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a b s t r a c t

Gene genealogies are frequently studied by measuring properties such as their height (H), length (L),
sum of external branches (E), sum of internal branches (I), and mean of their two basal branches
(B), and the coalescence times that contribute to the other genealogical features (T ). These tree
properties and their relationships can provide insight into the effects of population-genetic processes
on genealogies and genetic sequences. Here, under the coalescent model, we study the 15 correlations
among pairs of features of genealogical trees: Hn, Ln, En, In, Bn, and Tk for a sample of size n, with
2 ≤ k ≤ n. We report high correlations among Hn, Ln, In, and Bn, with all pairwise correlations of these
quantities having values greater than or equal to

√
6[6ζ (3)+ 6− π2

]/(π
√
18 + 9π2 − π4) ≈ 0.84930

in the limit as n → ∞, where ζ is the Riemann zeta function. Although En has expectation 2 for all
n and Hn has expectation 2 in the n → ∞ limit, their limiting correlation is 0. The results contribute
toward understanding features of the shapes of coalescent trees.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In coalescent theory, features of gene genealogies are inves-
igated in relation to the evolutionary processes that are in-
luded in population-genetic models (Hein et al., 2005; Wakeley,
009). For example, comparing a constant-sized and an expo-
entially growing population, exponential growth increases the
otal length of the branches of a gene genealogy in relation to
ts height (Slatkin and Hudson, 1991; Slatkin, 1996; Sano and
achida, 2005). Coalescences are rare in recent generations, when
he population is large, and they occur primarily in the period
eep in the past when the population was small.
Several tree features have been used for measuring effects of

opulation-genetic processes on gene genealogies (Slatkin, 1996;
yenoyama, 1997; Schierup and Hein, 2000; Rosenberg, 2006).
or a binary ultrametric tree of n lineages, these features (Fig. 1)
nclude the tree height from the tips to the root (Hn), the to-
al length of all the branches (Ln), the total length of external
ranches connecting tips to the nearest internal node (En), the

total length of internal branches connecting internal nodes to
other internal nodes (In), and the mean length of the two basal
branches incident to the root node (Bn).

These tree features can all be expressed as linear combina-
tions, random linear combinations in some cases, of the same
underlying random variables — the coalescence times Tk for co-
alescence of k to k − 1 lineages, with 2 ≤ k ≤ n. Hence, the
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Fig. 1. Tree features. The tree height is Hn and the sum of the lengths of all tree
branches is Ln . External branches, with total length En , appear in green; internal
branches, with total length In , appear in red; basal branches, with mean length
Bn , appear in purple.

quantities are correlated. For example, the tree height Hn includes
the mean basal branch length Bn, and the total length Ln is the
sum of the length En of the external branches and the length In of
the internal branches; an increase in Ln necessarily increases En,
n, or both.

Analyses of coalescent models have examined some of the cor-
elations between tree features, notably the relationship between
n and Ln (Fu, 1996; Griffiths and Tavaré, 1996; Rosenberg and
irsh, 2003; Arbisser et al., 2018). Here, we perform a detailed
nvestigation of correlations among Hn, Ln, En, In, and Bn. For each
air, under the coalescent, assuming a constant-sized population,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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e evaluate their covariance and correlation. We explore lim-
ting values as n → ∞. The approach follows Arbisser et al.
2018), who obtained the covariance and correlation of Hn and
n; we perform analogous calculations for all 10 pairs among
Hn, Ln, En, In, Bn}, as well as for the five pairs involving one of
Hn, Ln, En, In, Bn} and Tk.

. Tree properties

We consider the standard coalescent model of a constant-sized
opulation of size N haploids. Time is measured in units of the
opulation size, with one time unit representing N generations.
or sample size n ≥ 2, we examine tree properties Hn, Ln, En, In,
nd Bn, as well as the coalescence time Tk, 2 ≤ k ≤ n. In this
ection, we recall basic features of the various quantities.
For convenience, for a mathematical expression we will use

requently, we write

p,n =

n∑
k=1

1
kp

. (1)

The limit Sp,∞ = limn→∞ Sp,n is the Riemann zeta function ζ (p).
The harmonic sum S1,∞ diverges, and the sum of the reciprocals
of squares is S2,∞ = π2/6 ≈ 1.64493. The sum of the reciprocals
of cubes is Apéry’s constant, S3,∞ = ζ (3) ≈ 1.20206.

2.1. Tk

Tk is a random variable representing the time during which
k lineages coalesce to k − 1 lineages. The Tk, 2 ≤ k ≤ n,
are independent and exponentially distributed with probability
density function fTk (tk) =

(k
2

)
e−(k2)tk (Wakeley, 2009, p. 60). The

xpectation and variance of Tk are then

E [Tk] =
2

k(k − 1)
, (2)

Var [Tk] =
4

k2(k − 1)2
. (3)

As n, k → ∞ with k ≤ n, both E [Tk] and Var [Tk] have limit 0.

2.2. Hn

For n ≥ 2, the height Hn of a tree from root to leaves can be
written

Hn =

n∑
k=2

Tk. (4)

The expectation and variance of Hn are then found using the
expectation and variance of Tk (Eqs. (2) and (3)), noting that the
Tk are independent:

E [Hn] =

n∑
k=2

E [Tk] =
2(n − 1)

n
, (5)

Var [Hn] = 8

(
n∑

k=2

1
k2

)
− 4

(
n − 1
n

)2

. (6)

The variance can be written Var [Hn] = 4(2S2,nn2
− 3n2

+ 2n −

)/n2. The limits are limn→∞ E [Hn] = 2 and limn→∞ Var [Hn] =

π2/3 − 12 ≈ 1.15947 (Wakeley, 2009, p. 76).

.3. Ln

For n ≥ 2, the total tree length, summing the lengths of all
ranches of a tree, is
 6

2

Ln =

n∑
k=2

kTk. (7)

By Eqs. (2) and (3) and the independence of the Tk, we have

E [Ln] =

n∑
k=2

kE [Tk] = 2
n−1∑
k=1

1
k
, (8)

Var [Ln] = 4
n−1∑
k=1

1
k2

. (9)

In terms of Sp,n (Eq. (1)), these expressions are E [Ln] = 2S1,n−1
and Var [Ln] = 4S2,n−1. The limits are limn→∞ E [Ln] = ∞ and
limn→∞ Var [Ln] = 2π2/3 ≈ 6.57974 (Wakeley, 2009, p. 76).

2.4. En

The external branches of a tree are the branches that connect
leaves to their nearest internal nodes. Denoting the individual
external branch lengths e(n)1 , e(n)2 , . . . , e(n)n , the sum of external
branch lengths is

En = e(n)1 + e(n)2 + · · · + e(n)n .

The e(n)k are identically distributed, and we write en for the length
of a randomly chosen external branch of a tree of n lineages. The
sum of the external branches has expectation

E [En] = nE [en] . (10)

The random variable en can be written recursively as (Fu and
Li, 1993, eq. 7)

en =

{
en−1 + Tn, with probability n−2

n ,

Tn, with probability 2
n .

(11)

Expressions for E [en], E [En], and Var [En] can then be obtained by
solving recurrence equations (Fu and Li, 1993). We have

E [en] =
2
n
. (12)

or the mean and variance of En, we obtain Fu and Li (1993,
qs. 10 and 14)

E [En] = 2, (13)

Var [En] =

{
4, n = 2,

8
(n−1)(n−2) [n(

∑n−1
k=1

1
k ) − 2(n − 1)], n > 2.

(14)

E [En] is equal to 2 irrespective of the choice of n, so that limn→∞

E [En] = 2. The limit of the variance is limn→∞ Var [En] = 0 (Fu
and Li, 1993).

2.5. In

The internal branches connect internal nodes to other internal
nodes. Their total length is In, with

In = Ln − En. (15)

The mean and variance of the sum of internal branches are (Fu
and Li, 1993, Eqs. 12 and 17)

E [In] = E [Ln] − E [En] = 2

(
n−1∑
k=1

1
k

)
− 2, (16)

Var [In] = 4
[
2[S1,n−1n − 2(n − 1)]

(n − 1)(n − 2)
−

2S1,n−1

n − 1
+ S2,n−1

]
. (17)

he limits are limn→∞ E [In] = ∞ and limn→∞ Var [In] = 2π2/3 ≈

.57974, the same as for L (Section 2.3).
n
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.6. Bn

Finally, we consider the basal branches, the two branches that
xtend from the root. We define Bn as the mean of the two branch
engths. One of the branches has length T2, and we denote the
ther length bn. We assume here that n ≥ 4 for calculations
nvolving Bn. The appendix of Uyenoyama (1997) gives

n =
T2 + bn

2
, (18)

with

bn =

[n−1∑
j=3

j∑
k=2

Tk
j

j−1∏
i=3

(
1 −

1
i

)]
+

[ n∑
k=2

Tk
n−1∏
i=3

(
1 −

1
i

)]
or n ≥ 4. A convenient form for bn encodes the fact that with
robability 2/[j(j − 1)], bn = Hj for j = 3, 4, . . . , n − 1, and with
robability 2/(n − 1), bn = Hn:

n =

[n−1∑
j=3

j∑
k=2

2
j(j − 1)

Tk

]
+

( n∑
k=2

2
n − 1

Tk

)
. (19)

Assuming n ≥ 4, the branch length bn has expectation
(Uyenoyama, 1997):

E [bn] =
4
n

+ 4
n−1∑
k=3

1
k2

. (20)

The expectation and variance of Bn then equal

E [Bn] =
2
n

+ 2
n−1∑
k=2

1
k2

, (21)

Var [Bn] =
2(3S2,n−1n2

− 2S22,n−1n
2
+ n2

− 4S2,n−1n + 3n − 4)
n2 . (22)

he expectation appears in the appendix of Uyenoyama (1997).
e calculate the expression for the variance in Section 3.11.
aking limits of these equations, we obtain limn→∞ E [Bn] =
2/3 − 2 ≈ 1.28987 and limn→∞ Var [Bn] = 2 + π2

− π4/9 ≈

1.04637.

3. Theoretical results

For pairs of variables among {Hn, Ln, En, In, Bn, Tk}, we apply
results from Section 2 to compute covariances and correlations.
First, for each pair, we compute their covariance. The covariance
together with the variances of the two quantities from Section 2
provides their correlation. We obtain the limiting correlation for
large trees by taking n → ∞. Among the 15 pairs, our analyses
for 13 are exact; for (En, Bn) and (In, Bn), we offer approximate
covariances and correlations. We also provide the derivation of
Eq. (22) for Var [Bn].

Note that correlations in pairs involving En have distinct forms
for n = 2 and n ≥ 3, owing to the piecewise definition of Var [En]
in Eq. (14). We exclude the case of n = 2 for pairs involving In, as
2 = 0 with Var [I2] = 0. We also assume that Bn is defined only
or n ≥ 4.

We present a summary of our mathematical results in Tables 1
nd 2. Table 1 shows covariances of pairs of variables and their
imits as n → ∞. Table 2 shows correlations and their n → ∞

imits.

.1. Hn and Tk

We calculate the covariance of Hn and Tk using Cov[Hn, Tk] =

[ ] [ ] [ ]
HnTk − E Hn E Tk . Recalling that Ti and Tj are independent

3

for i ̸= j (Section 2.1), we have E
[
TiTj
]

= E [Ti]E
[
Tj
]
for i ̸= j.

Hence, inserting Eq. (4) for Hn and Eq. (2) for E [Ti], we have

Cov[Hn, Tk] = E

[
Tk

n∑
i=2

Ti

]
− E

[
n∑

i=2

Ti

]
E [Tk]

=

n∑
i=2

E [TiTk] −

n∑
i=2

E [Ti]E [Tk]

= Var [Tk] +

n∑
i=2, i̸=k

E [Ti]E [Tk]

−

n∑
i=2, i̸=k

E [Ti]E [Tk] = Var [Tk] =
4

k2(k − 1)2
,

(23)

here the last step uses Var [Tk] from Eq. (3). We observe that
the covariance is independent of n.

For the correlation coefficient Corr[Hn, Tk] = Cov[Hn, Tk]/√
Var [Hn] Var [Tk], applying Eq. (6) for Var [Hn], Eq. (3) for Var [Tk],

and Eq. (23) for Cov[Hn, Tk], we have

Corr[Hn, Tk] =
n√

2S2,nn2 − 3n2 + 2n − 1

1
k(k − 1)

. (24)

aking a limit as n → ∞, we obtain

lim
n→∞

Corr[Hn, Tk] =

√
3

√
π2 − 9

1
k(k − 1)

. (25)

he limiting correlation decreases to 0 with k from an initial value
f 1

2 [
√
3/(π2 − 9)] ≈ 0.92869 at k = 2.

3.2. Ln and Tk

For Ln and Tk, applying Eqs. (7), (8) and (2), we have for the
ovariance

ov[Ln, Tk] = E [LnTk] − E [Ln]E [Tk]

= E

[
Tk

n∑
i=2

iTi

]
− E

[
n∑

i=2

iTi

]
E [Tk]

= E
[
kT 2

k

]
− kE [Tk]2 = kVar [Tk] =

4
k(k − 1)2

, (26)

here the last step uses Eq. (3). The covariance of Ln and Tk, like
ov[Hn, Tk] (Eq. (23)), is independent of n.
Now we calculate the correlation coefficient from Eqs. (26), (9)

nd (3):

orr[Ln, Tk] =
1√

S2,n−1

1
k − 1

. (27)

If we let n → ∞, then this quantity becomes

lim
n→∞

Corr[Ln, Tk] =

√
6

π

1
k − 1

. (28)

he limiting correlation decreases to 0 with k, starting for k = 2
at

√
6/π ≈ 0.77970.

3.3. Hn and Ln

Arbisser et al. (2018) reported the covariance and correlation
of Hn and Ln. By Eq. (4) and the linearity of the covariance,

Cov[Hn, Ln] =

n∑
Cov[Ln, Tk].
k=2
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ovariances of pairs of variables. Expressions involving En or In apply for n ≥ 3 and expressions involving Bn apply for n ≥ 4.
(Xn, Yn) Cov[Xn, Yn] limn→∞ Cov[Xn, Yn] Reference

Hn , Tk
4

k2(k − 1)2
4

k2(k − 1)2
3.1, Eq. (23)

Hn , Ln 4S2,n−1 − 4 +
4
n

2π2

3
− 4 ≈ 2.57974 3.3, Eqs. (29), (30)

Hn , En
4
n

0 3.4, Eqs. (37), (38)

Hn , In 4S2,n−1 − 4
2π2

3
− 4 ≈ 2.57974 3.7, Eqs. (49), (50)

Hn , Bn
4[S3,n−1n2

− 3S2,n−1n2
+ (n − 1)(4n + 1)]

n2 4ζ (3) + 16 − 2π2
≈ 1.06902 3.13, Eqs. (71), (72)

Ln , Tk
4

k(k − 1)2
4

k(k − 1)2
3.2, Eq. (26)

Ln , En
4S1,n−1

n − 1
0 3.6, Eqs. (45), (46)

Ln , In 4S2,n−1 −
4S1,n−1

n − 1
2π2

3
≈ 6.57974 3.9, Eqs. (57), (58)

Ln , Bn
4[S3,n−1n − S2,n−1n + n − 1]

n
4ζ (3) + 4 −

2π2

3
≈ 2.22849 3.14, Eqs. (75), (76)

En , Tk
4

k(k − 1)(n − 1)
0 3.5, Eqs. (41), (42)

En , In
4S1,n−1

n − 1
−

8S1,n−1n
(n − 1)(n − 2)

+
16

n − 2
0 3.10, Eqs. (61), (62)

En , Bn
4
(
S2,n−1n − n + 1

)
n(n − 1)

0 3.15, Eqs. (84), (85)

In , Tk
4(n − k)

k(k − 1)2(n − 1)
4

k(k − 1)2
3.8, Eqs. (53), (54)

In , Bn
4(S3,n−1n − S2,n−1n + n − S3,n−1 − 1)

n − 1
4ζ (3) + 4 −

2π2

3
≈ 2.22849 3.16, Eqs. (88), (89)

Bn , Tk
4

k2(k − 1)3
4

k2(k − 1)3
3.12, Eq. (68)
(
(
i
o

E

b

E

Applying Eq. (26), we obtain

Cov[Hn, Ln] = 4S2,n−1 − 4 +
4
n
. (29)

he limit of the covariance is

lim
n→∞

Cov[Hn, Ln] =
2π2

3
− 4 ≈ 2.57974. (30)

Dividing the covariance in Eq. (29) by the square root of the
product of Eqs. (6) and (9), we obtain

Corr[Hn, Ln] =
S2,n−1n − n + 1√

S2,n−1(2S2,nn2 − 3n2 + 2n − 1)
. (31)

he limit is

lim
→∞

Corr[Hn, Ln] =
π2

− 6

π
√
2(π2 − 9)

≈ 0.93399. (32)

.4. Hn and En

For the covariance Cov[Hn, En] = E [HnEn] − E [Hn]E [En], we
first note that by Eqs. (5) and (13), the second term is sim-
ply 4

(
1 −

1
n

)
. Expanding E [HnEn] by using the definition of Hn

(Eq. (4)) gives us

E [HnEn] =

n∑
i=2

E [EnTi] = n
n∑

i=2

E [enTi] ,

as all external branch lengths are identically distributed (Eq. (10)).
For integers k, i with 2 ≤ k, i, ≤ n, the external branch

length ek, representing the length of a randomly chosen external
branch for a tree with k leaves, and the coalescence time T , satisfy
i

4

(Eq. (11))

ekTi =

{
ek−1Ti + TkTi, with probability k−2

k ,

TkTi, with probability 2
k ,

(33)

where for convenience, we write e1 = 0.
Note that ek and Ti are independent for i > k, as the recurrence

for ek is constructed only using coalescence times T2, T3, . . . , Tk
Eq. (11)); each of these times is independent of Ti for i > k
Section 2.1). We solve to find E [enTi] by computing E [ekTi],
ncrementing k from 2 to n. The calculations are similar to those
f the Appendix of Fu and Li (1993).
E [e2T2] is trivial, with e2 = T2, and E [e2T2] = E

[
T 2
2

]
= 2 by

Eqs. (2) and (3). By Eqs. (12) and (2) and the independence of ek
and Ti for i > k, for i ≥ 3,

E [ei−1Ti] = E [ei−1]E [Ti] =
4

i(i − 1)2
.

Noting E
[
T 2
i

]
= Var [Ti] + E [Ti]2 = 2E [Ti]2 by Eqs. (2) and (3),

we use Eq. (33) to write an expression for E [eiTi]:

E [eiTi] =
i − 2
i

E [ei−1Ti] + E
[
T 2
i

]
=

4
i(i − 1)2

. (34)

Next, incrementing Eq. (34), we have

[ei+1Ti] =
i − 1
i + 1

E [eiTi] + E [Ti+1]E [Ti] =
4

i2(i − 1)
, (35)

y Eqs. (2) and (12).
The final step is to solve the recurrence equation

[enTi] =
n − 2

E [en−1Ti] + E [Tn]E [Ti] ,
n
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able 2
orrelation coefficients of pairs of variables. Expressions involving En or In apply for n ≥ 3 and expressions involving Bn apply for n ≥ 4.
(Xn, Yn) Corr[Xn, Yn] limn→∞ Corr[Xn, Yn] Reference

Hn , Tk
n√

2n2S2,n − 3n2 + 2n − 1

1
k(k − 1)

√
3

√
π2 − 9

1
k(k − 1)

≈
1.85738
k(k − 1)

3.1, Eqs. (24),
(25)

Hn , Ln
S2,n−1n − n + 1√

S2,n−1
(
2S2,nn2 − 3n2 + 2n − 1

) π2
− 6

π
√
2(π2 − 9)

≈ 0.93399 3.3, Eqs. (31),
(32)

Hn , En

√
(n − 1)(n − 2)√

2(2S2,nn2 − 3n2 + 2n − 1)
(
S1,n−1n − 2n + 2

) 0 3.4, Eqs. (39),
(40)

Hn , In

(
S2,n−1 − 1

)
n
√
(n − 1)(n − 2)(

2S2,nn2 − 3n2 + 2n − 1
) [

4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)
] π2

− 6

π
√
2(π2 − 9)

≈ 0.93399 3.7, Eqs. (51),
(52)

Hn , Bn

√
2[S3,n−1n2

− 3S2,n−1n2
+ (n − 1)(4n + 1)]√

(2S2,nn2 − 3n2 + 2n − 1)(3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)

3
√
3[2ζ (3) + 8 − π2

]√
(π2 − 9)(18 + 9π2 − π4)

≈ 0.97054 3.13, Eqs. (73
(74)

Ln , Tk
1√

S2,n−1

1
k − 1

√
6

π

1
k − 1

≈
0.77970
k − 1

3.2, Eqs. (27),
(28)

Ln , En
S1,n−1

√
n − 2√

2S2,n−1(n − 1)
(
S1,n−1n − 2n + 2

) 0 3.6, Eqs. (47),
(48)

Ln , In
[S2,n−1(n − 1) − S1,n−1]

√
n − 2

(n − 1)
√
S2,n−1

[
4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)

] 1 3.9, Eqs. (59),
(60)

Ln , Bn

√
2(S3,n−1n − S2,n−1n + n − 1)√

S2,n−1(3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)

√
6[6ζ (3) + 6 − π2

]

π
√
18 + 9π2 − π4

≈ 0.84930 3.14, Eqs. (77
(78)

En , Tk

√
n − 2√

2(n − 1)(S1,n−1n − 2n + 2)
0 3.5, Eqs. (43),

(44)

En , In
4(n − 1) − S1,n−1(n + 2)√

2
(
S1,n−1n − 2n + 2

) [
4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)

] 0 3.10, Eqs. (63
(64)

En , Bn
(S2,n−1n − n + 1)

√
n − 2√

(n − 1)(S1,n−1n − 2n + 2)(3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)
0 3.15, Eqs. (86

(87)

In , Tk
(n − k)

√
n − 2

(k − 1)
√
(n − 1)

[
4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)

] √
6

π

1
k − 1

≈
0.77970
k − 1

3.8, Eqs. (55),
(56)

In , Bn

√
2(S3,n−1n − S2,n−1n + n − S3,n−1 − 1)n

√
n − 2√

(n − 1)[4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)](3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)

√
6[6ζ (3) + 6 − π2

]

π
√
18 + 9π2 − π4

≈ 0.84930 3.16, Eqs. (90
(91)

Bn , Tk

√
2n√

3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4

1
k(k − 1)2

6
√
18 + 9π2 − π4

1
k(k − 1)2

≈
1.95518
k(k − 1)2

3.12, Eqs. (69
(70)
I

with initial condition Eq. (35). Recalling the case of i = n = 2,
with 2 ≤ i ≤ n, we obtain solution

E [enTi] =
4

i(i − 1)(n − 1)
. (36)

Applying Eq. (10), the expression for Cov[Hn, En] becomes

Cov[Hn, En] = n
n∑

i=2

4
i(i − 1)(n − 1)

− 4
(
1 −

1
n

)
=

4
n
. (37)

he limit of the covariance as n → ∞ is

lim
n→∞

Cov[Hn, En] = 0. (38)

Dividing Eq. (37) by the square root of the product of variances
rom Eqs. (6) and (14), the correlation is

orr[Hn, En] =

{
1, n = 2,

√
(n−1)(n−2)

√
2(2S2,nn2−3n2+2n−1)(S1,n−1n−2n+2)

, n > 2. (39)

The limit of the correlation is

lim
n→∞

Corr[Hn, En] = 0. (40)

3.5. En and Tk

In the process of computing Cov[Hn, En], we have obtained
an expression for E [e T ] (Eq. (36)), from which we can obtain
n i

5

Cov[En, Tk] = nE [enTk] − E [En]E [Tk]. Applying Eqs. (13) and (2),
we have

Cov[En, Tk] =
4

k(k − 1)(n − 1)
. (41)

rrespective of the value of k, we have

lim
n→∞

Cov[En, Tk] = 0. (42)

Applying Eqs. (3) and (14), the correlation coefficient is

Corr[En, Tk] =

{
1, n = 2,

√
n−2√

2(n−1)(S1,n−1n−2n+2)
, n ≥ 3. (43)

The correlation coefficient is independent of k, and it has limit

lim
n→∞

Corr[En, Tk] = 0. (44)

3.6. Ln and En

Fu and Li (1993) provided the expression for E [LnEn] (see also
p. 167 of Durrett (2008), with all values scaled by 2Ne). The main
result is the following expression, obtained by solving recurrence
equations:

E [LnEn] =
4S1,n−1n

.

n − 1
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e can use this result to calculate the covariance of Ln and En by
Cov[Ln, En] = E [LnEn] − E [Ln]E [En] with Eqs. (8) and (13). The
covariance can also be quickly obtained from Eqs. (7) and (41),

Cov[Ln, En] =

n∑
k=2

k Cov[En, Tk] =
4S1,n−1

n − 1
. (45)

he limit is

lim
n→∞

Cov[Ln, En] = 0. (46)

Applying Eqs. (45), (9) and (14), the correlation coefficient of
n and En is

orr[Ln, En] =

{
1, n = 2,

S1,n−1
√
n−2

√
2S2,n−1(n−1)(S1,n−1n−2n+2)

, n ≥ 3, (47)

with the limit

lim
n→∞

Corr[Ln, En] = 0. (48)

3.7. Hn and In

For the pair Hn and In, we exploit results obtained for other
pairs to quickly obtain the covariance. Remembering that In =

Ln − En (Eq. (15)), we use Eqs. (29) and (37) to obtain for n ≥ 3

Cov[Hn, In] = Cov[Hn, Ln] − Cov[Hn, En]

= 4S2,n−1 − 4. (49)

For this covariance, we have

lim
n→∞

Cov[Hn, In] =
2π2

3
− 4 ≈ 2.57974. (50)

From the covariance in Eq. (49) and variances in Eqs. (6) and
17), we compute the correlation coefficient:

Corr[Hn, In] = (
S2,n−1 − 1

)
n
√
(n − 1)(n − 2)√(

2S2,nn2 − 3n2 + 2n − 1
) [

4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)
] .

(51)

The limit is the same as that of Corr[Hn, Ln], or (Eq. (32))

lim
n→∞

Corr[Hn, In] =
π2

− 6

π

√
2
(
π2 − 9

) ≈ 0.93399. (52)

.8. In and Tk

By Eqs. (15), (26) and (41), assuming n ≥ 3, we have

ov[In, Tk] = Cov[Ln, Tk] − Cov[En, Tk]

=
4(n − k)

k(k − 1)2(n − 1)
. (53)

he limit of this expression is a rapidly decreasing function of k,

lim
n→∞

Cov[In, Tk] =
4

k(k − 1)2
. (54)

Using the variances in Eqs. (17) and (3), the correlation coef-
icient is

Corr[In, Tk]

=
(n − k)

√
n − 2

(k − 1)
√
(n − 1)

[
4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)

] ,
(55)
 w

6

with limit

lim
n→∞

Corr[In, Tk] =

√
6

π

1
k − 1

. (56)

he limit of Corr[In, Tk] as n → ∞ is equal to that of Corr[Ln, Tk]
Eq. (28)).

.9. Ln and In

By Eq. (15), we can apply Eqs. (9) and (45) to obtain for n ≥ 3

ov[Ln, In] = Var [Ln] − Cov[Ln, En]

= 4S2,n−1 −
4S1,n−1

n − 1
. (57)

he limit as n → ∞ is

lim
n→∞

Cov[Ln, In] =
2π2

3
≈ 6.57974. (58)

For the correlation coefficient, applying Eqs. (57), (9) and (17),
we get

Corr[Ln, In]

=
[S2,n−1(n − 1) − S1,n−1]

√
n − 2

(n − 1)
√
S2,n−1

[
4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)

] ,
(59)

with

lim
n→∞

Corr[Ln, In] = 1. (60)

3.10. En and In

For this pair, with n ≥ 3, the covariance was reported by Fu
and Li (1993):

Cov[En, In] =
4S1,n−1

n − 1
−

8S1,n−1n
(n − 1)(n − 2)

+
16

n − 2
. (61)

e can also obtain this result quickly from Eqs. (15), (57) and
17), as Cov[En, In] = Cov[Ln − In, In] = Cov[Ln, In] − Var[In]. In
he limit, we have

lim
n→∞

Cov[En, In] = 0. (62)

For the correlation coefficient, we divide Eq. (61) by the prod-
ct of the square roots of Eqs. (14) and (17):

Corr[En, In]

=
4(n − 1) − S1,n−1(n + 2)√

2
(
S1,n−1n − 2n + 2

) [
4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)

] ,
(63)

with the limit

lim
n→∞

Corr[En, In] = 0. (64)

This result is equal to the limit for Corr[Ln, En] (Eq. (48)).

.11. Var [Bn]

To obtain correlation coefficients involving Bn, assuming n ≥

, we first verify the expression for Var [Bn] in Eq. (22). By defini-
ion of Bn in Eq. (18), we have

ar [Bn] = E
[
1
4
(T2 + bn)2

]
− E

[
1
2
(T2 + bn)

]2
=

1
4
Var [bn] +

1
2
Cov[bn, T2] +

1
4
, (65)

here we have used Var [T ] = 1 (Eq. (3)).
2
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Corr[Hn, Bn] =

√
2[S3,n−1n2

− 3S2,n−1n2
+ (n − 1)(4n + 1)]√

(2S2,nn2 − 3n2 + 2n − 1)(3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)
. (73)

Box I.
q

3

C

T
T

3

w

C

To calculate Var [bn], we first recall that for j = 3, 4, . . . , n−1,
ith probability 2/[j(j − 1)], we have bn = Hj; with probability
/(n−1) we have bn = Hn. Hence, applying Eq. (19) and E

[
H2

k

]
=

ar [Hk] + E [Hk]2 with Eqs. (5) and (6), we have[
b2n
]

=

[n−1∑
j=3

2
j(j − 1)

E
[
Hj
]2]

+
2

n − 2
E [Hn]2

=
−16S2,n−1n2

+ 30n2
− 16n − 16

n2 .

sing the expression for E [bn] from Eq. (20), we obtain

Var [bn] =
24S2,n−1n2

− 16S22,n−1n
2
+ 5n2

− 32S2,n−1n + 24n − 32
n2 .

(66)

Next, we compute Cov[bn, Tk] and insert k = 2. By Eq. (19),
applying the independence of the Ti (Section 2.1) and inserting
Eq. (3), we have

Cov[bn, Tk]

=

[n−1∑
j=3

j∑
i=2

2
j(j − 1)

Cov[Ti, Tk]
]

+

( n∑
i=2

2
n − 1

Cov[Ti, Tk]
)

=

[n−1∑
i=2

n−1∑
j=i if i≥3
j=3 if i=2

2
j(j − 1)

Cov[Ti, Tk]
]

+

(
2

n − 1
Var [Tk]

)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[∑n−1

j=3
2

j(j−1) Var [Tk]
]

+
( 2
n−1 Var [Tk]

)
, k = 2,[∑n−1

j=k
2

j(j−1) Var [Tk]
]

+
( 2
n−1 Var [Tk]

)
, k = 3, 4, . . . , n − 1,

2
n−1 Var [Tk] , k = n,

=

{
1, k = 2,

8
k2(k−1)3 , k = 3, 4, . . . , n.

(67)

nserting Var [bn] from Eq. (66) and Cov[bn, T2] from Eq. (67) into
q. (65), we confirm Eq. (22).

.12. Bn and Tk

We extract Cov[Bn, Tk] from Section 3.11, as Cov[Bn, Tk] =

Cov[bn, Tk]/2 + Cov[T2, Tk]/2 by the definition in Eq. (18), and
Cov[T2, Tk] = δk,2, where δ is the Kronecker delta (Section 2.1).
By Eq. (67), recalling n ≥ 4,

Cov[Bn, Tk] =
4

k2(k − 1)3
. (68)

he covariance is independent of n.
For the correlation coefficient, using Eqs. (68), (22) and (3), we

ave

Corr[Bn, Tk]

=

√
2n√

3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4

×
1

, (69)

k(k − 1)2

7

with the limit

lim
n→∞

Corr[Bn, Tk] =
6

√
18 + 9π2 − π4

1
k(k − 1)2

. (70)

The limit begins at 3/
√
18 + 9π2 − π4 ≈ 0.97759 for k = 2 and

uickly decreases to 0 as k increases.

.13. Hn and Bn

To obtain Cov[Hn, Bn] with n ≥ 4, we begin from Eq. (18):

ov[Hn, Bn] =
1
2
Cov[Hn, bn] +

1
2
Cov[Hn, T2].

The second term was computed in Eq. (23), Cov[Hn, T2] = 1.
For the first term, Cov[Hn, bn], we decompose Hn (Eq. (4)) and

apply Eq. (67) to obtain

Cov[Hn, bn] =

n∑
k=2

Cov[bn, Tk]

= 1 +

n∑
k=3

8
k2(k − 1)3

.

We use a partial fraction decomposition to sum the series, ob-
taining

Cov[Hn, Bn] = 1 +

n∑
k=3

4
k2(k − 1)3

=
4[S3,n−1n2

− 3S2,n−1n2
+ (n − 1)(4n + 1)]

n2 . (71)

The asymptotic limit of Cov[Hn, Bn] is

lim
n→∞

Cov[Hn, Bn] = 4ζ (3) + 16 − 2π2
≈ 1.06902. (72)

he correlation coefficient is then equal to Eq. (73) given in Box I.
he limit of the correlation coefficient is:

lim
n→∞

Corr[Hn, Bn] =
3
√
3[2ζ (3) + 8 − π2

]√
(π2 − 9)(18 + 9π2 − π4)

≈ 0.97054.

(74)

.14. Ln and Bn

In a manner similar to that used in Section 3.13, with n ≥ 4,
e expand Cov[Ln, Bn] using Eq. (18):

ov[Ln, Bn] =
1
2
Cov[Ln, bn] +

1
2
Cov[Ln, T2].

The second term is Cov[Ln, T2] = 2 by Eq. (26). The first term is
decomposable by Eq. (7); applying Eq. (67),

Cov[Ln, bn] =

n∑
k=2

k Cov[bn, Tk]

= 2 +

n∑
k=3

8
k(k − 1)3

.



E. Alimpiev and N.A. Rosenberg Theoretical Population Biology 143 (2022) 1–13

S

C

t

T

3

r
c
v
2
c
c

t

a

C

a

C̃orr [En, Bn] =
(S2,n−1n − n + 1)

√
n − 2√

(n − 1)(S1,n−1n − 2n + 2)(3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)
. (86)

Box II.
C

T

n

C
o

n

3

w

4

4

a
c
s
w
(
t

umming the series, we have

ov[Ln, Bn] = 2 +

n∑
k=3

4
k(k − 1)3

=
4[S3,n−1n − S2,n−1n + n − 1]

n
. (75)

The limiting covariance is

lim
n→∞

Cov[Ln, Bn] = 4ζ (3) + 4 −
2π2

3
≈ 2.22849. (76)

Using Eqs. (75), (9) and (22), we now obtain an expression for
he correlation coefficient:

Corr[Ln, Bn]

=

√
2(S3,n−1n − S2,n−1n + n − 1)√

S2,n−1(3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)
.

(77)

he limit is

lim
n→∞

Corr[Ln, Bn] =

√
6[6ζ (3) + 6 − π2

]

π
√
18 + 9π2 − π4

≈ 0.84930. (78)

.15. En and Bn

For Cov[En, Bn], we obtain an approximate rather than exact
answer. Decomposing Bn by Eq. (18), we have

Cov[En, Bn] =
1
2
Cov[En, T2] +

1
2
Cov[En, bn]. (79)

Recall that bn can be defined conditionally, in terms of a
andom variable J that characterizes the coalescence times that it
ontains (Section 2.6). More precisely, we say that for a random
ariable J , bn = Hj with probability pj, where pj = P[J = j] =

/[j(j−1)] for J = 3, 4, . . . , n−1 and pj = 2/(j−1) for J = n. We
an then decompose the covariance Cov[En, bn] by the conditional
ovariance formula, conditioning on J:

Cov[En, bn] = E
[
Cov[En, bn|J]

]
+ Cov

[
E [En|J] ,E [Bn|J]

]
. (80)

We next perform an approximation by ignoring the second
erm in the covariance decomposition. Noting that Cov[En, T2] =
2

n−1 by Eq. (41), we use Eq. (79) together with Eq. (80) to write
pproximations

C̃ov [En, bn] = E
[
Cov[En, bn|J]

]
(81)

õv [En, Bn] =
1

n − 1
+

1
2
C̃ov [En, bn] . (82)

Weighting each Cov[Hj, En] by the associated probability pj,
nd decomposing Hj by Eq. (4), Eq. (81) gives

E
[
Cov[En, bn|J]

]
=

n∑
j=3

pj Cov[En, bn|J = j]

=

[n−1∑ 2
j(j − 1)

Cov[Hj, En]
]

j=3 n

8

+
2

n − 1
Cov[Hn, En]

=

[n−1∑
j=3

2
j(j − 1)

j∑
k=2

Cov[En, Tk]
]

+
2

n − 1

j∑
k=2

Cov[En, Tk].

We can then insert the result of Eq. (41) and simplify to obtain

C̃ov [En, bn] =
2(4S2,n−1n − 5n + 4)

n(n − 1)
. (83)

Finally, inserting Eq. (83) into Eq. (82), we have

õv [En, Bn] =
4(S2,n−1n − n + 1)

n(n − 1)
. (84)

he limit is

lim
→∞

C̃ov [En, Bn] = 0. (85)

For the approximate correlation coefficient C̃orr [En, Bn] =

õv [En, Bn] /
√
Var [En] Var [Bn], we use Eqs. (84), (14) and (22) to

btain Eq. (86) given in Box II, with limit

lim
→∞

C̃orr [En, Bn] = 0. (87)

.16. In and Bn

We use Eq. (15) and results involving Ln (Eq. (75)) and En
(Eq. (84)) to obtain

C̃ov [In, Bn] = Cov[Ln, Bn] − C̃ov [En, Bn]

=
4(S3,n−1n − S2,n−1n + n − S3,n−1 − 1)

n − 1
, (88)

ith limit

lim
n→∞

C̃ov [In, Bn] = 4ζ (3) + 4 −
2π2

3
≈ 2.22849. (89)

Dividing Eq. (88) by the product of the square roots of Eqs. (17)
and (22), the approximate correlation is Eq. (90) given in Box III,
with limit

lim
n→∞

C̃orr [In, Bn] =

√
6[6ζ (3) + 6 − π2

]

π
√
18 + 9π2 − π4

≈ 0.84930. (91)

. Numerical and simulation-based analysis

.1. Analysis methods

We examine the results of Section 3 summarized in Tables 1
nd 2 numerically and by coalescent simulation. For 13 of 15
ovariances and correlations, the theoretical results are exact, and
imulations merely verify that the mathematics has proceeded
ithout error. For the covariances and correlations involving
En, Bn) and (In, Bn), the theoretical results are approximate, and
he simulations assess the accuracy of the approximations.

We simulated the coalescent process for a series of values of
beginning with n = 2, at each value of n performing 100,000
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T

Fig. 2. Simulated and theoretical values of covariances of pairs of variables, plotted as functions of sample size n. Expressions for theoretical values are taken from
able 1.
C̃orr [In, Bn] =

√
2(S3,n−1n − S2,n−1n + n − S3,n−1 − 1)n

√
n − 2√

(n − 1)[4S1,n−1 + S2,n−1(n − 1)(n − 2) − 4(n − 1)](3S2,n−1n2 − 2S22,n−1n2 + n2 − 4S2,n−1n + 3n − 4)
. (90)

Box III.
w
a

replicate simulations. To generate the simulated replicates, we
employed ms (Hudson, 2002), using the command ms n 100000
-T, with n taken from {2, 3, . . . , 50}. In the set of simulated
replicates, we evaluated simulated covariances and correlation
coefficients for pairs of quantities.

We plot the mathematical results of Tables 1 and 2 together
with simulation values in Figs. 2–5. Figs. 2 and 3 show covariances
of pairs of variables; Figs. 4 and 5 show correlations.
 p

9

4.2. Accuracy of approximations

Fig. 2 shows the analytical and simulated covariances, and
Fig. 4 shows the analytical and simulated correlations, for pairs
of variables among {Hn, Ln, In, En, Bn}. For pairs of variables for
hich no approximations were needed in obtaining covariances—
ll except (En, Bn) and (In, Bn)—the simulated and analytical values
roduce plots that are nearly indistinguishable.
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Fig. 3. Theoretical values of covariances Cov[X, Tk] for variables X in
Hn, Ln, En, In, Bn}, plotted as functions of k for n = 10, n = 20, and n = 50.
The plots appear on a logarithmic scale.

For (En, Bn) and (In, Bn), the approximate and simulated cor-
relations are close, but noticeably different (Fig. 4); the mean
absolute difference between the analytical and simulated values
across choices of n from 4 to 30 is 0.02458 for (En, Bn) and
0.01089 for (In, Bn). For covariance, which unlike the correlation
coefficient is not standardized to lie in [−1, 1], the approximate
10
and simulated values are quite close, with corresponding mean
absolute deviations of 0.02372 for (En, Bn) and 0.03101 for (In, Bn).

4.3. Properties of correlations

We observe that Hn, Ln, In, and Bn all remain strongly correlated
s n increases, with the six limiting correlations among these four
uantities lying between 0.84930 for Corr[Ln, Bn] and Corr[In, Bn]

nd 1 for Corr[Ln, In] (Table 2). The high limiting Corr[Hn, Ln] of
pproximately 0.93399 reflects the strong influence of times Tk
ith small k on both Hn and Ln (Figs. 3 and 5). As n increases,
[In] increases without bound (Eq. (16)), whereas E [En] remains
onstant (Eq. (13)); the contribution of En to the total tree length
n becomes negligible, and Corr[Ln, In] approaches 1. Corr[Hn, In]
as the same limiting value as Corr[Hn, Ln], and Hn, Ln, and In
ll have limiting correlation 0 with En. Interestingly, although Hn
nd En have the same limiting expectation of 2, the limit of their
orrelation Corr[Hn, En] is 0.
The correlations of Hn, Ln, and In with Bn, like their correla-

ions with each other, are relatively high. Corr[Hn, Bn] is nearly
onstant in n, with limit approximately 0.97054; both Hn and
n are determined in large part by the Tk with small k (Eqs. (5)
nd (21)), so that little change occurs in the correlation as n
ncreases. Because Corr[Hn, Bn] is high and Corr[Hn, Ln] is also
igh, the constraint on a correlation Corr[Y , Z] given Corr[X, Y ]

nd Corr[X, Z], or (Wickens, 2014, eq. 7.1)

Corr[Y , Z] ≥ Corr[X, Y ] Corr[X, Z]

−

√
1 − Corr[X, Y ]2

√
1 − Corr[X, Z]2 (92)

Corr[Y , Z] ≤ Corr[X, Y ] Corr[X, Z]

+

√
1 − Corr[X, Y ]2

√
1 − Corr[X, Z]2, (93)

orces a high value for Corr[Ln, Bn] as well. In particular, placing
n, Ln, Bn in the roles of X, Y , Z , with limn→∞ Corr[Hn, Ln] ≈

0.93399 and limn→∞ Corr[Hn, Bn] ≈ 0.97054, we obtain an in-
terval 0.82037 ≤ limn→∞ Corr[Ln, Bn] ≤ 0.99256 from Eqs. (92)
and (93); limn→∞ Corr[Ln, Bn] ≈ 0.84930 lies near its lower
nd. Eqs. (92) and (93) similarly force a high value for limn→∞

Corr[In, Bn], using Hn, In, Bn as X, Y , Z .
Next, for correlations involving the Tk, we observe that for

fixed n, as k increases from 2 to n, Corr[Hn, Tk] decreases (Fig. 5).
At fixed n and k, Corr[Ln, Tk] generally exceeds Corr[Hn, Tk];
k copies of the branch length Tk contribute to tree length Ln
(Eq. (7)), whereas only one copy contributes to the tree height
Hn (Eq. (4)), giving rise to a greater value for the correlation of Tk
with Ln than with Hn. For k > 2, Corr[Bn, Tk] is generally smaller
than Corr[Hn, Tk]; because Bn is determined to a larger extent by
T2 than is Hn, the correlations of Bn with Tk for k > 2 are gener-
ally smaller. Finally, because tree length Ln consists primarily of
internal branches for large n, the correlation Corr[In, Tk] is similar
to Corr[Ln, Tk] (Fig. 5), approaching the same limit as n → ∞

(Table 2); the correlation of En and Tk is a constant that does not
depend on k.

5. Discussion

We have examined relationships between pairs of tree fea-
tures under the coalescent model by deriving expressions for
their covariances and correlation coefficients (Tables 1 and 2).
For 13 of 15 pairs examined, we obtained exact expressions for
the covariances and correlation coefficients, and for the remain-
ing two pairs, we obtained quantities observed in simulations
to closely approximate the desired quantities (Figs. 2 and 4).
The results provide a compendium of basic relationships among
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Fig. 4. Simulated and theoretical values of correlation coefficients of pairs of variables, plotted as functions of sample size n. Expressions for theoretical values are
aken from Table 2.
i
oalescent tree features, contributing to a more precise under-
tanding of the way in which the properties of coalescent trees
elate to each other.

In most cases, the covariances have relatively simple expres-
ions, comparable to the simplicity of most expressions for ex-
ectations and variances (Table 1). Expressions for the correlation
oefficients are somewhat more complex, in many cases with

→ ∞ limits that contain terms resulting from the limit
∞

k=1 1/k
2

= π2/6.
Numerically, we obtain tight correlations between Hn, Ln, In,

nd Bn as n grows large, with all of these quantities possessing
imiting correlations of 0.84930 or greater (Table 2). In the limit,
n and In are perfectly correlated, and all limiting correlations
f other quantities with In are equal to their corresponding cor-
elations with Ln. Decreasing correlations are observed for Hn,
n, In, and Bn with En, with limits of 0 observed in all cases
Table 2). Although Hn and En both have limiting expectation
(Eqs. (5) and (13)), their limiting correlation coefficient is 0.
he correlations among Hn, Ln, and Bn are all large; however,
he limiting correlation for (Ln, Bn) is near the lower end of the
11
nterval suggested by the larger limiting correlations for (Hn, Ln)
and (Hn, Bn) (Eqs. (92) and (93)). This result suggests that Ln
and Bn capture relatively distinct features of coalescent trees in
relation to the constraints placed on a pair of correlated variables
that are each highly correlated with a third variable (Hn). A similar
observation can be made concerning In and Bn, as Ln and In are
asymptotically fully correlated.

Although tree properties such as Hn, Ln, En, In, and Bn are
not themselves observable in genetic sequences, interest in these
quantities arises in part from their relationship to statistical tests
that assess the fit of the coalescent model to data on genetic
variation. Features of tree shape underlie predictions of the coa-
lescent regarding allele frequencies; in particular, tree properties
contribute to predictions for the unfolded site-frequency spec-
trum (SFS) of a genomic region, the vector that for a sample
of size n tabulates how many variable (biallelic) sites in the
region possess allele frequencies 1/n, 2/n, . . . , (n − 1)/n for the
derived allele (e.g. Fu, 1995; Ferretti et al., 2017). Test statis-
tics then assess agreement of site-frequency spectra with the
predictions (e.g. Zeng et al., 2006; Achaz, 2009; Ferretti et al.,
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Fig. 5. Theoretical values of correlation coefficients Corr[X, Tk] for variables X
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010; Ronen et al., 2013), so that correlations among statistics
mphasizing different aspects of site-frequency spectra emerge
rom dependence on correlated tree features. In this context,
urther understanding of correlations among tree properties can
ssist in understanding the joint behavior of SFS-based tests of
he coalescent model.
12
Our computations augment earlier calculations concerning
quantities associated with coalescent trees. The pairs (Hn, Ln) (Ar-
bisser et al., 2018) and (Ln, En) and (En, In) (Fu and Li, 1993)
have been studied in detail. Results for pairs (Hn, Tk), (Ln, Tk), and
(Ln, In) follow trivially from the derivations and results of Arbisser
et al. (2018) and Fu and Li (1993), but were not highlighted
in those studies. Results for pairs (Hn, En), (Hn, In), (En, Tk), and
(In, Tk) follow from derivations similar to those of Fu and Li
(1993), but to our knowledge, they have not been previously
reported.

The least-studied of the variables we consider, Bn, was intro-
duced by Uyenoyama (1997) in the context of balancing selection
and self-incompatibility alleles in plants. Under balancing selec-
tion, the mean Bn of the two basal branches is expected to be long
in relation to the tree length Ln, so that 2Bn/Ln predicts the frac-
tion of segregating sites that distinguish two long-separated sets
of lineages. For Bn, which gives a portion of the height Hn—but
which, unlike Hn, is obtained from a sum with a random length—
e derived the variance (Eq. (22)), as well as exact covariances
nd correlations with Hn, Ln, and Tk and approximate covariances

and correlations with En and In. Several studies have extended the
ork of Fu and Li (1993) on features of the external and internal
ranch lengths (Blum and François, 2005; Caliebe et al., 2007;
anson and Kersting, 2011; Dahmer and Kersting, 2015, 2017;
isanto and Wiehe, 2020); it may be possible to seek exact rather
han approximate covariances and correlations for (En, Bn) and
(In, Bn) by building on these studies.

When examining joint distributions of Hn and Ln, Arbisser et al.
2018) used computations of the expectations and variances of Hn
nd Ln and the covariance of Hn and Ln to obtain approximations
or the expectation and variance of Hn/Ln. Following the approach
f Arbisser et al. (2018), our results could be used to obtain
imilar approximate expressions for expectations and variances
f ratios of additional pairs.
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