non-equivalent configurations equals the exponential growth of the number
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of non-equivalent root configurations. Because the sequence γh (10) is increasing, in
the completely balanced tree bh , the maximum number of non-equivalent configura-
tions across all internal nodes is reached at the root of the tree, equaling c∗(r). The
total number of nodes (including the leaves) in bh is 2n − 1. We therefore have the
inequality c∗(r) ≤ c∗ ≤ (2n − 1)c∗(r). In particular, the quantities c∗ and c∗(r)
are equal up to a factor that is at most polynomial in the size n. It follows that the
exponential growth of c∗ equals the exponential growth of c∗(r). ��

Comparing the constant k∗
0 with the value of k0 ≈ 1.5028 that describes the expo-

nential growth of the number of configurations for the completely balanced family
of trees (Disanto and Rosenberg 2017), the proposition shows that in this family, the
sequence of the number of non-equivalent configurations grows exponentially slower
than the sequence of the number of configurations. However, the growth is still expo-
nential in the tree size, and it is not true that non-equivalent configurations always
grow polynomially—as they do for caterpillar trees.

4.3 Bounds for the Largest Number of Non-equivalent Configurations for a
Given Tree Size

We now seek to bound the value of M∗
n (r) = max{t :|t |=n} c∗

t (r), the largest number of
non-equivalent root configurations among trees of size n.

Proposition 2 Let k0 ≈ 1.5028 be the exponential order of the sequence (Mn(r))
describing the largest number of root configurations in trees of size n (point (iii) of
Sect. 2.4). Then M∗

n (r) 	
 (k∗
1)

n, where 3
√
3 ≤ k∗

1 ≤ k0.

Proof For the upper bound, because non-equivalent configurations are nomore numer-
ous than configurations, M∗

n (r) ≤ Mn(r), and the upper bound follows.
For the lower bound, it suffices to exhibit a tree family in which the number of non-

equivalent root configurations has exponential order 3
√
3. For n ≥ 9, we define the

family of unlabeled topologies (un) by taking un as the tree shape of size n depicted
in Fig. 5 if n ∈ {9, 10, 11} and un = (un−3, c3)—where c3 is the caterpillar with 3
taxa—when n ≥ 12. Note that for n ≥ 12, the tree t = un satisfies condition (8) with
trS = c3 (Fig. 6).

Let γn be the number of non-equivalent root configurations in un . For n ≥ 12, (9)
yields the recursion

γn = 3γn−3, (14)

with γ9 = 23, γ10 = 33, and γ11 = 47. We set xn = [2(n − 3�n/3�)2 + 8(n −
3�n/3�) + 23]/27 to produce a function that cycles through the values 23/27, 33/27,
and 47/27 as n is incremented. From (14), we have

γn = 3� n
3 �xn (15)

when n ≥ 9. In particular, using (15), we see that (γn) has exponential growth
γn 	
 3

√
3
n
as desired. ��
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The recursive definition un = (un−3, c3) of the tree family (un) matches the pat-
tern found by exhaustive computation for the unlabeled topologies of trees of size
12 ≤ n ≤ 20 with the largest number of non-equivalent root configurations (Fig. 5).
Applying the floor function to the expression in (15), we obtain

⌊

3� n
3 � 2(n − 3� n

3 �)2 + 8(n − 3� n
3 �) + 23

27

⌋

. (16)

This formula, which equals (15) for n ≥ 9, computes the correct values of M∗
n (r)

from Fig. 5 for 2 ≤ n ≤ 20. Based on this result, it is a plausible conjecture that (16)
gives the exact value for the maximum number of non-equivalent root configurations
at a given n ≥ 2.

Note that the constant k∗
1 bounds from below the exponential order of the sequence

M∗
n of the largest total number of non-equivalent configurations among trees of given

size, as total non-equivalent configurations are at least as numerous as non-equivalent
root configurations. Further, because k0 is the exponential order of the sequence Mn

of the largest total number of configurations in trees of fixed size (see point (iii) of
Sect. 2.4), k0 bounds from above the exponential order of the sequence M∗

n .
Because 3

√
3 ≈ 1.4422, another consequence of Propositions 1 and 2 is that

sequences M∗
n (r) and M∗

n grow exponentially faster than the sequence of the number
of non-equivalent configurations in the family of completely balanced trees. This prop-
erty illustrates a remarkable effect of merging equivalent configurations. From points
(iii) and (iv) of Sect. 2.4, the number of configurations for completely balanced trees
follows the sequence of the largest number of configurations for trees of size n. When
equivalent configurations are merged together, however, other tree families, such as
the unbalanced family (un), possess a number of non-equivalent configurations that
grows faster than the corresponding number for completely balanced trees.

5 Mean Number of Non-equivalent Root Configurations

We denote by En[c∗(r)] the expected number of non-equivalent root configurations
in a random tree of size n drawn under a uniform distribution. This section shows that
En[c∗(r)] grows as an exponential function of n. We first present a lower bound for
En[c∗(r)]. Next, we show that this lower bound is itself bounded below by a quantity
that increases exponentially with n.

For the first step, we bound the expectation En[c∗(r)] by considering a certain set
T ′
n ⊆ Tn in which each tree satisfies formula (9). For n ≥ 2, define the quantity

x = x(n) as the solution of 2x−2 + x = n − 1, and consider the function w′(n) given
by w′(2) = 1 and for n ≥ 3,

w′(n) = �x�. (17)

In “Appendix 3,” it is shown that w′(n) satisfies w′(n) ≤ n/2, and that w′(n) = n/2
holds only when n = 2, 4, or 6. For 2 ≤ n ≤ 10, the values of (n, w′(n)) are (2, 1),
(3, 1), (4, 2), (5, 2), (6, 3), (7, 3), (8, 3), (9, 4), and (10, 4).
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Fig. 7 Schematic representation
of the unlabeled topology of a
tree in set Tn,w . The smaller root
subtree, trS , is a caterpillar of
size w ∈ [1, w′(n)]. The larger
trL has an unconstrained labeled
topology of size n − w. The
largest possible value of w, or
w′(n), is small enough for trS to
be displayed in trL , as in (8).
Note that Tn,w1 ∩ Tn,w2 = ∅ if
w1 �= w2

rS

rL

n−w

r

w

The growth ofw′(n) is logarithmic. Indeed, for increasing values of n, the ratio x/n
becomes small, so that x−2 = log2[n(1−(x+1)/n)] ≈ (log2 n)−(x+1)/(n log 2),
where the Taylor approximation log(1−u) ≈ −u for u near 0 is used. We then obtain
x(n) ≈ [n log(4n) − 1]/(n log 2 + 1) ∼ (log n)/(log 2).

For a given n ≥ 2 and a given w ∈ [1, w′(n)], we denote by Tn,w the set of trees
of size n such that trS , the smaller root subtree, is a caterpillar of size w, and trL , the
larger root subtree, has an unconstrained labeled topology of size n − w (Fig. 7). For
a given n ≥ 2, we define the set of trees

T ′
n =

w′(n)⋃

w=1

Tn,w.

Four properties can be demonstrated for trees in Tn,w. (i) If w ≥ 2, then each tree
t ∈ Tn,w satisfies (8) (“Appendix 4”), and thus, the number of non-equivalent root
configurations in t satisfies (9). Furthermore, note that as was observed in Sect. 3.3,
if t ∈ Tn,1, we have c∗(rS) = 0, and (9) holds even though (8) does not.

(ii) For any fixed n ≥ 2 and w ∈ [1, w′(n)], with w �= n/2, the probability of
observing a given tree t ∈ Tn−w as the rescaled larger root subtree of a tree t ∈ Tn,w

selected uniformly at random is, as shown in “Appendix 5,”

P[trL = t |t ∈ Tn,w] = 1

|Tn−w| . (18)

(iii) Because γw = w!/(2 − δw,1) is the number of caterpillar trees of size w ≥ 1
given a set of w labels, the probability pn,w = P[t ∈ Tn,w] for a random tree of
size n drawn under a uniform distribution to be in Tn,w can be computed as pn,w =
|Tn,w|/|Tn|, or

pn,w =
(
n

w

)[

(1 − δn,2w)γw|Tn−w| + δn,2w

(

γw(|Tw| − γw)+ 1

2
γ 2
w

)]/

|Tn |

= w!(n
w

)[2(2−δw,1)(2n−2w−3)!! (1−δn,2w)−δn,2w(w!+2(2w−3)!! δw,1−4(2w−3)!!)]
2(2n−3)!! (2 − δw,1)2

.

(19)
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Here,
(n
w

)
counts the number of ways of choosing thew taxa for the caterpillar subtree,

and we have used (1) to expand |Tn|, |Tw|, and |Tn−w|.
(iv) Ifw1 �= w2, then the sets Tn,w1 and Tn,w2 are disjoint, with Tn,w1 ∩Tn,w2 = ∅.

Indeed, if t ∈ Tn,w1 ∩ Tn,w2 , then we would have w1 + w2 = n, as t must have a
caterpillar of size w1 and a caterpillar of size w2 as root subtrees. However, w1 + w2
cannot equal n, as either w1 < w2 ≤ n/2 or w2 < w1 ≤ n/2.

For a tree t of size n ≥ 2 selected uniformly at random, the mean numberEn[c∗(r)]
of non-equivalent root configurations can be written by conditioning on t ∈ T ′

n , that
is,

En[c∗(r)]=
( w′(n)∑

w=1

pn,wEn[c∗
t (r)|t ∈ Tn,w]

)

+
(

1 −
w′(n)∑

w=1

pn,w

)

En[c∗
t (r)|t /∈ T ′

n].

(20)

Here, the probability P[t ∈ T ′
n] has been calculated as the sum P[t ∈ T ′

n] =
∑w′(n)

w=1 P[t ∈ Tn,w] because T ′
n = ⋃w′(n)

w=1 Tn,w is a disjoint union.
The expression En[c∗

t (r)|t ∈ Tn,w] in (20) can be replaced by

En[c∗
t (r)|t ∈ Tn,w] = 1 + w − 1

2
+En−w[c∗(r)]+(w − 1)En−w[c∗(r)]− (w − 1)2

2

= 1 + (w − 1)(2 − w)

2
+ wEn−w[c∗(r)], (21)

because for a random tree t ∈ Tn,w selected under a uniform distribution, (9) applies
with c∗(rS) = w − 1 and c∗(rL) = En−w[c∗(r)]. In particular, c∗(rS) = w − 1, as
a caterpillar of size w has w − 1 non-equivalent root configurations (Sect. 4.2), and
c∗(rL) = En−w[c∗(r)], as the larger root subtree trL of a random t ∈ Tn,w selected
uniformly has a uniform distribution over Tn−w if w �= n/2 (18). If w = n/2—
which can happen only for n = 2, 4, or 6—(21) holds because En[c∗

t (r)|t ∈ T2,1] =
1, En[c∗

t (r)|t ∈ T4,2] = 3, and En[c∗
t (r)|t ∈ T6,3] = 6, while E1[c∗(r)] = 0,

E2[c∗(r)] = 1, and E3[c∗(r)] = 2.
Using (21) and ignoring the second term in (20) yields the inequality

En[c∗(r)] ≥
w′(n)∑

w=1

pn,w

[

1 + (w − 1)(2 − w)

2
+ wEn−w[c∗(r)]

]

.

This inequality can be iterated if n − w ≥ 2 by applying the same procedure to
En−w[c∗(r)]. It follows that for each n ≥ 1, the integer en defined recursively for
n ≥ 2 by

en =
w′(n)∑

w=1

pn,w

[

1 + (w − 1)(2 − w)

2
+ wen−w

]

, (22)

where e1 = 0, bounds from below the expectation En[c∗(r)]. The first values of en
and En[c∗(r)] are reported in Table 1. The values of en match the values of En[c∗(r)]
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Table 1 Sequences en ,En [c∗(r)] and En [c(r)] for small values of n

n en En [c∗(r)] En [c(r)] n en En [c∗(r)] En [c(r)]

1 0 0 0 11 4613
247

94667
4199

9841
323

2 1 1 1 12 654726
29393

863372
29393

4840
119

3 2 2 2 13 195593
7429

1990481
52003

402752
7429

4 3 3 16
5 14 6033381

185725
9266561
185725

788741
10925

5 30
7

30
7

33
7 15 4299031

111435
21753971
334305

99454
1035

6 121
21

121
21

20
3 16 88030888

1938969
164642378
1938969

3837632
30015

7 254
33

254
33

304
33 17 9891227

186093
1959845063
17678835

52758677
310155

8 1356
143

334
33

1795
143 18 4014691853

64822395
3128723951
21607465

1157564
5115

9 8961
715

729
55

1102
65 19 1715903641

23881935
22592912099
119409675

1563215792
5191725

10 37549
2431

42039
2431

296
13 20 24415042314

294543865
72844824142
294543865

39979649
99789

Values of en were computed by using (22). Values of En [c∗(r)] were computed by generating all possible
unlabeled topologies of size n and then using STELLS (Wu 2012) to obtain the number c∗t (r) of non-
equivalent root configurations for eachunlabeled topology t . Theprobability of t under a uniformdistribution
over labeled topologies of size n was obtained by noting that its number of labelings L(t) follows the
recursion in Eq. 5.1 of Harding (1971); non-recursively, the number of labelings is n!/2s(t), where s(t) is
the number of internal nodes of t , including cherries and possibly the root, whose two descendant subtrees
are isomorphic [this result is obtained by taking the quotient of the results of Theorems 3.5 and 3.3 of
Rosenberg (2006)]. To compute c∗t (r), we ran STELLS on tree (t, ·) in which the two root subtrees were
t and the one-taxon tree ·. According to (7), the number of root configurations computed by STELLS is
c∗t (r) + 1, from which the desired c∗t (r) is obtained. Values of En [c(r)] were computed by the method of
Disanto and Rosenberg (2017, Fig. 7)

for n ≤ 7, that is, as long as T ′
n = Tn and the second term in (20) is 0. We also have

the following result.

Proposition 3 The expected number En[c∗(r)] of non-equivalent root configurations
in a random tree of size n ≥ 1 selected under a uniform distribution can be bounded

en ≤ En[c∗(r)] ≤ En[c(r)], (23)

where en is defined in (22) andEn[c(r)] is the expected number of root configurations.
Furthermore, the sequenceEn[c∗(r)] grows exponentially in n, with exponential order
at most 4/3.

Proof The upper bound follows from the fact that for any tree, c∗(r) ≤ c(r), and
by point (v) in Sect. 2.4, En[c(r)] has exponential order 4/3. All that remains is to
show that En[c∗(r)] grows exponentially in n. To achieve this goal, we prove that the
exponential order of the lower bound sequence en strictly exceeds one.

Truncating the sum (22) after the first four terms, for n ≥ 9, we have

en ≥ pn,1en−1 + 2pn,2en−2 + 3pn,3en−3 + 4pn,4en−4 + (pn,1 + pn,2 − 2pn,4)

≥ pn,1en−1 + 2pn,2en−2 + 3pn,3en−3 + 4pn,4en−4. (24)
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The last step follows because according to (19), when n ≥ 9, pn,1 = n/(2n − 3),
pn,2 = n(n−1)/[2(2n−3)(2n−5)], pn,4 = n(n−1)(n−2)(n−3)/[2(2n−3)(2n−
5)(2n − 7)(2n − 9)], and

pn,1 + pn,2 − 2pn,4 = n(2n − 11)!! (18n3 − 192n2 + 645n − 681)

2(2n − 3)!! ≥ 0.

Define the sequence an by an = en for 1 ≤ n ≤ 8, and an = pn,1an−1 +
2pn,2an−2 +3pn,3an−3 +4pn,4an−4 for n ≥ 9. From (24), we have, for each n ≥ 1,

en ≥ an . (25)

When n ≥ 9 and 1 ≤ w ≤ 4, because w �= n/2 and δn,w/2 = 0, the probability
pn,w in (19) can be written

pn,w = (2n − 2w − 3)!!
(2n − 3)!!

n!
(n − w)!

1

2 − δw,1
.

The recursion for an then becomes

an = n(2n − 5)!!
(2n − 3)!! an−1+ n(n−1)(2n−7)!!

(2n − 3)!! an−2+ 3n(n−1)(n−2)(2n−9)!!
2(2n − 3)!! an−3

+2n(n − 1)(n − 2)(n − 3)(2n − 11)!!
(2n − 3)!! an−4. (26)

Setting qn = an(2n − 3)!!/n!, we obtain from (26)

qn = qn−1 + qn−2 + 3qn−3

2
+ 2qn−4. (27)

Recursion (27) is homogeneous and linear with constant coefficients, and therefore
(Sedgewick and Flajolet 1996, Theorems 3.3 and 4.1), the exponential order of the
sequence qn is the inverse of the unique positive solution z0 of the characteristic
equation 1 = z + z2 + 3z3/2 + 2z4.

Solving the equation numerically, we find qn 	
 (1/z0)n , where z0 ≈ 0.4845. In
particular, the exponential order 1/z0 of the sequence qn strictly exceeds 2. Using
(2) to rewrite (2n − 3)!!, and observing by Stirling’s formula n! ∼ (n/e)n

√
2πn that(2n

n

) 	
 4n , it follows that sequence an = qnn!/(2n − 3)!! has exponential growth

an 	
 qn
n!

(2n)!
2nn!

= qn
2n
(2n
n

) 	

(
1/z0
2

)n

.

Therefore, the exponential order of the sequence an is 1/(2z0) ≈ 1.0320 > 1. By
inequality (25), the sequence en grows exponentially in n. ��
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Fig. 8 Natural logarithm of the mean number En [c∗(r)] of non-equivalent root configurations for labeled
topologies of size 2 ≤ n ≤ 20. The value for n = 1, log(0), is omitted. The natural logarithms of the
bounds en and En [c(r)] (23) determine the lower and upper lines. Exact values for the three quantities are
reported in Table 1

For n ≤ 20, the exact values of en,En[c∗(r)], and En[c(r)] are reported in Table 1
and plotted in Fig. 8. The figure illustrates that the numerical values of logEn[c∗(r)],
though initially coincident with the values of log en , are already closer to the values
of logEn[c(r)] by n = 20. This observation suggests that in bounding En[c∗(r)]
from below to demonstrate its exponential growth, the steps we have taken have led
to a bound that is quite loose; the exponential growth of En[c∗(r)] is likely to have a
comparable magnitude to that of En[c(r)], or 4/3.

6 Discussion

For labeled gene tree topologies t that match the labeled species tree topology, we
have extended the enumerative study of ancestral configurations, considering non-
equivalent configurations specified by an equivalence relation that groups ancestral
configurations according to symmetries in t . We have focused on the exponential
growth in the tree size |t | = n of the number of non-equivalent configurations present
at the root of t .

Wehave shown thatwhen t satisfies certain constraints, its number of non-equivalent
root configurations can be recursively computed from corresponding quantities for its
root subtrees. The recursion (9), which shares three of its five terms with an analo-
gous recursion for root configurations (Disanto and Rosenberg 2017, Proposition 1),
enables the study of the number of non-equivalent root configurations for special tree
families. For the family of completely balanced trees, the number of non-equivalent
root configurations and the total number of non-equivalent configurations grow expo-
nentially with order k∗

0 ≈ 1.2460 in n (Proposition 1). Comparing this constant with
the exponential orders of the numbers of root configurations and total configurations
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in the family, both of which equal k0 ≈ 1.5028 (Disanto and Rosenberg 2017), we
see that for the completely balanced trees, the number of configurations grows expo-
nentially faster than the number of non-equivalent configurations. Their symmetric
structure collapses the set of configurations into fewer non-equivalent configurations.

A different recursively defined tree family (un), however, has asymptotically more
non-equivalent configurations than the balanced trees, its number of root configu-
rations growing with exponential order 3

√
3 ≈ 1.4422 (Proposition 2). This value is

close to the upper bound of k0 ≈ 1.5028 on the exponential order of themaximal num-
ber of configurations across all labeled topologies of size n (Disanto and Rosenberg
2017, Corollary 1). Although the unlabeled shapes that give rise to the largest num-
bers of non-equivalent root configurations (Fig. 5) and root configurations (Disanto
and Rosenberg 2017, Fig. 3) are not in general the same, the maximal numbers of
non-equivalent configurations and configurations have comparable exponential order.

As was found by Wu (2012), the growth of the number of non-equivalent configu-
rations for some tree families (e.g., caterpillars) can be polynomial in n. Assuming a
uniform distribution over the labeled topologies with size n, however, we have shown
that the expected number of non-equivalent configurations for a random labeled topol-
ogy of size n grows exponentially (Proposition 3). The exponential order of this growth
is bounded below by 1/(2z0) ≈ 1.0320; numerical exploration suggests that it is closer
to the upper bound of 4/3 that describes the exponential order of the mean number of
configurations (Disanto and Rosenberg 2017, Proposition 5).

We focused on the situation in which the gene tree and species tree have a matching
topology. In the non-matching case, in parallel to a similar result for configurations
(Disanto and Rosenberg 2017), it is possible that the number of non-equivalent root
configurations and the total number of non-equivalent configurations exceed the cor-
responding values for matching gene trees and species trees. This claim can be verified
in a simple example. Let χn = ((. . . ((a1, a2), a3), . . .), an) be a caterpillar species
tree, and label the unique internal node with k descendants by bk for 2 ≤ k ≤ n.
For a matching caterpillar gene tree, all configurations are non-equivalent, the num-
ber of non-equivalent configurations at node bk is c∗(bk) = k − 1, the number of
root configurations is c∗(bn) = n − 1, and the total number of configurations is
c∗ = ∑n

k=2 c
∗(bk) = n(n − 1)/2.

Continuing with χn as the species tree topology, consider a gene tree topology

ξn = ((. . . ((((a1, a2), a3), (a4, a5)), a6), . . .), an)

with n ≥ 6. The gene trees (ξn) represent a caterpillar family (Disanto and Rosenberg
2016) with seed tree (((a1, a2), a3), (a4, a5)). We label the node of ξn ancestral to a1
anda2 byd2, the node ancestral toa1,a2, anda3 byd3, the node ancestral toa4 anda5 by
d∗
2 , and the unique node ancestral to k taxa, 5 ≤ k ≤ n, by dk . Following Wu (2012),
the definition of equivalent configurations in the non-matching case generalizes the
definition in Sect. 3.1. Consider a gene tree G, a species tree S, a node κ of S, and
two configurations γ1, γ2 at node κ—two possible sets of gene lineages that could
be present in S at κ under different realizations of G in S. Let κ ′ be the most recent
common ancestor of the lineages of G collected in the set γ1, and note that κ ′ is
also the most recent common ancestor of the lineages collected in γ2. Following the
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terminology of Sect. 3.1, we say that γ1, γ2 are equivalent at κ when the unlabeled tree
shape Gκ ′(γ1) is isomorphic to the unlabeled tree shape Gκ ′(γ2). We denote by C∗(κ)

and c∗(κ) the set of non-equivalent configurations at κ and its cardinality, respectively.
Proceeding sequentially through the internal nodes of χn , the non-equivalent con-

figurations are C∗(b2) = {{a1, a2}}, C∗(b3) = {{a1, a2, a3}, {d2, a3}}, C∗(b4) =
{{a1, a2, a3, a4}, {d2, a3, a4}, {d3, a4}}, and C∗(b5) = {{a1, a2, a3, a4, a5},
{d2, a3, a4, a5}, {d3, a4, a5}}, with c∗(b2) = 1, c∗(b3) = 2, c∗(b4) = 3, and
c∗(b5) = 3. At node b6 of χn , the non-equivalent configurations are C∗(b6) =
{{a1, a2, a3, a4, a5, a6}, {d2, a3, a4, a5, a6}, {d3, a4, a5, a6}, {a1, a2, a3, d∗

2 , a6}, {d3,
d∗
2 , a6}, {d5, a6}}, and configuration {d2, a3, d∗

2 , a6} is not included owing to equiva-
lence with {d3, a4, a5, a6}.

For 7 ≤ k ≤ n, C∗(bk) is obtained by augmenting configuration {dk−1, ak} to the
set of all configurations formed by adding taxon ak to the non-equivalent configura-
tions in C∗(bk−1); none of the resulting configurations are equivalent, and c∗(bk) =
c∗(bk−1) + 1. The number of non-equivalent root configurations of ξn for n ≥ 6 is
c∗(bn) = n, and the number of total configurations is c = 1+2+3+3+∑n

k=6 c
∗(bk) =

n(n + 1)/2 − 6. Because n > n − 1 and n(n + 1)/2 − 6 > n(n − 1)/2 for n ≥ 7,
non-equivalent root configurations and total non-equivalent configurations are more
numerous for the non-matching ξn than for the matching caterpillar.

Our enumerative results on ancestral configurations can help to compare the cost
of procedures for calculating gene tree probabilities recursively using ancestral con-
figurations (Wu 2012) to those that proceed non-recursively using a different data
structure, the “coalescent histories” (Degnan and Salter 2005; Rosenberg 2007, 2013;
Than et al. 2007; Rosenberg and Degnan 2010; Disanto and Rosenberg 2015, 2016).
In this context, it is noteworthy that the trees un , which have many non-equivalent root
configurations, have a similar recursive structure to the lodgepole trees, which have
large numbers of coalescent histories (Disanto and Rosenberg 2015).

Note that unlike for root configurations, we did not prove a general result describing
the unlabeled shapes of trees that give rise to the most non-equivalent root configura-
tions, merely evaluating the number of non-equivalent root configurations for trees un
and noting by exhaustive computation that this value is near the maximum for small
trees. We also did not produce a general relationship between non-equivalent root
configurations and total non-equivalent configurations. For the family of completely
balanced trees, the number of non-equivalent root configurations and the total number
of non-equivalent configurations have the same exponential growth, as the maximal
number of non-equivalent configurations across all internal nodes of a balanced tree
is reached at its root (Proposition 1). However, we did not provide a generalization
that such a maximum is applicable for arbitrary trees. Because it is the non-equivalent
configurations that are employed byWu (2012) in gene tree probability computations,
their further explorationwill be important for understanding the relative computational
complexity of gene tree probability computations with different species trees.
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Appendix 1: Proof of (9)

Let C∗(rS) = {γS,1, . . . , γS,q} with c∗(rS) = q, and let C∗(rL) = {γL ,1, . . . , γL ,Q},
with c∗(rL) = Q. Because condition (8) is satisfied, the entire tree trS can be displayed
in trL , each configuration γS,i ∈ C∗(rS) has exactly one corresponding configuration
γL ,i ∈ C∗(rL) such that trS (γS,i ) ∼= trL (γL ,i ), and Q ≥ q.

From (6), we obtain

C̃(r) = {{rS, rL}} ∪ [
C∗(rS) ⊗ {{rL}}] ∪ [{{rS}} ⊗ C∗(rL)

] ∪ [
C∗(rS) ⊗ C∗(rL)

]
,

which can be further decomposed as

C̃(r) = {{rS, rL}} ∪ [{γS,1, . . . , γS,q} ⊗ {{rL}}] ∪ [{{rS}} ⊗ [{γL ,1, . . . , γL ,q}
∪{γL ,q+1, . . . , γL ,Q}]]
∪[{γS,1, . . . , γS,q} ⊗ [{γL ,1, . . . , γL ,q} ∪ {γL ,q+1, . . . , γL ,Q}]]

= {{rS, rL}} (28)

∪[{γS,1, . . . , γS,q} ⊗ {{rL}}] ∪ [{{rS}} ⊗ {γL ,1, . . . , γL ,q}
]

(29)

∪[{{rS}} ⊗ {γL ,q+1, . . . , γL ,Q}] (30)

∪[{γS,1, . . . , γS,q} ⊗ {γL ,1, . . . , γL ,q}
]

(31)

∪[{γS,1, . . . , γS,q} ⊗ {γL ,q+1, . . . , γL ,Q}]. (32)

We merge equivalent configurations to obtain C∗(r) from C̃(r). From (29), we
remove those in {γS,1, . . . , γS,q} ⊗ {{rL}}, as they are equivalent to those in {{rS}} ⊗
{γL ,1, . . . , γL ,q}. Thus, we take only q among the 2q configurations in (29).Moreover,
due to the equivalence γS,i ∪γL , j ∼r γS, j ∪γL ,i , we take only those configurations of
the form γS,i ∪ γL , j with i ≤ j among those in {γS,1, . . . , γS,q} ⊗ {γL ,1, . . . , γL ,q}.
Thus, among the q2 configurations in (31)—those with 1 ≤ i, j ≤ q—we take only
q(q + 1)/2 non-equivalent ones. No equivalences are possible among configurations
in (28), (30), and (32), and all are retained in C∗(r). From (28)–(32), we then have

c∗(r) = |C∗(r)| = 1 + q + (Q − q) + q(q + 1)

2
+ q(Q − q) = 1 + q + Q

+qQ − q(q + 1)

2
.

Replacing q by c∗(rS) and Q by c∗(rL) gives (9).

Appendix 2: Proof of (12)

The proof follows the approach of Aho and Sloane (1973, Sect. 3) for solving certain
recurrences. From (11), we have xh+1 = x2h [1 + 1/(2xh) + 1/(2x2h)]. Taking the
logarithm yh = log xh yields yh+1 = 2yh + αh , where αh = log[1 + 1/(2xh) +
1/(2x2h)]. Following Aho and Sloane (1973), yh has solution
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yh = 2h y0+
∞∑

i=0

2h−i−1αi −
∞∑

i=h

2h−i−1αi = 2h
(

y0+
∞∑

i=0

2−i−1αi

)

−
∞∑

i=h

2h−i−1αi .

(33)
Converting back to xh = exp(yh), from (33) we have

xh =
[

x0 exp

( ∞∑

i=0

2−i−1αi

)](2h)

exp

(

−
∞∑

i=h

2h−i−1αi

)

= (k∗
0)

(2h) exp

(

−
∞∑

i=h

2h−i−1αi

)

,

where the last step uses the fact that x0 = 1/2.
We then have

xh
(k∗

0)
(2h)

= exp

(

−
∞∑

i=h

2h−i−1αi

)

.

When h → ∞, the sum
∑∞

i=h 2
h−i−1αi converges to zero because it can be bounded

0 ≤ ∑∞
i=h 2

h−i−1αi ≤ αh
∑∞

i=h 2
h−i−1 = αh , where because xh → ∞ as h → ∞,

αh → 0 as h → ∞. It follows that xh/(k∗
0)

(2h) converges to 1, producing (12).

Appendix 3: Properties of w′(n)

We prove that for each n ≥ 2, w′(n) ≤ n/2, with equality only for n = 2, 4, or 6.
The result is verified by direct computation of w′(n) for 2 ≤ n ≤ 7. For n ≥ 8, by
definition, w′(n) = �x�, where x satisfies 2x−2 + x = n− 1. Seeking a contradiction,
suppose �x� = w′(n) ≥ n/2. Because x ≥ �x�, we would have x ≥ n/2, and
therefore n−1 = 2x−2 + x ≥ 2n/2−2 +n/2 ≥ 2(n/2−2)+n/2 = 3n/2−4, noting
that 2u ≥ 2u for u ≥ 2. The inequality n − 1 ≥ 3n/2 − 4 cannot hold if n ≥ 8.
Therefore, when n ≥ 8, we must have w′(n) < n/2.

Appendix 4: Proof that Trees in Tn,w Satisfy (8) for w ≥ 2

We first prove that given any w ≥ 2, a caterpillar tree t1 of size |t1| = w can be
displayed in any tree t2 of size |t2| ≥ 2w−2 + 1 through a root configuration γ of t2,
that is, t1 ∼= t2(γ ). The proof is by induction on w.

Forw = 2, we have |t2| ≥ 2 and the result follows by taking the root configuration
γ determined by the left and right descendants of the root in t2. For the inductive step,
because |t2| ≥ 2w−2 + 1, the larger root subtree of t2 has size at least �|t2|/2� ≥
�2w−3 + 1/2� = 2w−3 + 1. By the inductive hypothesis, the larger root subtree of t2
can display a caterpillar of size w − 1 through a root configuration γ ′. Taking the root
configuration γ of t2 obtained as γ = γ ′ ∪ {ρ}, where ρ is the root of the smaller root
subtree of t2, we have t1 ∼= t2(γ ) as desired.
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Now suppose we are given a tree t ∈ Tn,w, with 2 ≤ w ≤ w′(n). The smaller root
subtree trS of t is by definition a caterpillar of sizew ≥ 2, and the larger root subtree trL
has size |trL | = n−w. By definition,w ≤ w′(n) = �x� ≤ x , where x = n−2x−2−1,
and therefore, w ≤ n − 2w−2 − 1. In particular, |trL | = n − w ≥ 2w−2 + 1. From
what we have shown above, a root configuration γ of trL exists such that trS ∼= trL (γ ).

Appendix 5: Proof of (18)

Recall that for each tree t ∈ Tn,w, the smaller root subtree trS is a caterpillar of sizew ∈
[1, w′] and the larger root subtree trL has size n−w. Because we assumew < n/2, trS
and trL have different sizes and different unlabeled topologies. Given a tree t ∈ Tn−w,
the number of trees in Tn,w such that trL = t (after rescaling labels for the taxa) is(n
w

)
γw, where γw is the number of caterpillar labeled topologies of size w. Dividing

by |Tn,w| = (n
w

)
γw|Tn−w| yields the probability P[trL = t |t ∈ Tn,w] = 1/|Tn−w| as

desired.
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