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a b s t r a c t

Approximate Bayesian computation (ABC) methods perform inference on model-specific parameters of
mechanistically motivated parametric models when evaluating likelihoods is difficult. Central to the suc-
cess of ABC methods, which have been used frequently in biology, is computationally inexpensive sim-
ulation of data sets from the parametric model of interest. However, when simulating data sets from a
model is so computationally expensive that the posterior distribution of parameters cannot be adequately
sampled by ABC, inference is not straightforward. We present ‘‘approximate approximate Bayesian com-
putation’’ (AABC), a class of computationally fast inference methods that extends ABC to models in which
simulating data is expensive. In AABC,we first simulate a number of data sets small enough to be computa-
tionally feasible to simulate from the parametricmodel. Conditional on these data sets, we use a statistical
model that approximates the correct parametricmodel and enables efficient simulation of a large number
of data sets.We show that undermild assumptions, the posterior distribution obtained byAABC converges
to the posterior distribution obtained by ABC, as the number of data sets simulated from the parametric
model and the sample size of the observed data set increase. We demonstrate the performance of AABC
on a population-genetic model of natural selection, as well as on a model of the admixture history of hy-
brid populations. This latter example illustrates how, in population genetics, AABC is of particular utility
in scenarios that rely on conceptually straightforward but potentially slow forward-in-time simulations.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Stochastic processes motivated by mechanistic considerations
enable investigators to capture salient phenomena inmodeling bi-
ological systems. Statistical models resulting from these stochastic
processes are often parametric, and estimating model-specific pa-
rameters – which often have a biological interpretation – is a ma-
jor aim of data analysis. Contemporary mechanistic models tend
to involve complex stochastic processes, however, and parametric
statistical models resulting from these processes lead to compu-
tationally intractable likelihood functions. When likelihood func-
tions are computationally intractable, likelihood-based inference
is a challenging problem that has received considerable attention
in the literature (Robert and Casella, 2004; Liu, 2008).

Approximate Bayesian computation (ABC) methods (Beaumont
et al., 2002; Marjoram et al., 2003) use data sets simulated from
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the model to assess parameter likelihoods without explicit eval-
uation of likelihood functions, and thereby facilitate sampling an
approximate posterior distribution of the parameters. Intuitively,
parameter values producing simulated data sets similar to the ob-
served data set arise in approximate proportion to their likelihood,
and hence, whenweighted by prior probabilities, to their posterior
probabilities.

1.1. The ABC literature

ABC methods have been based on rejection algorithms (Tavaré
et al., 1997; Beaumont et al., 2002; Blum and François, 2010),
Markov chain Monte Carlo (Beaumont, 2003; Marjoram et al.,
2003; Wegmann et al., 2009), and sequential Monte Carlo (Sisson
et al., 2007, 2009; Beaumont et al., 2009). Model selection using
ABC (Pritchard et al., 1999; Fagundes et al., 2007; Grelaud et al.,
2009; Blum and Jakobsson, 2010; Robert et al., 2011), the choice of
summary statistics when the likelihood is based on summaries in-
stead of the full data (Joyce and Marjoram, 2008; Nunes and Bald-
ing, 2010; Fearnhead and Prangle, 2012), and the equivalence of
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posterior distributions targeted in different ABC methods (Wilkin-
son, 2008; Sisson et al., 2010) have also been investigated.

ABCmethods have beenwidely used formodel-based inference
in disciplines that rely on genetic data, particularly data shaped
by diverse evolutionary, demographic, and environmental forces.
Example applications have included problems in the demographic
history of populations (Pritchard et al., 1999; François et al., 2008;
Verdu et al., 2009; Blum and Jakobsson, 2010) and species (Estoup
et al., 2004; Plagnol and Tavaré, 2004; Becquet and Przeworski,
2007; Fagundes et al., 2007;Wilkinson et al., 2010), aswell as prob-
lems in the evolution of cancer cell lineages (Tavaré, 2005; Sieg-
mund et al., 2008), the evolution of protein networks (Ratmann
et al., 2009) and the study of dynamic molecular networks in sys-
tems biology (Bonassi et al., 2011).

1.2. A limitation of ABC methods and our contribution

Adequately sampling a posterior distribution of a parameter by
ABC requires many random realizations from the sampling distri-
bution of the data. However, the computational cost of simulat-
ing a data set increases quickly with the complexity and number
of stochastic processes involved in a model. When only a small
number of data sets can be simulated from the model, likelihoods
cannot be accurately assessed using ABC, and hence, the posterior
distribution of parameters cannot be adequately sampled.

In this article, we introduce approximate approximate Bayesian
computation (AABC), a class of fast computational statistical meth-
ods that perform inference on model-specific parameters when
standard ABC methods are computationally infeasible to apply.
AABC methods overcome the computational intractability associ-
ated with simulating many data sets under the model by making
approximations on the parameter space and themodel space, in ad-
dition to standard ABC approximations on the data space (Fig. 1).

Our approach is to condition on a small number of data sets
that can be feasibly simulated from the model and to employ a
non-mechanistic statistical model to simulate a large number of
data sets. The data values from the small number of simulated data
sets are used to construct new random data sets, thereby render-
ing the simulation of a large number of data sets inexpensive in
AABC. Intuitively, the information conditioned upon by the non-
mechanistic model increases with the number of data sets simu-
lated from the mechanistic model, and the expected accuracy of
inference obtained by AABC methods increases. We formalize this
intuition by showing that the posterior distribution of parame-
ters obtained by AABC converges to the corresponding posterior
distribution obtained by standard ABC, as the sample size of the
observed data set and the number of data sets simulated from
the model increase. Next, we briefly review a standard ABC-by-
rejection algorithm.

2. A standard ABC algorithm by rejection sampling

To set up the class of problems inwhichABCmethods are useful,
we assume that a parametric model generates (possibly multivari-
ate) observations conditional on parameter θ ∈ Θ ≡ Rℓ, ℓ ≥ 1.
We denote a random data set of n independent and identically dis-
tributed (IID) observations by x = (x1, x2, . . . , xn) ∈ X, where X
is the space in which the data set sits, and the observed data set by
xo. In the population genetics context, a data point xi might be a
vector denoting the allelic types of a genetic locus at genomic po-
sition i in a group of individuals; the data matrix x might contain
genotypes from these individuals in a sample of n genetic loci.

ABC methods make two approximations on the likelihood
p(xo|θ) of the parameters given the observed data set. First, the
observed data set xo and any simulated data set xi are substituted
by so and si, respectively. Second, the likelihood function of the
data, p(x|θ), is substituted with an approximate likelihood func-
tion p(∥s−so∥ < ϵ|θ), for an appropriate distance ∥·∥ and a toler-
ance parameter ϵ. A standard ABC algorithm by rejection sampling
is as follows (Pritchard et al., 1999).

Algorithm 1: ABC by rejection sampling.

1. Simulate θi ∼ π(θ).
2. Simulate xi ∼ p(x|θi).
3. Calculate the summary statistics si from xi.
4. If ∥so − si∥ < ϵ, output θi.

AABC methods utilize the established machinery of ABC meth-
ods in sampling the posterior distribution of the parameters.
Therefore, standard approximations on the data space involved in
an ABC method – features of the distance function, tolerance pa-
rameter, andweighting of simulated data that are sufficiently close
to the observed data – apply to AABC methods as well. We assume
that these standardABC approximationswork reasonablywell, and
we focus on introducing newmodeling approximations on the pa-
rameter and model spaces (Table 1).

3. Approximate approximate Bayesian computation (AABC)

Algorithm 1 returns an adequate sample size from the poste-
rior distribution of a parameter if it is iterated a large number of
times, M . The set of realizations simulated from the joint distri-
bution of the parameter and the data by steps 1 and 2 of Algo-
rithm 1 is then {(x1, θ1), (x2, θ2), . . . , (xM , θM)}. Our interest in
this article is inference when simulating M data sets from p(x|θ)
is computationally infeasible. We thus assume that only a small
number m of data sets x1, x2, . . . , xm can be obtained by step 2 of
Algorithm 1 (m ≪ M). We denote the set of realizations simu-
lated from the joint distribution of the parameter and the data by
Zn,m = {(x1, θ1), (x2, θ2), . . . , (xm, θm)},where each data set xi of
n observations is simulated from the model p(x|θi). See Table 2.

3.1. AABC algorithms

An AABC algorithm has three parts:

I. Simulating a limited number of realizations from the prior
distribution of the parameter and the distribution of the data.

II. Simulating a newparameter value θ∗ from its prior distribution
and a data set from a statistical model q(x|θ∗, Zn,m).

III. Comparing the summary statistics s∗ calculated from the sim-
ulated data set x∗ with the summary statistics so calculated
from the observed data set xo, to accept or reject the parameter
value θ∗.

Part I involves the application of steps 1 and 2 from Algorithm 1
only form iterations, and obtains the setZn,m. The novelty of AABC
is constructing the statistical model q(x|θ∗, Zn,m) used in Part II,
and we describe the details of this model in the next section. The
calculation and comparison of summary statistics in Part III follow
steps 3 and 4 of Algorithm 1.

3.2. Approximations on the parameter and model spaces due to re-
placing mechanistic model p(x|θ) with statistical model q(x|θ, Zn,m)

We use a statistical model q(x|θ, Zn,m) as a surrogate for the
mechanistic model p(x|θ) to simulate new data sets. For a param-
eter value θ∗ under which we want to simulate a new data set, we
first calculate the Euclideandistances∥θ∗

−θi∥ for all θi ∈ Zn,m.We
then assign weights ωi to data sets xi simulated under θi according
to an Epanechnikov kernel:ωi = (3/4)[1/(θ∗

−θ(k+1))][1−∥(θ∗
−

θi)/(θ
∗
− θ(k+1))∥

2
]I{∥θ∗−θi∥<∥θ∗−θ(k+1)∥}, where θ(k+1) is the param-

eter value with the (k + 1)th smallest distance to θ∗. Here, the ωi
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Fig. 1. Applicability of simulation-based inference methods in relation to the information available about the likelihood function.
Table 1
Approximations and errors involved in simulation-based ABC inferencemethods. Likelihood functions of the full data and the summary statistics are denoted respectively by
p(x|θ) and p(s|θ). Exact ABC with full data involves only the Monte Carlo approximation due to sampling and thus is equivalent to a standard rejection algorithm. Summary
statistics s are assumed not to be sufficient, so that dimension reduction from xo to so results in an approximation.

True
quantity

Approximated by Space involved Source of error Method employing approximation

Exact ABC with full
data

Exact ABC with summary
statistics

ABC AABC


X
p(x|θ)dx

M
i=1 p(xi|θ) Data Monte Carlo Yes Yes Yes Yes

p(x|θ) p(s|θ) Data Dimension reduction No Yes Yes Yes
p(so|θ) p(∥so − si∥ < ϵ|θ) Summary

statistics
Tolerance, Kernel,
Distance

No No Yes Yes

p(so|θ) p(so|θ̃ ) Parameter Tolerance, Kernel,
Distance

No No No Yes

p(x|θ) p̂(x|θ) Model Empirical distribution No No No Yes
decreasewith the squared distance of θi from θ∗, and a zeroweight
is assigned to all θi that are not among the first k closest parame-
ter values to θ∗. We denote the k values that get a positive weight
by θ̃i, i = 1, 2, . . . , k, and the data sets simulated under these
parameter values by x̃i. Our model q(x|θ, Zn,m) is a k-dimensional
mixture distribution, where the support of this distribution is the
set ∪

k
i=1 x̃i and the mixing weights are ωi.

In a data set x̃i, we assume that all ndata points (x̃1i, x̃2i, . . . , x̃ni)
are equally likely and that the weight for each data point j is ωji =

ωi/n. We denote the probability that a random data value x in the
new data set is equal to a specific data value x̃ji observed in the set
∪

k
i=1 x̃i by φji.We letφ = {φji} andω = {ωji}, j = 1, 2, . . . , n, i =

1, 2, . . . , k, and we place a Dirichlet prior distribution

π(φ|ω) ∝

k
i=1

n
j=1

φ
ωji−1
ji , (1)

on the (kn − 1)-dimensional simplex Φ. A new data set x under
θ is simulated by first drawing φ from this prior distribution and
then simulating n IID observations, where the probability of an
observation to take the value x̃ji is the simulated value of φji.

We clarify the simulation of a new data set in AABC with a nu-
merical toy example using m = 3, k = 2, and n = 2. We as-
sume that the data are generated from an exponential distribution,
x ∼ Exp(θ), with the prior θ ∼ Unif(0, 1). Becausem = 3, our ref-
erence set has three θ values, and from the uniform prior we sam-
ple (0.08, 0.19, 0.76). Using x ∼ Exp(0.08), with n = 2, we get a
data set (1.36, 3.65), and similarly, using Exp(0.19) and Exp(0.76),
we get the data sets (16.25, 1.93) and (0.62, 0.12), respectively.
A new parameter value simulated from the prior is 0.34, under
which we desire to simulate a data set. The Euclidean distances
between each of the three parameter values and the new parame-
ter value are


(0.34 − 0.08)2 u 0.26,


(0.34 − 0.19)2 u 0.15,

and


(0.34 − 0.76)2 u 0.42. Because k = 2, only the first two
data sets, which are simulated under parameter values closest to
0.34, are considered for resampling. Using the Epanechnikov ker-
nel, theweights for the first and second data sets are (3/4)(1/0.42)
[1 − (0.26/0.42)] u 0.68, and (3/4)(1/0.42)[1 − (0.15/0.42)] u
1.14, respectively, where 0.42 scales the kernel so that the data set
simulatedwith parameter value 0.76 gets aweight of zero.Wenow
simulate the probabilities (φ1, φ2) from the Dirichlet distribution
Dir(0.68, 1.14) to get φ1 = 0.43, φ2 = 0.57. Resampling of the
data points within each data set is performed with equal probabil-
ity, so we have the following resampling distribution: P(x = 1.36)
= 0.43/2, P(x = 3.65) = 0.43/2, P(x = 16.25) = 0.57/2,
P(x = 1.93) = 0.57/2. A new sample under the parameter value
0.34 is obtained by simulating a sample of size n = 2 from this
distribution on a set of {1.36, 3.65, 16.25, 1.93}, where the obser-
vations are generated independently from each other.

The joint sampling distribution of a new data set x = (x1, x2,
. . . , xn) for our model is given by

q(x|θ, Zn,m) =


Φ

q′(x|φ, Zn,m)π(φ|ω) dφ , (2)
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Table 2
Notation used in the text and algorithms.

Random value Realized value Method Description

θ θi ABC/AABC Parameter value
θ∗

i AABC Parameter value
θ̃ θ̃i AABC Parameter value in the set Zn,m

φ φi AABC Probability vector for θ or θ∗

i
φij AABC jth element of φi

x xi ABC Data set of size n simulated from p(x|θ) or p(x|θi)
x∗

i AABC Data set of size n simulated from q(x|θ∗

i )

x̃ x̃i AABC Data set of size n in Zn,m simulated from p(x|θ̃ ) or p(x|θ̃i)

xj xij ABC jth data point in xi
x∗

ij AABC jth data point in x∗

i

x̃j x̃ij AABC jth data point in x̃i
where q′(x|φ, Zn,m) is a multinomial distribution with number of
trials n and event probabilities φji for events of observing x = x̃ji.

There are two approximations involved in replacing p(x|θ)with
q(x|θ, Zn,m). The first approximation is due to replacing the sam-
pling distribution of the data set p(x|θ) with a k-dimensional
mixture distribution

k
i=1 ωip(x|θ̃i). Accordingly, we call this an

approximation on the parameter space, because in a sense we use
a combination of parameter values θ̃i to approximate the value θ .
This parameter space approximation alone is not helpful for sim-
ulating data sets efficiently, since it is still computationally in-
feasible to simulate data sets under models p(x|θ̃i). The second
approximation is due to replacing each model p(x|θ̃i) that con-
tributes to the mixture distribution with its estimate p̂(x|θ̃i), the
empirical distribution of the data set x̃i. We call this an approxi-
mation on the model space, because the desired model is replaced
with an estimate obtained from a data set. This approximation is
implicitly formulated in the Dirichlet prior distribution π(φ|ω),
becauseπ(φ|ω) assigns probabilitymass only on the kndata values
in the set ∪k

i=1 ∪
n
j=1 x̃ji. Thus, it only uses the empirical distribution

of data sets x̃i and not all possible values in the support of p(x|θ̃i).
An AABC algorithm by rejection is as follows:

Algorithm 2: AABC by rejection sampling.

Initialization.
i. For i = 1, 2, . . . ,m, simulate θi ∼ π(θ).
ii. For i = 1, 2, . . . ,m, simulate xi ∼ p(x|θi).
1. Simulate θ∗

∼ π(θ).
2. Calculate ωi = (3/4)[1/∥θ∗

− θ(k+1)∥][1 − ∥(θ∗
− θi)/

(θ∗
− θ(k+1))∥

2
]I{∥θ∗−θi∥<∥θ∗−θ(k+1)∥}, for i = 1, 2, . . . , k.

3. Find (x̃i, θ̃i) ∈ {(x1, θ1), . . . , (xm, θm)}, i = 1, 2, . . . , k for
which ωi > 0.
4. Simulate
φ ∼ π(φ|ω) ∝

k
i=1
n

j=1 φ
ωji−1
ji , ω = {ωji = ωi/n}.

5. Simulate n new data points x∗

ℓ, ℓ = 1, 2, . . . , n, each with
P(x∗

ℓ = x̃ji) = φji, and set x∗
= (x∗

1, . . . , x
∗
n).

6. Calculate the summary statistics s∗ from x∗.
7. If ∥so − s∗∥ < ϵ, output θ∗.

In Algorithm 2, we call steps i and ii initialization steps, because
these steps are run only once. The information obtained by initial-
ization steps in AABC is used to bypass a large numberM of simula-
tions from themodel that are required in a standard ABC approach.

3.3. The posterior distribution of θ sampled by AABC

In sampling the approximate posterior distribution of θ by
AABC methods, we use the two ABC approximations described in
Section 2. In steps 6 and 7 of Algorithm 2, each data instance x is
substitutedwith summary statistics s, and an acceptance condition
with tolerance ϵ is used to measure the proximity of the summary
statistics calculated from the observed and simulated data by the
Euclidean distance. Substituting p(x|θ)with q(x|θ, Zn,m) gives the
approximate posterior distribution sampled by an AABCmethod as

πAABC (θ |xo) =
1
Cq


X

I{∥s−so∥<ϵ}

×


Φ

q′(x|φ, Zn,m)π(φ|ω) dφ


π(θ) dx, (3)

where Cq =


Θ


X
I{∥s−so∥<ϵ}


Φ
q′(x|φ, Zn,m)π(φ|ω) dφ


π(θ)

dx dθ is the normalizing constant.
The probability of sampling a parameter value θ∗ in Algorithm

2 is proportional to
x

I{∥s−so∥<ϵ}


φ

q′(x|φ, Zn,m)π(φ|ω)π(θ∗). (4)

Expression (4) is equal to the finite sampling version for the
posterior distribution in Eq. (3), except that it is missing the
normalizing constant 1/Cq. Therefore, Algorithm 2 samples any
parameter value θ∗ in proportion to its correct posterior probabil-
ity πAABC (θ

∗
|xo) given by Eq. (3).

The AABC approach is sensible in that as a model increasingly
permits a larger number of simulated data sets, for large sample
sizes, the posterior distribution obtained by an AABC method ap-
proaches the same distribution as the posterior distribution ob-
tained by an ABC method. We codify this claim with a theorem.

Theorem. Let π(θ) be a bounded prior on θ , and let xo = (x1o, x2o,
. . . , xno) be a data set of size n. Let πABC (θ |xo) and πAABC (θ |xo), be
the posterior distributions sampled by a standard ABC method and an
AABC method, respectively. Then

lim
m→∞

lim
n→∞

πAABC (θ |xo) = lim
n→∞

πABC (θ |xo). (5)

A proof of the theorem appears in the Appendix. The conver-
gence of the posterior distribution sampled by AABC is a conse-
quence of the fact that for each value of θ , the sampling distribution

Φ
q′(x|φ, Zn,m)π(φ|ω) dφ converges to the true sampling distri-

bution p(x|θ) as the sample size n and the number of simulated
samplesm from p(x|θ) increase.

At first glance, our theorem might seem not to be very useful
in practice, since it does not quantify the behavior of the posterior
distribution obtained by AABC for small m, and when m is large,
AABC is not needed. However, the theorem is important because it
guarantees that the approximate model q(x|θ, Zn,m) used in AABC
is a legitimate statistical model for convergence to the posterior
distribution obtained by ABC.
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The double limit in Eq. (5) is required because the standard no-
tion of a distribution converging to a point in the parameter space
as n increases does not apply to πAABC (θ |xo). The posterior distri-
bution πAABC (θ |xo) depends not only on the sample size n, but also
on the number m of simulated data sets from p(x|θ). Hence, for
convergence of the posterior distribution based on the likelihood
q(x|θ, Zn,m), the requirement is that both n → ∞ andm → ∞.As
n → ∞, the distribution of a data set x̃i converges to p(x|θ̃i), the
correct sampling distribution with the incorrect parameter value
θ̃i. Asm → ∞, the distance between the parameter value θ under
which we want to simulate a new data set and the parameter val-
ues θ̃i ∈ Zn,m closest to θ approaches zero. Therefore, taking both
limits results in convergence to the correct sampling distribution
p(x|θ).

3.4. Computational performance of AABC methods

In practice, a number of problem-specific factors, including
the availability of computational resources and the level of accu-
racy desired in the results, can affect the choice of computational
method for a given problem. Hence, providing generic recommen-
dations on when to choose AABC methods over ABC methods is
not simple. However, we present an analysis to gain insight into
the computational time complexity of an AABC algorithm as com-
pared with an ABC algorithm.

The calculation of summary statistics from a data set, the com-
parison of simulatedwith observed summary statistics, and the as-
sessment of the rejection condition have the same computational
cost in AABC and ABC algorithms. The computational cost of simu-
lating data sets, however, differs in AABC and ABC.

Let the computation time required to simulate a data set from
distribution p(x|θ) and to draw a parameter value θ from its prior
distribution π(θ) be cd and cp respectively. Simulating data sets
in M iterations of an ABC algorithm requires time Mcd, because
all data sets in ABC are simulated from the distribution p(x|θ).
The total time to simulate parameter and data set pairs in ABC is
M(cd + cp).

In AABC, building the set Zn,m requires simulating m parame-
ter values from the prior and m data sets from the model p(x|θ),
and thus has computation time m(cd + cp). For a scalar θ , finding
the distances between each element θi of Zn,m and the parame-
ter value θ under which we want to simulate a new data set re-
quires m calculations, and thus, for an ℓ-dimensional parameter,
mℓ calculations. Sorting these distances to find the k values θ̃i clos-
est to the parameter value θ has a cost on the order of m logm.

Once the appropriate θ̃i are found, the data sets x̃i simulated un-
der θ̃i are accessed in a negligible constant time. Finally, we sim-
ulate a (kn − 1)-dimensional Dirichlet variable φ, and we draw n
IID uniform random variables to sample the distribution given by
the probabilities φ on the support ∪

k
i=1 x̃i. The computational cost

of these two steps is linear in n, or O(n). Hence, given Zn,m, simu-
lating data sets inM iterations of an AABC algorithm requires time
Mm(ℓ + logm) +M[O(n)]. Therefore, the computational time dif-
ference between an ABC algorithm and an AABC algorithm is
M(cd + cp) − {m(cp + cd) + Mm(ℓ + logm) + M[O(n)]}. (6)
Simulating from the prior distribution π(θ) and the Dirichlet dis-
tribution π(φ|ω) is often fast. Therefore, O(n) and cp are relatively
small in Eq. (6), which gives the computational time difference be-
tween an ABC and an AABC algorithm roughly as (M − m)cd −

Mm(ℓ + logm). Because the motivation for use of AABC is that cd
is large, this computation clarifies that AABC is substantially faster
than ABC whenm ≪ M.

4. Applications

In this section, we demonstrate the inferential performance of
the AABC approach with two examples.
4.1. Example 1: The strength of balancing selection in a multi-locus
K-allele model

Here, we consider inference from the stationary distribution
of allele frequencies in the diffusion approximation to a Wright–
Fisher model with symmetric balancing selection and mutation
(Wright, 1949). If we let ai > 0, with i = 1, 2, . . . , K , and

K
i=1 ai

= 1, denote the frequency of allelic type i in the population at a
genetic locus, then the joint probability density function of allele
frequencies x = (a1, a2, . . . , aK ) is

f (x|σ , µ) = c(σ , µ)−1 exp


−σ

K
i=1

a2i


K

i=1

aµ/K−1
i . (7)

Parameters σ and µ determine the population-scaled strength of
balancing selection and the mutation rate, respectively. We as-
sume that a random sample of n draws from the population ap-
proximates the allele frequencies in the population.

In our example, we assume that the data are generated with
the same true parameter values over 50 loci, each with K = 4,
and that the allele frequencies at each locus are independent of the
allele frequencies at other loci. Thus, the joint probability density
function of allele frequencies for all loci is equal to the product of
probability density functions across loci.

In Eq. (7), the likelihood function f (x|σ , µ) is hard to compute,
as a consequence of difficulty in calculating the normalizing con-
stants c(σ , µ). Therefore, performing likelihood-based inference
on σ and µ by standard computational approaches such as MCMC
is difficult. Fortunately, a numerical integration method specifi-
cally designed to calculate c(σ , µ) allows us to determine the like-
lihoods (Genz and Joyce, 2003). Wewill use this method to sample
the posterior distribution of the parameters by a standard MCMC
algorithm. The distribution sampled by a standard MCMC algo-
rithm can be regarded as the ‘‘true’’ posterior distribution and is
not an approximate posterior distribution as in ABC or AABC, be-
causeMCMC does not involve the approximations used in ABC and
AABC. Therefore, we will use the posterior sample obtained by the
MCMC approach for comparing the accuracy of the posterior sam-
ples obtained by ABC and AABC. The numerical integrationmethod
to obtain c(σ , µ) is computationally feasible only for small values
of µ and σ , and thus, in our example we restrict our attention to
uniform prior distributions, on (1, 10) for the mutation rate (µ),
and on (1, 50) for the selection parameter (σ ).

ABC and AABC methods are well-suited for inference from this
model because the statistics

K
j=1 a

2
j and −

K
j=1 log aj are jointly

sufficient for parameters σ and µ, and no information is lost in
dimension reduction to the summary statistics. We used a method
specifically designed for simulating data sets from f (x|σ , µ) (Joyce
et al., 2012).

We designed our simulation study as follows. First, we sim-
ulated µi from a uniform distribution on (1, 10) and σi from a
uniform distribution on (1, 50), for i = 1, 2, . . . , 106. Next, we
simulated a data set xi that consists of the allele frequencies from
50 loci, where the allele frequencies at each locus are simulated
independently from the distribution given in Eq. (7) under the
parameter values (µi, σi). This process creates a reference set
with M = 106, consisting of {(x1, µ1, σ1), (x2, µ2, σ2), . . . , (x106 ,
µ106 , σ106)}. We built the sets Zn,m, with m = 5 × 102, 103, 5 ×

103, 104, 5×104, 105 independently from each other, by sampling
m triplets (xi, µi, σi) from the reference set, uniformly at random
without replacement. We also selected 103 test cases (xi, µi, σi)
from the reference set, independently from each other and uni-
formly at randomwithout replacement. For each test case, (µi, σi)
is the ‘‘true’’ parameter vector, and xi is the ‘‘observed’’ test data
set. Given a test data set, we performed AABC by rejection sam-
pling (Algorithm 2) and ABC by rejection sampling (Algorithm 1).
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Fig. 2. Inference on the strength of balancing selection. The figure shows the marginal posterior distributions of parameters µ (top), and σ (bottom) of example 1 obtained
with: ABC by rejection (black), AABC by rejection (blue), and MCMC (orange, the last column). The number m of data sets simulated from the mechanistic model for each
analysis performed by AABC and ABC appears at the top of each column. For the MCMC algorithm that samples the true posterior distribution, the full reference set is used,
and thus, the total number of proposed moves isM = 106 . The red dot on the x-axis is the true value of the parameter, equal in all plots.
We implemented MCMC by a Metropolis–Hastings (MH) al-
gorithm, where the proposal distribution is chosen as the prior
distribution of the parameters. For the moves proposed in the
MH algorithm, we used the 106 parameter values (µi, σi), i =

1, 2, . . . , 106, already simulated from their prior distributions in
the reference set. Each proposed pair of parameter values (µi, σi)
was accepted according to the standard MH acceptance rule. Thus,
if the new parameter values (µ(i+1), σ(i+1)) increase the likelihood,
accept the new parameter values. Otherwise, accept the new pa-
rameter values with probability proportional to the ratio of the
likelihood under the proposed values to the likelihood under the
current values, f (xo|σ(i+1), µ(i+1))/f (xo|σi, µi), where xo is the ob-
served data set. We started to sample the chain after 103 burn-in
steps to decrease the effect of the starting point (µ1, σ1). After ini-
tiation of sampling, to decrease the correlation in the sampled val-
ues, we used thinning by treating every 999th sampled value as a
draw from the posterior distribution of the parameters. This proce-
dure resulted in a sample of size 103 from the posterior distribution
of the parameters (µ, σ ).

We compared the performance of the ABC (Algorithm 1) and
AABC (Algorithm 2) approaches when only m data sets can be
simulated under the model, as given in Zn,m. In both the ABC
and AABC approaches, we accepted the top 0.1 percentile of m
simulated parameter values as a posterior sample. The simulated
data sets used in Algorithm 1 for ABC and Algorithm 2 for AABC
are different, and because we fix the posterior sample as the top
0.1 percentile of simulated values, we will have different ϵ values
in the two algorithms. Therefore, we provide a comparison of the
empirical tolerance values ϵ in ABC and AABC.

We assessed the error in the posterior samples for µ and σ
separately using the root sum of squared error in the posterior
sample and we report the root mean squared error (RMSE),
averaged over 10,000 test cases (see Blum et al., 2013).

Results. Samples from the posterior distribution of parameters
(σ , µ) obtained by ABC and AABC using a single typical data set
of true parameter values are given in Fig. 2. In analyses with m =

5 × 102, 103, 5 × 103 or 104 simulated data sets, few samples are
accepted with ABC, and thus, little mass is observed in ABC his-
tograms (black). For smallm, because of our use of only the 0.1% top
closest simulated parameter values, ABC does not produce an ad-
equate sample size from the posterior distribution of parameters.
AABC, however, produces a posterior sample of size 103 for any
m, because 106 data sets are simulated from the non-mechanistic
model and the top 0.1 percentile are accepted as belonging to
the approximate posterior distribution. The posterior samples ob-
tained by AABC recover the true valuewell even for smallm (Fig. 2).

In Fig. 3, we present pairwise plots for the posterior means of
the 103 test cases, eachwith different true parameter valuesµi and
σi, obtained by anAABC analysis usingm = 5×102, anABC analysis
using M = 106, and an MCMC analysis. The comparison between
AABC and ABC (last column in Fig. 3) shows that posterior means
obtained by AABC with small m = 5 × 102 can be as accurate as
posterior means obtained by ABC with a larger M = 106. Further,
we see that AABC with m as low as 5 × 102 performs well against
MCMC, which samples the ‘‘true’’ posterior distribution (middle
column in Fig. 3).

Form = 5×102 tom = 106 simulated data sets, the RMSE value
for parameterµ decreases from0.0422 to 0.0414 in AABC (Table 3).
These values slightly underestimate the variability of the poste-
rior distribution as determined by MCMC, but they are compara-
ble to the RMSE value of 0.0420 in the standard ABC analysis using
M = 106 simulated data sets from the mechanistic model. The er-
ror in the posterior sample is a function of the tolerance condition ϵ

in the ABC and AABC approaches. In our ABC and AABC analyses in
Fig. 3, the values of ϵ considered are different because we use dif-
ferent simulated data sets in the two procedures, and we accepted
a fixed sample size of 103 values in the posterior samples with
bothmethods. To assess themagnitude of the error for the 103 test
cases, we calculated the relative error by rt = (ϵAABC − ϵABC )/ϵABC ,
where ϵAABC and ϵABC are tolerances for a posterior sample of size
103 in the AABC and ABC analyses, respectively. Asm increases, the
number of test cases that have ϵAABC < ϵABC , and thus rt < 0, in-
creases, indicating that the error due to tolerance approximations
in the AABC approach is smaller than the error in the ABC approach
for the accepted values in the posterior distribution (Table 4). For



E.O. Buzbas, N.A. Rosenberg / Theoretical Population Biology 99 (2015) 31–42 37
Fig. 3. Comparisons of posterior means of µ and σ obtained by three methods: AABC with m = 500, ABC with M = 106 , and MCMC using 103 ‘‘true’’ data sets in example
1. Each mean is taken across all values in the appropriate posterior distribution. The means of posterior samples obtained by AABC with a small number of simulated data
sets such as 500 show almost perfect correlation with means of posterior samples obtained by ABC and MCMC methods, indicating that the means in AABC are comparably
accurate.
m = 5×103, in 770 cases among 103, samples from the AABC pos-
terior have a smaller error than the samples from theABCposterior,
and there are no cases in which the error in the AABC approach is
larger than twice the error in the ABC approach (ϵAABC > 2ϵABC ).

4.2. Example 2: Admixture rates in hybrid populations

Models in which hybrid populations are founded by, and re-
ceive genetic contributions from, multiple source populations are
of interest in describing the demographic history of admixture.
Stochastic models including admixture often result in likelihoods
that are difficult to calculate, and statistical methods capable of
performing inference on admixture rates have received much at-
tention for their implications on topics ranging from human evo-
lution to conservation ecology (Falush et al., 2003; Tang et al.,
2005; Buerkle and Lexer, 2008). Here, we consider inference on
admixture rates from amechanisticmodel of Verdu and Rosenberg
(2011).We use reported estimates of individual admixture as data.

We consider a model of admixture for a diploid hybrid popu-
lation of constant size N , founded at some known t generations
in the past with contributions from source populations A and B.
We follow the distribution of admixture fractions of individuals in
the hybrid population at a given genetic locus. Each generation,
the admixture fraction for each individual in the hybrid popula-
tion is obtained as the mean of the admixture fractions of its par-
ents. The parents are chosen independently of each other, from
source population A, source population B, or the hybrid popula-
tion of the previous generation with probabilities pA, pB, and pH ,
respectively (pA + pB + pH = 1). In the special case of the
founding generation, pH = 0, and we assume pA = pB = 0.5.
Individuals from source populations A and B are assigned ad-
mixture fractions of 1 and 0, respectively. For example, if both
parents of an individual in the hybrid population of the found-
ing generation are from source population A, then that individ-
ual has admixture fraction (1 + 1)/2 = 1. If both parents are
from population B, the admixture fraction is (0 + 0)/2 = 0, and
if one parent is from population A and the other is from popu-
lation B, then the admixture fraction is (1 + 0)/2 = 0.5. The
distribution of the admixture fraction in the hybrid population is
propagated in this manner for t generations until the present, in
which a sample of n individuals is obtained from the resulting
distribution (Fig. 4). Our goal is to estimate the admixture rates
(pA, pB, pH), given the individual admixture fractions estimated
from observed genetic data.

We apply the AABC approach using individual admixture frac-
tions from n = 604 individuals from Central African Pygmy popu-
lations reported by Verdu et al. (2009), with an assumed constant
population size of N = 2 × 104. This assumption differs slightly
from the original model in Verdu and Rosenberg (2011) in that a
finite population size is assumed, so that only 2 × 104

+ 1 ad-
mixture fraction values are allowed in the population at any given
generation. The admixture fractions from Verdu et al. (2009) were
computed using STRUCTURE (Pritchard et al., 2000), applied tomi-
crosatellite data, and we treat the estimates as parametric values.

We assume that an admixture event with contributions from
two ancestral source populations started at the mean estimate of
t = 771 generations ago (Verdu et al., 2009) with a generation
time of 25 years, and that it continued until the present. Source
population A refers to an ancestral Pygmy population, and source
population B refers to an ancestral non-Pygmy population. The fea-
ture of this model relevant to our method is the computational in-
tractability of simulating data sets. For each set of parameter values
(pA, pB, pH) simulated from the priors, the distribution of admix-
ture fractions is discrete on a support of a number of admixture
fraction values that doubles each generation, and this distribution
evolves for 771 generations. A random sample of admixture frac-
tion values comparable to the values calculated from the observed
data set is obtained from the distribution of the present genera-
tion. Simulating a large number of data sets under this model with
such a large number of generations is computationally infeasible,



38 E.O. Buzbas, N.A. Rosenberg / Theoretical Population Biology 99 (2015) 31–42
Fig. 4. The admixture model of example 2. Each generation after the founding, the parents of an individual are chosen independently of each other, from source population
A, source population B, or the hybrid population of the previous generation, with probabilities pA, pB , and pH , respectively (pA + pB + pH = 1).
Table 3
RMSE values based on 103 data sets, for parameters µ and σ in a balancing selection model, obtained by three methods: AABC, ABC, and MCMC. M∗ indicates the number
of total proposed values in the MCMC algorithm. The RMSE values obtained by AABC are relatively constant for both parameters. The differences between RMSE values
obtained by AABC and true RMSE values obtained by MCMC are small, indicating that the posterior sample obtained by AABC is close to a sample obtained by sampling the
true posterior distribution of parameters.

AABC ABC MCMC
m = 5 × 102 m = 103 m = 5 × 103 m = 104 m = 5 × 104 m = 105 M = 106 M∗

= 106

RMSE(µ) 0.0421 0.0422 0.0415 0.0415 0.0415 0.0414 0.0420 0.0422
RMSE(σ ) 0.0421 0.0425 0.0419 0.0420 0.0420 0.0420 0.0429 0.0432
Table 4
Error in the posterior sample obtained by AABC relative to ABC. Each column under
m is a histogram for the number of data sets for which the relative error falls within
the interval in the first column. A total of 103 ‘‘true’’ data sets are analyzed. We
measured the error by rt = (ϵAABC −ϵABC )/ϵABC , where ϵAABC and ϵABC are tolerances
for a posterior sample of size 103 in AABC and ABC respectively. As m increases,
the number of data sets that have smaller ϵAABC increases (rt < 0), indicating that
the error in AABC is smaller than the error in ABC for the accepted values in the
posterior distribution.

Relative tolerance (rt ) m
5×102 103 5×103 104 5×104 105

rt ≤ 0 285 380 770 842 988 996
0 < rt ≤ 0.10 185 305 171 144 12 4
0.10 < rt ≤ 0.25 268 199 51 14 0 0
0.25 < rt ≤ 1.00 226 90 8 0 0 0
1.00 < rt ≤ 10.0 30 26 0 0 0 0
10.0 < rt ≤ 100 6 0 0 0 0 0

and standard ABC is impractical. We thus perform AABC by rejec-
tion (Algorithm 2) usingm = 104 realizations from this model. We
assume a Dirichlet prior with hyperparameters (1, 1, 1) on param-
eters (pA, pB, pH).

We also separately assessed the contribution of the approxima-
tions on the parameter and model spaces in the AABC approach to
the RMSE, using a simulation studywith a small number of genera-
tions (t = 30), forwhich simulating data sets from themechanistic
model is feasible. Here, we used a reference set with M = 105,
built by following the same steps as in Section 4.1, where 105

parameter vectors (pA, pB, pH) are simulated from their prior dis-
tributions and then a data set of admixture fraction values is sim-
ulated under each of these parameter vectors. We selected the test
cases by sampling 103 data sets and parameter pairs from the ref-
erence set, uniformly at random without replacement. Again, we
compared the performance of the ABC and AABC by rejection us-
ing the sets Zn,m. Simulating data under the model of example 2
is computationally intensive, however, due to a long evolutionary
history involved in the model. Therefore, we compared the perfor-
mance of the ABC and AABC approaches in a version of the model
that involved a shorter evolutionary history than our stipulated full
model.Weused the fullmodelwith long-termevolutionary history
to analyze a real data set from Central African Pygmy populations.
The accepted parameter values represent the top 1 percentile of
M = 105 parameter values in the reference set.

First, we performed AABC with rejection as in Algorithm 2 with
103 ‘‘true’’ data sets usingm = 5×102, 103, 5×103, 104, 5×104,
and 105 realizations from the model. We calculated the RMSE for
pA, pB, and pH using 103 ‘‘true’’ data sets. This AABC analysis in-
cludes error due to approximations on the parameter space and
on the model space. Second, we performed an AABC analysis with
the same set of m realizations, by including the error only due to
the approximation on the parameter space. We eliminated the er-
ror due to the approximation on the model space by running Al-
gorithm 2 up through step 5, and then simulating data sets from
the mechanistic model by substituting steps 6 and 7 of Algorithm
2 with step 2 of Algorithm 1, the standard ABC approach by re-
jection. By this substitution, all data sets are simulated from the
mechanistic model, but each data set is obtained using a parame-
ter vector (p̃A, p̃B, p̃H) found in step 5 of Algorithm 2. In this pro-
cedure, the error due to the approximation on the model space is
eliminated, because data sets are simulated from the correctmech-
anisticmodel and not by resampling from the available realizations
in Zn,m. However, this procedure includes error due to the approx-
imation on the parameter space, because each data set is simulated
not under the correct proposed parameter value, but under the pa-
rameter value (p̃A, p̃B, p̃H), the closest value to the correct proposed
value that can be found in Zn,m. We compared the RMSE of the
AABC procedure involving the approximation on both the parame-
ter and model spaces and the RMSE of the AABC procedure involv-
ing only the approximation on the parameter space to the RMSE
obtained from a standard ABC approach. For these two AABC pro-
cedures, we also compared the percent excess in RMSE, defined as
the ratio of the absolute difference in RMSE of the AABC and stan-
dard ABC approaches to the RMSE of the standard ABC approach,
expressed as a percent.

Results. The individual admixture fractions calculated from the
Pygmy data carry substantial information about the admixture pa-
rameters pA, pB, and pH , since the joint posterior distribution is
concentrated in a relatively small region of the 3-dimensional unit
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Fig. 5. AABC analysis on the Pygmy data of example 2withm = 104 realizations under themechanisticmodel. (A) The joint distribution on the unit simplex, with probability
mass increasing from white to dark red. (B)–(D) Marginal distributions of pA, pB , and pH .
simplex on which (pA, pB, pH) sits (Fig. 5A). The marginal posterior
distributions (Fig. 5B–D) have means pA = 0.139, pB = 0.125,
and pH = 0.735. These values are interpreted as a contribution
of genetic material of 13.9% from the ancestral Pygmy population
(source population A), 12.5% from the ancestral Non-Pygmy pop-
ulation (source population B), and 73.5% from the hybrid popula-
tion to itself at each generation, over 771 generations of constant
admixture.

For the simulation study with t = 30 generations and 104

‘‘true’’ data sets, the percent excess in RMSE values from AABC
analyses decreases with increasing m (Fig. 6). Further, as m in-
creases, the percent excess in RMSE due to the approximation on
the parameter space decreases, due to the fact that for large m,
the difference decreases between the closest parameter value cho-
sen at step 5 of Algorithm 2 and the correct parameter value un-
der which we want to simulate a data set. The percent excess in
RMSE values from the three analyses – AABC with m = 105 re-
alizations and approximation only on the parameter space, AABC
with m = 105 realizations and approximation on the parame-
ter and model spaces, and the standard ABC with M = 105 re-
alizations – are virtually indistinguishable (Fig. 6, red stars). For
m = 5 × 103, the AABC analysis with approximations on the pa-
rameter and model spaces has a small percent excess in RMSE of
0.67, 0.20, 0.97, for pA, pB, and pH respectively, whereas the AABC
analysis including only the approximation on the parameter space
has percent excess RMSE values of 0.26, 0.25, 0.42. We note that
at m = 5 × 103, the percent excess in RMSE values is small in the
AABC approach in relation to the standard ABC analysis, showing
that the AABC posterior is a reasonable approximation to the ABC
posterior.
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Fig. 6. Percent excess in RMSE of each parameter with respect to ABC in the admixture model. The values on the y-axis are calculated by

1 −

RMSE in AABC
RMSE in ABC


× 100. The

decrease in percent excess RMSE is shown for parameters pA, pB , and pH with increasing m (on natural logarithmic scale), the number of simulated samples from the
mechanistic admixture model in AABC. The percent excess in RMSE values for AABC analysis performed with an approximation only on the parameter space (black), and
with an approximation on both the parameter space and the model space (blue) are shown. The red star in each plot represents RMSE obtained by a standard ABC analysis
performed withM = 105 simulated values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Discussion

Performing likelihood-based inference from statistical models
involving complex stochastic processes is often challenging due
to computationally intractable likelihoods. ABC methods use data
simulated from the model to assess the parameter likelihoods. To
deliver an adequate sample from the posterior distribution of the
parameters, however, ABC requires a large number of simulated
data sets, and it might not performwell when only a small number
of data sets can be simulated.

In this article,we have introducedAABC, a class of computation-
ally feasible methods that extends ABC to model spaces in which
only a small number of data sets can be simulated from the model.
In addition toABC approximations, theAABC approach requires ap-
proximations on the parameter and model spaces, and thus, the
error in posterior samples obtained by our approach will be larger
than in ABC. Therefore, AABC is not meant to be an alternative to
ABC when ABC is computationally feasible, but rather, a comple-
mentary method to perform inference when ABC is computation-
ally not feasible. The strength of AABC is that it can deliver a pos-
terior sample from the joint distribution of parameters for a small
number of simulated data sets. Therefore, a researcher can fix m
and thus the computation time a priori, to simulate data from the
mechanisticmodel to obtain a reasonable inference byAABC; other
ABC methods may fail to produce an adequate posterior sample in
equivalent computation time. In our example, for moderate values
ofm (e.g., 5×103) forwhich standardABCwasunsatisfactory, AABC
adequately sampled an approximate posterior distribution. How-
ever, AABC has the limitation thatwhenm is too small, its posterior
sample can have a large error and give a distorted representation
of the true posterior distribution.

AABC relies on two statistical approximations. In our approxi-
mation on the parameter space, we set the distribution of a data set
under a parameter value to be a k-dimensional mixture distribu-
tion, where the k components of this mixture are chosen from the
set Zn,m andmixture weights are chosen according to an Epanech-
nikov kernel. Kernel approximations on the data space have an
operational role in implementingABCmethods, and kernelweight-
ing for mixture components extends this role to the parameter
space in AABCmethods. In our approximation on the model space,
we modeled the uncertainty associated with model p(x|θ) using
Dirichlet prior probabilities on kn points of k data sets, each with
n observations simulated from p(x|θ). In an AABC algorithm, each
draw from the Dirichlet distribution produces a probability model
on kn data points, and a data set of size n from this probability
model is obtained in each iteration. Our approach in handling the
model uncertainty has some resemblance to statistical ‘‘emulators’’
(Kennedy and O’Hagan, 2001), approximative methods used to
express the model uncertainty when simulating data under a
mechanistic model is computationally intensive. However, emu-
lators are often motivated in the context of Gaussian processes,
where the uncertainty in the model space can be reasonably well
modeled by a normal distribution. Because the assumption of nor-
mality may be questionable in many population-genetic contexts,
we have avoided making this assumption in AABC.

Our approach of using a non-mechanistic statistical model to
help perform inference on model-specific parameters of a mech-
anistic model is a fundamental difference between AABC and
existing ABC methods. ABC performs inference on model-specific
parameters of amechanistic model using a likelihood based purely
on that model. AABC instead performs inference on the same
model-specific parameters of the mechanistic model as ABC, using
a likelihood based on a non-mechanistic model that incorporates a
small number of data sets simulated from the mechanistic model.
Consequently, themodel likelihoods used in ABC and AABC are not
exactly the same, and the posterior distributions targeted by the
two classes of methods are not exactly equivalent for finite sam-
ple sizes. The advantage of AABC methods in contrast to pure non-
mechanistic modeling approaches (e.g., nonparametric methods)
is that AABC can perform inference on the quantities of interest—
the model-specific parameters of the mechanistic model.

Currently, AABC is best suited for models that have relatively
few parameters and for which the stochastic process used in
simulating data is computationally intensive. Forward simulation
models in population genetics, such as the admixture model we
have examined, often fall into this category. Due to its generality
as a computational method, we expect AABC to be useful outside
its immediate applications in population genetics, for example, in
spatial and temporalmodels in ecology, evolution, and other fields.
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Appendix

Here, we show that the posterior distribution sampled by AABC
converges to the posterior distribution sampled by ABC, as the
number of simulated data sets m and the sample size n increase.
The model q(x|θ, Zn,m) used in AABC is based on a mixture distri-
bution of k components as described in Section 3.2. For notational
simplicity, we set k = 1 and prove the theorem for a mixture dis-
tribution with a single component. Extension to k = ko for any
fixed ko > 1 is straightforward for the following reason. For k = 1,
only the n data points in a data set x∗

= (x∗

1, x
∗

2, . . . , x
∗
n) that is

simulated under θ∗, the closest parameter value to θ , get positive
weights. In this case, the weight vector ω places positive weights
on n data points. For k = ko, the number of data points on which a
positive weight is placed is equal to n×ko.Here, there are n points
in each of ko data sets. In this case, the weight vector ω places pos-
itive weights on n × ko data points. Therefore, considering k = ko
increases the dimension of the weight vector ω, but otherwise the
claim of the theorem is the same. Because the weight vector ω al-
ways sums to 1, the following proof of the theorem is the same for
any ko.

We let u ≤ n be the number of distinct values x̃1, x̃2, . . . , x̃u
in the set x̃, and denote the number of observed x̃i by ñi, where
n =

u
i=1 ñi. From Eq. (1), we recall that the prior distribution on

φ is the Dirichlet distribution π(φ|ω) ∝
k

i=1
n

j=1 φ
ωji−1
ji .

Then the prior distribution for the probabilities of an AABC
replicate data set based on the ABC simulated data set x̃ is the
Dirichlet distribution

π(φ|ω) =


Γ


u

i=1

ñi

 u
i=1

Γ (ñi)


k

i=1

φñi−1

with parameters ñ1, ñ2, . . . , ñk, where we now have explicitly
written the normalizing constant [Γ (

u
i=1 ñi)/

u
i=1 Γ (ñi)] for

theDirichlet distribution. Our goal is to show that limm→∞ limn→∞

πAABC (θ |xo) = limn→∞ πABC (θ |xo).
Recalling Eq. (3), we have

lim
m→∞

lim
n→∞

πAABC (θ |xo) = lim
m→∞

lim
n→∞

1
Cq


X

I{∥s−so∥<ϵ}

×


Φ

q′(x|φ, Zn,m)π(φ|ω) dφ


π(θ) dx. (A.1)

The integral in the brackets is the expectation of q′(x|φ, Zn,m), with

respect to the prior π(φ|ω). We let C =


n

n1 n2 ··· nu


, and using the

definition of q′(x|φ, Zn,m) = C
n

j=1
n

i=1 φ
I{xj=x̃i}

i in Section 3.2,
and π(φ|ω) = [Γ (

k
i=1 ñi)/

k
i=1 Γ (ñi)]

k
i=1 φñi−1, we get

Φ

q′(x|φ, Zn,m)π(φ|ω) dφ

= C
Γ


u

i=1
ñi


u

i=1
Γ (ñi)

n
j=1


Φ


n

i=1

φ
I{xj=x̃i}

i


u

i=1

φ
ñi−1
i


dφ.

Here, we have exchanged the order of the product over j with the
integral, because the expectation of the product of n IID observa-
tions in sample x is equal to the product of the expectations of ob-
servations xj. We label the realized value of the jth data point xj by

(j) such that
n

i=1 φ
I{xj=x̃i}

i = φ(j), and write
Φ

q(x|φ, x̃)π(φ|ω) dφ
= C
Γ


k

i=1
ñi


u

i=1
Γ (ñi)

n
j=1


Φ

 u
i=1
i≠(j)

φ
ñi−1
i

φ
ñ(j)
(j) dφ. (A.2)

Using


Φ

Γ [(
k

i=1,i≠(j) ñi)+ñ(j)+1]

[
k

i=1,i≠(j) Γ (ñi)]Γ (ñ(j)+1)

k
i=1,i≠(j) φ

ñi−1
i


φ

ñ(j)
(j) dφ = 1

(p. 487, Kotz et al., 2000), we substitute the integral in Eq. (A.2)
with the ratio of the gamma functions to get

Φ

q(x|φ, x̃)π(φ) dφ

= C
Γ


k

i=1
ñi


k

i=1
Γ (ñi)

n
j=1


k

i=1,i≠(j)
Γ (ñi)


Γ (ñ(j) + 1)

Γ


k

i=1,i≠(j)
ñi


+ ñ(j) + 1



= C
n

j=1

Γ (n)
Γ (ñ(j))

Γ (ñ(j) + 1)
Γ (n + 1)

= C
n

j=1


ñ(j)

n


.

Substituting C
n

j=1


ñ(j)
n


for the integral in brackets in Eq. (A.1),

we have

lim
m→∞

lim
n→∞

πϵ(θ |xo, q(x|θ, Zn,m))

= lim
m→∞

lim
n→∞

1
Cq


X

I{∥s−so∥<ϵ} C
n

j=1


ñ(j)

n


π(θ) dx

=

lim
m→∞

lim
n→∞


X
I{∥s−so∥<ϵ} C

n
j=1


ñ(j)
n


π(θ) dx

lim
m→∞

lim
n→∞

Cq
. (A.3)

We apply the dominated convergence theorem to exchange the
limits in n and the integrals in the numerator and denominator of
Eq. (A.3). The assumptions of the theorem are satisfied as follows:
(1) The integrand in Eq. (A.3) is bounded: The indicator functions
are bounded by 1, the ratios (ñ(j)/n), where n(j) ≤ n, are bounded
by 1, and the prior π(θ) is bounded by assumption. (2) limn→∞

(ñ(j)/n) converges pointwise to the probability of x(j) under θ̃

given by p(x(j)|θ̃ ), by the frequency interpretation of probability.
Exchanging the limits in n and the integrals, and using limn→∞

(ñ(j)/n) = p(x(j)|θ̃ ),

lim
m→∞

lim
n→∞

πϵ(θ |xo, q(x|θ, Zn,m))

=

lim
m→∞


X
I{∥s−so∥<ϵ}

u
j=1


p(x(j)|θ̃ )

n(j)
π(θ) dx

lim
m→∞

Cp

=

lim
m→∞


X
I{∥s−so∥<ϵ}p(x|θ̃ ) π(θ) dx

lim
m→∞

Cp
, (A.4)

where (A.4) follows by the definition of the joint distribution

p(x|θ̃ ) =
u

j=1


p(x(j)|θ̃ )

n(j)
.

We now apply the dominated convergence theorem for a
second time to exchange the limits in m and the integrals on X.
Again, the assumptions of the dominated convergence theorem
are satisfied because the integrand in (A.4) is a sequence in m of
bounded functions, and asm → ∞, θ̃ → θ , and p(x|θ̃ ) → p(x|θ).
We get

lim
m→∞

lim
n→∞

πϵ(θ |xo, q(x|θ, Zn,m))
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=
1
Cp


X

I{∥s−so∥<ϵ}p(x|θ)π(θ) dx = lim
n→∞

πϵ(θ |xo, p(x|θ)),

showing that the AABC posterior converges to the ABC posterior as
the sample sizen and the number of simulated data setsm increase.
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