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1  | INTRODUCTION

Assessing the level of genetic differentiation among subpopulations 
is a fundamental topic in population genetics, molecular ecology, 
and conservation genetics. Genetic differentiation is used, for exam‐
ple, to detect genes under natural selection in different subpopula‐
tions (Lewontin & Krakauer, 1973), to quantify effects of gene flow 
and hybridization (Slatkin, 1993), and to detect effects of popula‐
tion fragmentation and to provide conservation recommendations 
(Frankham, Ballou, & Briscoe, 2002).

For decades, genetic differentiation has been measured most 
often using Wright's fixation index FST (Wright, 1951). In an informa‐
tive framework provided by Nei (1973), an additive partition divides 
the total heterozygosity HT into a within‐subpopulation component, 
HS, and an among‐subpopulation component, DST:

From DST, Nei derived the measure of differentiation

HT=HS+DST.

(1)FST=
DST

HT

.
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Abstract
Statistics G′

ST
 and Jost's D have been proposed for replacing FST as measures of ge‐

netic differentiation. A principal argument in favour of these statistics is the inde‐
pendence of their maximal values with respect to the subpopulation heterozygosity 
HS, a property not shared by FST. Nevertheless, it has been unclear if these alternative 
differentiation measures are constrained by other aspects of the allele frequencies. 
Here, for biallelic markers, we study the mathematical properties of the maximal val‐
ues of G′

ST
 and D, comparing them to those of FST. We show that G′

ST
 and D exhibit the 

same peculiar frequency‐dependence phenomena as FST, including a maximal value 
as a function of the frequency of the most frequent allele that lies well below one. 
Although the functions describing G′

ST
, D, and FST in terms of the frequency of the 

most frequent allele are different, the allele frequencies that maximize them are iden‐
tical. Moreover, we show using coalescent simulations that when taking into account 
the specific maximal values of the three statistics, their behaviours become similar 
across a large range of migration rates. We use our results to explain two empirical 
patterns: the similar values of the three statistics among North American wolves, and 
the low D values compared to G′

ST
 and FST in Atlantic salmon. The results suggest that 

the three statistics are often predictably similar, so that they can make quite similar 
contributions to data analysis. When they are not similar, the difference can be un‐
derstood in relation to features of genetic diversity.
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Because the Wahlund effect (Wahlund, 1928) mathematically 
ensures that HT ≥ HS (as a consequence of the Cauchy–Schwarz 
inequality, Rosenberg & Calabrese, 2004), FST is restricted to lie in 
the unit interval from 0 to 1. Consequently, FST values are often in‐
terpreted using a scale from 0 to 1; for example, Wright (1978, p. 
85) described the range 0.15–0.25 as indicating “moderately great 
differentiation,” and the range 0.25–1 as indicating “very great 
differentiation.”

Many studies, however, challenge this common interpretation of 
FST. It has been shown that the maximal FST for a specific locus is not 
always one, but a smaller value that varies with aspects of the genetic 
diversity at a locus, as measured by HS (Balloux, Brünner, Lugon‐
Moulin, Hausser, & Goudet, 2000; Hedrick, 1999, 2005; Hedrick 
& Kalinowski, 2000; Jost, 2008; Long & Kittles, 2003; Maruki, 
Kumar, & Kim, 2012), HT (Edge & Rosenberg, 2014; Jakobsson, 
Edge, & Rosenberg, 2013), or other allele frequency statistics 
(Alcala & Rosenberg, 2017; Rosenberg, Li, Ward, & Pritchard, 2003). 
Consequently, interpreting FST values requires consideration of the 
value of HS or other summary statistics rather than a fixed scale.

Some have proposed ways of addressing this perceived flaw of 
FST. Wang (2015) suggested assessing if FST values at a set of loci 
are influenced by HS by testing for a significant correlation between 
the two statistics. A significant correlation is interpreted as indicat‐
ing that FST is constrained by HS values rather than reflecting the 
level of genetic differentiation among populations. Although this 
test is promising for avoiding misinterpretations of FST (Whitlock, 
2015), frameworks are still needed for interpretation of FST in cases 
with a significant correlation between FST and HS.

Others have proposed replacing FST by an alternative genetic 
differentiation measure whose maximal value does not depend on 
HS. Hedrick (2005) proposed standardizing FST by its maximum value 
given the observed value of HS and the number of subpopulations  
FST,max = [(K − 1)(1 − HS)]/(K − 1 + HS). The resulting measure, de‐
noted G′

ST
, is defined as:

In a provocative and influential paper, Jost (2008) proposed an‐
other measure of genetic differentiation, relying on alternative mea‐
sures of genetic diversity, the “effective numbers of alleles” within 
and among populations, denoted respectively by ΔS = 1/(1 − HS) and 
ΔT = 1/(1 − HT), rather than within‐ and among‐population hetero‐
zygosities HS and HT. He also advocated the use of a multiplicative 
partition of genetic diversity,

rather than the additive partitioning used in the derivation of FST. 
Considering a context applicable for any value for the number of 
distinct alleles, though proposed primarily for multiallelic markers, 
Jost then derived a new differentiation measure, denoted D, by nor‐
malizing 1/ΔST to lie between 0 and 1:

Jost's D can also be expressed using heterozygosities: 

For convenience, we henceforth use D to indicate Jost's D as in 
Equation 3.

G′

ST
 and D are statistics whose maxima are not constrained by 

HS in the sense that irrespective of the value of HS, they can range 
from 0 to 1. This property, however, does not ensure that they are 
unconstrained by other aspects of allele frequencies. In particular, 
recent studies have highlighted a dependence of the maximal FST 
on the frequency M of the most frequent allele in the total popu‐
lation at a locus.

Rosenberg et al. (2003, Equation 8) showed that for biallelic 
markers and two subpopulations, the maximum FST decreases mono‐
tonically from 1 to 0 as a function of M (see also Maruki et al., 2012). 
Jakobsson et al. (2013) showed that for a value of M chosen uni‐
formly between 0 and 1, the mean maximum FST is approximately 
0.3585; this maximum can be even lower if the number of alleles 
at the locus is specified (Edge & Rosenberg, 2014). For biallelic loci, 
Alcala and Rosenberg (2017) generalized these results to the case of 
an arbitrary number of subpopulations K. We showed that FST con‐
tinues to have a maximum less than 1 irrespective of the value of M, 
with exceptions only at finitely many choices for M.

Here, we show that despite the emphasis of the derivations of 
G′

ST
 and D on eliminating the dependence of maximal values on HS, 

both quantities, like FST, have maxima less than 1 when considered 
as functions of M. We derive the maximum and minimum values 
of G′

ST
 and D in terms of M, for a biallelic marker and an arbitrary 

number of subpopulations K. We then compare the mathematical 
constraints on G′

ST
 and D with analogous constraints on FST from 

Alcala and Rosenberg (2017), as functions of the number of sub‐
populations K. We simulate the joint distributions of M and G′

ST
 

and of M and D, describing how G′

ST
 and D values are distributed 

between their minimum and maximum values as functions of the 
migration rate and the number of subpopulations in an island mi‐
gration model. We apply our results to show how they explain dis‐
crepancies among FST, G′

ST
, and D in two empirical examples: the 

population structure of wild North American wolves and that of 
Atlantic salmon. We use our results to provide recommendations 
on the use of the three statistics.

2  | MATERIALS AND METHODS

Our goal is to derive the minimum and maximum values G′

ST
 and D 

can take as functions of the frequency M of the most frequent al‐
lele for a biallelic marker, when the number of subpopulations K is a 
fixed finite value greater than or equal to 2. Following similar deri‐
vations for FST (Alcala & Rosenberg, 2017), we consider a polymor‐
phic locus with two alleles, A and a, segregating in a total population 
subdivided into K subpopulations that all contribute equally to the 
total. We denote the frequency of allele A in subpopulation k by pk. 

(2)G�

ST
=

FST

FST,max

.

ΔT=ΔSΔST,

D=

(
K

K−1

)(
1−

1

ΔST

)
.

(3)D=

(
K

K−1

)(
HT−HS

1−HS

)
.
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The frequency of allele a in subpopulation k is 1 − pk. Each allele fre‐
quency pk lies in the interval [0,1].

The mean frequency of allele A across the subpopulations is 
M= (1∕K)

∑K

k=1
pk, and the mean frequency of allele a is 1 − M. We as‐

sume that allele A is the more frequent allele in the total population, 
so that M ≥ 1/2 ≥ 1 − M. Because by assumption the locus is poly‐
morphic, M ≠ 1. We denote the mean squared frequency of allele A 
across the subpopulations by S= (1∕K)

∑K

k=1
p2
k
.

We assume that the allele frequencies M and pk are parametric 
allele frequencies of the total population and subpopulations, and 
not estimated values computed from data. In addition, we adopt an 
interpretation of FST, G′

ST
, and D as “statistics” that provide mathe‐

matical descriptions of the apportionment of alleles among sub‐
populations, rather than as “parameters” of an implicit or explicit 
population‐genetic model (Nei, 1986). For this study, the “statistic” 
interpretation of differentiation measures is favored because it en‐
ables descriptions of the relationships of FST, G′

ST
, and D with other 

“statistics” such as the frequency M of the most frequent allele. It 
also permits evaluation of the relative impact on resulting values of 
FST, G′

ST
, and D of mathematical relationships between statistics—

which we interpret as mathematical “constraints”—separately from 
the impact of population‐genetic models.

3  | RESULTS

3.1 | Mathematical constraints on FST, G′

ST
, and D

3.1.1 | FST, G′

ST
, and D as functions of M

Equations 2 and 3 express G′

ST
 and D as functions of the within‐ 

and among‐subpopulation heterozygosities HS and HT. We express 
G′

ST
 and D as functions of allele frequencies by substituting into 

Equations 2 and 3 the expressions for HS and HT (Nei, 1973):

HS simplifies to HS = 2(M − S), and HT to HT = 2M(1 − M). Because we 
assume a polymorphic locus, 0 ≤ HS < 1 and 0 < HT < 1. We obtain:

For a given value of M, we search for the values of p1, p2, …, pK 
that minimize and maximize G′

ST
 and D across all possible sets of allele 

frequencies that produce mean frequency M for its most frequent 
allele. The minimal and maximal FST as functions of M are known 
from Alcala and Rosenberg (2017). We show in Appendix A that the 
minimal values of FST, G′

ST
, and D all equal 0 irrespective of M, for any 

value of the number of subpopulations K, and that this minimum is 
reached when alleles have the same frequency in all subpopulations: 
p1 = p2= … = pK = M.

3.1.2 | Maximal values of FST, G′

ST
, and D

From Alcala and Rosenberg (2017, Equation 5), letting ⌊x⌋ denote the 
greatest integer less than or equal to x and writing {x}=x−⌊x⌋, the 
maximum of FST in terms of M is:

The derivations of the maxima of G′

ST
 and D in terms of M pro‐

ceed in three steps. (a) We show in Appendix B that G′

ST
 and D are 

increasing functions of S. (b) We employ Theorem 1 from Alcala and 
Rosenberg (2017), which provided the maximal S in terms of M used 
to obtain the maximal FST in terms of M (Alcala & Rosenberg, 2017, 
Equation 6). This theorem shows that S≤

�
⌊KM⌋+{KM}

2
�
∕K, with 

equality requiring the most frequent allele to have frequency 1 or 
0 in all subpopulations except at most one. (c) From (a) and (b), the 
maximal G′

ST
 and D in terms of M are obtained by substituting the 

maximal S into Equations 7 and 8:

Interestingly, this derivation implies that for fixed M, FST, G′

ST
, and 

D are maximal under the same conditions: when the most frequent 
allele has frequency 1 or 0 in all except possibly one subpopulation, 
so that the locus is polymorphic in at most a single subpopulation. 
Thus, FST, G′

ST
, and D are all maximal when fixation is achieved in as 

many subpopulations as possible.

3.1.3 | Comparison of the maximal values of FST, G′

ST
,  

and D

Figure 1 shows the maximal values of FST, G′

ST
, and D in terms of M for 

various values of K. These maximal values have shared properties. 
FST (Alcala & Rosenberg, 2017, p. 1583), G′

ST
 (Supporting Information 

File S1.1), and D (Supporting Information File S1.2–S1.4) all have 
peaks at values i/K, where i is an integer ranging in [⌈ K

2
⌉,K−1], where 

it is possible for the allele to be fixed in all K subpopulations. The 
maximum, treated as a function of M, is not a differentiable function 

(4)HS=1−
1

K

K∑

k=1

p2
k
−
1

K

K∑

k=1

(1−pk)
2,

(5)HT=1−M2
− (1−M)2.

(6)FST=
S−M2

M(1−M)
,

(7)G�

ST
=

(
K−1−2S+2M

) (
S−M2

)

(K−1)(1+2S−2M)M(1−M)
,

(8)D=

2K
(
S−M2

)

(K−1)
(
1+2S−2M

) .

(9)FST≤
⌊KM⌋+{KM}

2
−KM2

KM(1−M)
.

(10)G�

ST
≤
[K(K−1)+2{KM}(1−{KM})](⌊KM⌋+{KM}

2
−KM2)

K(K−1)[K−2{KM}(1−{KM})]M(1−M)
,

(11)D≤
2K

�
⌊KM⌋+{KM}

2
−KM2

�

(K−1)
�
K−2{KM}(1−{KM})

� .
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at the peaks i/K (Supporting Information File S1.5); it is smooth and 
strictly below one between them (Supporting Information File S1.1 
and S1.2). If K is even, then the maximal value has a local maximum 
at M = 1/2, whereas if K is odd, then M = 1/2 is a local minimum 
(Supporting Information File S1.3).

The maximal values for the three statistics also have distinct 
properties. From Alcala and Rosenberg (2017, p. 1583), the peaks of 
the maximal FST reach one; the peaks of the maximal G′

ST
 also reach 

one (Supporting Information File S1.1), whereas the peaks of the 
maximal D are lower than 1, except if K = 2 (Supporting Information 
File S1.2). These peaks reach KHT/(K − 1) = 2KM(1 − M)/(K − 1) 
(Supporting Information File S1.4). Consequently, FST and G′

ST
 are 

only unconstrained within the unit interval for finitely many values 

of the frequency M of the most frequent allele, and D is only un‐
constrained for a single combination of values of K and M, namely 
(K,M) = (2, 1/2).

For K = 2, the maximal FST, G′

ST
, and D values are similar 

(Figure 1a–c): the maximum is 1 at M = 1/2, decreasing monotoni‐
cally to 0 at M = 1. The maximal G′

ST
 is the highest of the statistics for 

all M (Appendix C); as a result, G′

ST
 is the least constrained measure. 

The maximal D exceeds the maximal FST for M < 3/4 and is lower for 
M > 3/4 (Appendix C). Hence, D is less constrained than FST for lower 
M but more constrained for higher M.

The number of subpopulations K has different effects on the 
maximum values of FST, G′

ST
, and D. The maximum of G′

ST
 tends to 1 

when K → ∞ (Figure 1b,e,h,k,n and Supporting Information File S1.2), 

F I G U R E  1   Range of possible values 
of FST, G′

ST
, and D as functions of the 

frequency M of the most frequent allele, 
for different numbers of subpopulations 
K. The shaded region represents the space 
between the minimal and maximal values. 
The maximal FST, G′

ST
, and D are computed 

from Equations 9–11, respectively. The 
dashed line represents 1 for FST and G′

ST
,  

and 2KM(1 − M)/(K − 1) for D (Equation 
S1.4 in Supporting Information File 
S1); the maximum value touches the 
dashed line when M = i/K for integers i 
in [⌈ K

2
⌉,K−1]. For FST, G′

ST
, and D, for each 

K, the minimum value is 0 for all values 
of M [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

www.wileyonlinelibrary.com
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similarly to that of FST (Figure 1a,d,g,j,m; Alcala & Rosenberg, 2017); 
thus, constraints of M on the values of G′

ST
 disappear as K increases. 

By contrast, the maximal value of D tends to 2M(1 − M) = HT when 
K → ∞ (Figure 1c,f,i,l,o, and Supporting Information File S1.7): thus, 
constraints imposed by M on the values of D remain strong for all K.

3.1.4 | Comparison of the range of possible 
values of FST, G′

ST
, and D

We can summarize how much M constrains the range of G′

ST
 and D 

compared to FST by computing as functions of the number of sub‐
populations AG(K) and AD(K), the mean maximal G′

ST
 and D across all 

possible values of M. AG(K) gives the area between the minimal and 
maximal values of G′

ST
 as a function of M divided by the length of the 

domain of possible M values, 1/2. This quantity is useful for compar‐
ing results with previous work on the constraints of FST (Alcala & 
Rosenberg, 2017; Edge & Rosenberg, 2014; Jakobsson et al., 2013). 
Values of AG(K) near one indicate that G′

ST
 can range between 0 and 

1 for most values of M, whereas small values indicate that G′

ST
 values 

are constrained to a small interval. AD(K) and AF(K) describe corre‐
sponding computations for D and FST.

From Alcala and Rosenberg (2017, Equation 8), AF is:

We compute AG(K) and AD(K) from the upper bounds derived in 
the previous sections. Because the lower bound on G′

ST
 and D 

is 0 for all M between 1/2 and 1, AG(K) and AD(K) correspond to 
the areas under their respective maximal values divided by 1/2, or 
twice the integrals of Equations 10 and 11 over M. We compute 
AG(K) in Supporting Information File S2.1 and AD(K) in Supporting 
Information File S2.3:

where functions h1 and h2 follow Equations S2.6 and S2.7 in 
Supporting Information File S2.

In Figure 2, we compare AG(K) and AD(K) to the area between 
the minimal and maximal FST as functions of M (Alcala & Rosenberg, 
2017, Equation 9), denoted AF. We can see in the figure that AG is 
greater than AF for all K, particularly when K is small, whereas AF and 
AG are similar for large K. Thus, G′

ST
 is less constrained than FST by 

M when the number of subpopulations is small, and G′

ST
 and FST are 

comparably constrained when it is large. AD is seen to be lower than 
both AF (except at K = 2) and AG, and thus, D is more constrained than 
the other two measures.

The pattern of change in AD(K) as a function of K is distinct 
from those of AF(K) and AG(K). AD(K) decreases with K (Supporting 
Information File S2.4), whereas AF(K) increases with K for all K ≥ 2 
(Alcala & Rosenberg, 2017, Theorem 3), and AG(K) increases with 
K at least for K ranging from 2 to 10,000 (Supporting Information 
File S2.2). As K becomes large, AD tends to 1/3, whereas AF ap‐
proaches 1 (Alcala & Rosenberg, 2017, Equation 9), as does AG 
(Supporting Information File S2.2). Thus, unlike FST and G′

ST
, D 

does not have a mean range extending over the whole unit in‐
terval when K is large. On the other hand, of the three statistics, 
AD(K) has the least change as a function of K, decreasing from 
(9−�

√
3)∕9≈0.39540 to 1/3 (Figure 2), whereas AF(K) increases 

from 2 log 2 − 1 ≈ 0.38629 to 1 and AG(K) increases from (3−2 log 
2)/3 ≈ 0.53790 to 1. Thus, the constraint imposed by M on D is 
more consistent across values of K than are the constraints on the 
other two measures.

3.2 | Simulation‐based distributions of FST, G′

ST
,  

and D

To illustrate the mathematical properties of differentiation measures 
FST, G′

ST
, and D in the context of evolutionary models, we simulated 

the joint distribution of each quantity with M under an island migra‐
tion model, and we compared the distribution to the mathematical 
minima and maxima of the statistics. This analysis considers allele 
frequency distributions generated by evolutionary models, rather 
than treating M as uniformly distributed in [1/2,1).

We simulated independent single‐nucleotide polymorphisms 
(SNPs) under the coalescent using the protocol of Alcala and 
Rosenberg (2017). Using the software ms (Hudson, 2002), we sim‐
ulated a population of total size KN diploid individuals subdivided 
into K subpopulations of equal size N, with migration following the 
finite island model (Maruyama, 1970; Wakeley, 1998) with migration 
rate m in each direction between each pair of subpopulations. We 

(12)AF(K)=1−K+2(K+1) lnK−
4

K

K∑

i=2

i ln i.

(13)

AG(K)=1−
K−1∑
i=1

h1(K,i) arctan
�

1√
2K−1

�

+

K−1∑
i=1

h2(K,i) log
�

i

i+1

�

(14)AD(K)=1−
2
√
2K−1

3
arctan

�
1√

2K−1

�
,

F I G U R E  2   The means AF, AG, and AD of the maximal values 
of FST, G′

ST
, and D, respectively, over the interval M ∊ [1/2, 1), as 

functions of the number of subpopulations K. AF(K) is computed 
from Equation 12, AG(K) from Equation 13, and AD(K) from 
Equation 14. The x‐axis is plotted on a logarithmic scale [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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examined three K values (2, 7, 40) and three 4Nm values (0.1, 1, 10). 
We simulated conditional on producing one segregating site in each 
simulation. For each parameter pair (K,4Nm), we performed 100,000 
replicate simulations, sampling 100 lineages per subpopulation (cor‐
responding to 50 diploid individuals) in each replicate. ms commands 
appear in Supporting Information File S3. Because we do not investi‐
gate estimation of allele frequencies from data, FST, G′

ST
, and D values 

were computed assuming that the empirical allele frequencies were 
parametric allele frequencies.

3.2.1 | Weak migration for K = 2

As shown by Alcala and Rosenberg (2017), and seen here in Figure 3a, 
for K = 2, under weak migration (4Nm = 0.1), the joint density of M 
and FST is greatest near the maximum of FST as a function of M. We 
can see in Figure 3b,c that the joint densities of M and G′

ST
 and of M 

and D are also highest near their respective maxima as functions of 
M. For the three statistics, most loci have M near 1/2, indicating that 
one allele is fixed in one subpopulation and the other is fixed in the 
second subpopulation, and FST, G′

ST
, and D are near 1 (orange areas 

in Figure 3a–c). The mean FST, G′

ST
, and D values in sliding windows 

for M (red dashed lines in Figure 3a–c) closely follow their respec‐
tive maxima. Because the maximal values of the three statistics are 
similar for K = 2, the joint densities are also similar.

The conditions under which the maximal values of FST, G′

ST
, and 

D are reached provide an explanation of these observations. We 
showed that the maximal values of the three statistics are reached 
under the same condition—when alleles are fixed in one or some‐
times both subpopulations. Under weak migration, we expect the 
derived allele to be trapped in its subpopulation of origin, and the 
ancestral allele to be fixed in the other subpopulation. This situation 
matches the conditions under which FST, G′

ST
, and D reach their max‐

imal values as functions of M.

3.2.2 | Intermediate migration for K = 2

For K = 2, under intermediate migration (4Nm = 1), the joint densi‐
ties of M and FST, M and G′

ST
, and M and D are the highest between 

their respective minimum and maximum values as functions of M 
(Figure 3d–f). The mean FST, G′

ST
, and D values in sliding windows for 

M are almost equidistant from the minimal and maximal values, ap‐
proaching closer to the maximum when M nears 1 (red dashed line 
in Figure 3d–f).

Under intermediate migration, we expect the derived allele to 
segregate into the two subpopulations, but to still be at higher fre‐
quency in its subpopulation of origin. Consequently, the condition 
under which FST, G′

ST
, and D reach their maximum as a function of M 

is not attained. The condition under which the statistics reach their 

F I G U R E  3   Joint density of the frequency M of the most frequent allele and statistics FST, G′

ST
, and D, for different scaled migration rates 

4Nm, considering K = 2 subpopulations. The black solid line represents the maximum value of FST, G′

ST
, or D in terms of M (Equations 9–11); 

the red dashed line represents the mean FST, G′

ST
, and D in sliding windows of M of size 0.02 (plotted from 0.51 to 0.99). Colours represent 

the density of loci, estimated using a Gaussian kernel density estimate with a bandwidth of 0.007, with density set to 0 outside the minimum 
and maximum values. Loci are simulated using coalescent software ms, assuming an island model of migration and conditioning on one 
segregating site. Each panel considers 100,000 replicate simulations, with 100 lineages sampled per subpopulation [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

www.wileyonlinelibrary.com
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minimum—equal allele frequencies in all subpopulations—is not ex‐
pected to be attained either, resulting in FST, G′

ST
, and D between 

their minimum and maximum values.

3.2.3 | Strong migration for K = 2

Continuing with K = 2, under strong migration (4Nm = 10), the three 
joint densities are the highest near their respective minima as func‐
tions of M (Figure 3g–i). The mean FST, G′

ST
, and D in sliding windows 

for M are near their minimal values (red dashed line in Figure 3g–i).
Under strong migration, we expect the derived allele to segre‐

gate into the two subpopulations approximately at the same fre‐
quency. Consequently, the condition under which FST, G′

ST
, and D 

reach their minima as functions of M—equal allele frequencies in all 
subpopulations—is attained.

3.2.4 | Weak, intermediate, and strong migration for 
K > 2

For K = 7, the joint densities of M and FST, M and G′

ST
, and M and D 

follow a similar pattern to that seen for K = 2: the densities lie near 
the maximal value of their statistics under weak migration, between 
the minimum and maximum under intermediate migration, and near 
the minimum under strong migration (Figure 4). Under weak migra‐
tion, most loci have M near 4/7, 5/7, or 6/7, indicating allele fixation 
in all subpopulations. Nevertheless, because the maximal values of 
the three statistics differ greatly, their values under weak migration 
are quite different: most loci have FST ≈ 1 and G�

ST
≈1, but D < 0.5.

For K = 40, the joint densities also lie near the maximum under 
weak migration, between the minimum and maximum under inter‐
mediate migration, and near the minimum under strong migration 
(Supporting Information Figure S1). Under weak migration, loci have 

M values that range from 1/2 to 1. Because the maxima of FST and 
G′

ST
 are similar, their values under weak migration are also similar: 

most loci have FST ≈ 1 and G�

ST
≈1. By contrast, D < 0.5.

Interestingly, comparing the densities of M and D under weak 
migration as a function of K, we can see that the values of D are more 
weakly influenced by K (Figures 3c, 4c, and Supporting Information 
Figure S1C). By contrast, the values of FST and G′

ST
 are more strongly 

influenced by K (Figures 3a, 4a, and Supporting Information Figure 
S1a and Figures 3b, 4b, and Supporting Information Figure S1b).

3.2.5 | Proximity of FST, G′

ST
, and D to their 

maximum values

To measure the impact of evolutionary processes on FST, G′

ST
, and D 

values and to summarize Figures 3 and 4 and Supporting Information 
Figure S1, we quantified the proximity of the joint densities of M and 
FST, M and G′

ST
, and M and D to their maximum value as a function of 

M across a range of migration rates and numbers of subpopulations.
We denote by ̄FST, ̄G′

ST
, and ̄D the mean values of FST, G′

ST
, and D 

across a set of Z loci, respectively. To be precise, these means are 
obtained by computing Fz, G

′

z
, and Dz—the values of FST, G′

ST
, and D 

for biallelic loci z—for each z from 1 to Z, and averaging Fz, G
′

z
, and Dz 

across the Z loci (Equations D1 and D2 in Appendix D). The corre‐
sponding mean maximal FST, G′

ST
, and D across the Z loci are denoted 

̄Fmax,
̄G′

max
,and ̄Dmax. They are computed by substituting the observed 

frequency Mz of the most frequent allele at loci z = 1, 2, …, Z into the 
expression for the maximal FST (Equation 9), G′

ST
 (Equation 10), and D 

(Equation 11), and averaging the values over the Z loci (Equations D3 
and D4 in Appendix D). We computed ̄FST∕ ̄Fmax, ̄G�

ST
∕
̄G�

max
, and ̄D∕ ̄Dmax, 

which we describe as normalized statistics, across a range of val‐
ues of K (2, 10, and 100) and scaled migration rates (0.01–100; 
Figure 5).

F I G U R E  4   Joint density of the 
frequency M of the most frequent allele 
and statistics FST, G′

ST
, and D, for different 

scaled migration rates 4Nm, considering 
K = 7 subpopulations. The simulation 
procedure and figure design follow 
Figure 3 [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

www.wileyonlinelibrary.com
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Interestingly, for a fixed 4Nm, ratios are similar for the three 
measures across all values of K (Figure 5b). The largest difference 
between FST and G′

ST
 values is 0.07 and is reached when 4Nm = 1; 

the largest difference between D and G′

ST
 is 0.06, also when 4Nm = 1. 

Thus, all three measures provide similar information once their 
mathematical constraints are taken into account.

3.3 | Application to data

We now use two SNP data sets to illustrate how our findings can 
explain patterns in genomic data.

3.3.1 | K = 2: wolf and dog

The first data set (Cronin, Cánovas, Bannasch, Oberbauer, & 
Medrano, 2015) consists of samples from 305 North American wild 
wolves (Canis lupus) and 91 dogs (Canis familiaris; 36 mixed‐breed 
dogs, 53 poodles, one Australian shepherd, and one Border collie). 
The wolves and dogs are typed at 123,801 biallelic loci. This example 

illustrates the dependence of the constraints of the differentiation 
measures on M when performing pairwise comparisons.

The joint densities of M and FST, M and G′

ST
, and M and D appear 

in Figure 6a–c. Most loci have relatively large values of M, for which 
the differentiation statistics are tightly constrained. As we saw using 
coalescent simulations (Figure 3), values of FST, G′

ST
, and D are glob‐

ally close; G′

ST
 values are the largest of the three measures for all M, D 

exceeds FST for intermediate M, and FST exceeds D for high M.
In addition, we can see in Figure 6D that normalizing the mean 

FST, G′

ST
, and D increases their values considerably. As we observed 

in the simulations (Figure 5), G′

ST
 values are slightly closer to their 

maxima than are FST and D values.

3.3.2 | K > 2: Atlantic salmon

The second data set consists of 900 Atlantic salmon (Salmo salar) 
sampled from 26 populations (Bourret et al., 2013) and typed at 
1,335 biallelic loci. This example illustrates the constraints of the 
measures when many subpopulations are considered.

F I G U R E  5   Mean ̄FST, ̄G′

ST
, and ̄D across biallelic loci. (a) Unnormalized means ̄FST, ̄G′

ST
, and ̄D. (b) Normalized means ̄FST∕ ̄Fmax, ̄G�

ST
∕
̄G�

max
, and 

̄D∕ ̄Dmax, the ratio of the mean value to the mean maximal value given the observed frequency M of the most frequent allele. Both plots show 
quantities as functions of the number of subpopulations K and the scaled migration rate 4Nm. Colours represent the different statistics. Line 
types represent values of K: 2 (solid), 7 (dashed), and 40 (dotted). Values are computed from coalescent simulations using software ms as in 
Figure 3, with 1,000 replicate biallelic loci and 100 lineages per subpopulation. ̄Fmax, ̄G′

max
, and ̄Dmax are respectively computed from equation 

11 of Alcala and Rosenberg (2017) and Equations D3 and D4 in Appendix D [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E  6   Joint density of the frequency M of the most frequent allele and three differentiation measures (FST, G′

ST
, and D), and 

unnormalized and normalized mean values of the differentiation measures across loci, for 305 wolves and 91 dogs from North America, 
using 123,801 SNPs. (a) M and FST. (b) M and G′

ST
. (c) M and D. (d) Unnormalized mean values of FST, G′

ST
, and D across SNPs, and the mean 

values of FST, G′

ST
, and D across SNPs normalized by the mean of their maximal values. In (a–c), the figure design follows Figure 3. In (d), ̄Fmax, 

̄G′

max
, and ̄Dmax are respectively computed from equation 11 of Alcala and Rosenberg (2017) and Equations D3 and D4 in Appendix D [Colour 

figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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The joint densities of M with FST, G′

ST
, and D appear in Figure 7a–

c. As was seen in coalescent simulations (Figure 4), values of FST and 
G′

ST
 are close, with larger G′

ST
; D values are lower than both FST and 

G′

ST
 for all M.
Figure 7d,e illustrate the impact of the number of subpopulations 

on values of FST, G′

ST
, and D. The figure represents the mean FST, G′

ST
, 

and D values across loci for sets of K salmon subpopulations among 
the 26 subpopulations, for K ranging from 2 to 26. For computational 
simplicity, when the number of possible sets exceeded 10,000, we 
randomly chose without replacement 10,000 sets to compute the 
three measures. We can see in Figure 7d that the values of FST and 
G′

ST
 depend more strongly on the value of K, whereas the values of 

D are weakly affected by K. In addition, we can see in Figure 7e that 
even though the mean values of D are smaller than those of FST and 
G′

ST
, they are comparably close to the maximum value as the means 

of FST and G′

ST
. Also, as we showed with coalescent simulations 

(Figure 5), G′

ST
 values are slightly closer to their associated maximal 

values than are D and FST.

4  | DISCUSSION

We have shown that for biallelic markers and arbitrary numbers 
of subpopulations K, the maximal values of G′

ST
 and D are both 

lower than 1 for most frequencies M of the most frequent allele. 
We have described the properties of the maximal values of G′

ST
 

and D as functions of M, and compared them with that of FST. 
We have shown that G′

ST
 is the least constrained by M, and that 

D is the most constrained. Despite these differences, the allele 
frequencies that minimize and maximize G′

ST
 and D are the same. 

Using coalescent simulations and two data examples, we have 
shown that values of FST, G′

ST
, and D normalized by their respec‐

tive maxima given M are more similar to each other than are their 
unnormalized counterparts.

Contrary to the claim of Jost (2008), D does not eliminate all 
counterintuitive phenomena observed with FST: we exhibit domains 
of M under which the maximal D is well below 1. One possible ex‐
planation of this discrepancy is that examples in Jost (2008) focused 
on cases with either many alleles or K = 2 subpopulations, whereas 
we find strong constraints on D in the case of a biallelic marker 
and K > 2. Moreover, despite the strong arguments of Jost (2008) 
about the importance of “mathematical misconceptions” underly‐
ing the construction of FST, we find that FST, G′

ST
, and D have similar 

behaviour once we account for their respective maximal values as 
functions of M. Note that because HT = 2M(1 − M) for biallelic mark‐
ers, M uniquely specifies HT and HT uniquely specifies M; thus, our 
results describing constraints on FST, G′

ST
, and D as functions of M can 

also be viewed as constraints as functions of HT.
Although G′

ST
 and D are not constrained by the value of the 

within‐subpopulation heterozygosity HS, we have shown that both 
statistics are constrained by allele frequencies in other ways. It does 
not follow that a measure that has no constraints in terms of HS has 
no constraints at all; the differentiation measures that have been 
proposed to supplant FST present some degree of constraint in terms 
of M or HT and are thus subject to analogous criticism. Possibly, any 
differentiation measure would possess some constraint. This result 

F I G U R E  7   Joint density of the frequency M of the most frequent allele and three differentiation measures (FST, G′

ST
, and D), and 

unnormalized and normalized mean values of the differentiation measures across loci, for 900 Atlantic salmon from 26 populations, using 
1,335 SNPs. Sample sizes range from 25 to 40 per population. (a) M and FST. (b) M and G′

ST
. (c) M and D. (d) Mean values of FST, G′

ST
, and D 

across SNPs, for sets of geographic regions as a function of K, the number of regions considered. (e) Ratio of mean values of FST, G′

ST
, and D 

across SNPs to their maximal mean values as functions of K. In (a–c), the figure design follows Figure 3. Coloured bars in (d) and (e) represent 
2.5 and 97.5 quantiles of distributions of values across sets of size K. In (e), ̄Fmax, ̄G′

max
, and ̄Dmax are respectively computed from equation 11 

of Alcala and Rosenberg (2017) and Equations D3 and D4 in Appendix D [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(e)(d)

www.wileyonlinelibrary.com
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accords with the conclusion of Meirmans and Hedrick (2011) that a 
summary statistic unconstrained in relation to all aspects of allele 
frequencies probably does not exist.

Focusing on the frequency M of the most frequent allele en‐
ables a coalescent interpretation of constraints on differentiation 
statistics. In a coalescent framework, for a locus at which alleles 
arise as unique mutations, fixing M corresponds to fixing the num‐
ber of sampled lineages containing an allele, inducing a distribution 
of the time depth at which a mutation arose. Genetic differenti‐
ation statistics conditional on different values of M can then be 
viewed as examining constraints on differentiation for loci whose 
alleles have originated at different times. In this coalescent inter‐
pretation, normalization by the maximum value given M enables 
comparisons of the values of the statistics irrespective of the 
depth at which a mutation appeared in the gene tree. Thus, both 
the values of differentiation statistics conditionally on M and the 
values of those statistics normalized by their maxima given M are 
potentially useful in disentangling the relative impacts of ancient 
and recent evolutionary events on patterns of polymorphism. Note 
that this perspective is distinct from the usual coalescent‐based in‐
terpretation of Slatkin (1991), in which FST statistics are computed 
in sequence regions rather than pointwise and have a more direct 
interpretation in relation to coalescence times.

We found that the three differentiation measures have similar 
values when comparing pairs of subpopulations (K = 2) using biallelic 
loci. Indeed, both the mathematical constraints and the distributions 
generated by common biological processes produce similar values of 
FST, G′

ST
, and D. Consequently, it appears that choosing one measure 

among the three is not very important when considering biallelic loci 
and performing pairwise population comparisons. This result con‐
trasts with that of Table 1 of Jost (2008), which showed that FST 
and D can give very different results when K = 2, but considering 
multiallelic loci. Extending our results to the case of K = 2 and mul‐
tiallelic loci using the framework laid out in Jakobsson et al. (2013) 
and Edge & Rosenberg (2014) could potentially solve this apparent 
discrepancy that the statistics are similar when considering a biallelic 
locus and K = 2 but different when considering a multiallelic locus 
and K = 2.

We highlight a trade‐off in the properties of differentiation sta‐
tistics based on biallelic loci: D values are the least sensitive to the 
effect of the number of subpopulations K, but the most strongly con‐
strained. Knowing this trade‐off can potentially help users choose 
among statistics. For example, if the goal is to compare differentia‐
tion among species with various distinct numbers of subpopulations, 
then D could be the most useful, whereas FST and G′

ST
 could be more 

suitable for providing a wider range of values in comparisons with 
the same value of K.

Modified FST statistics that incorporate the number of subpopu‐
lations have previously been suggested. In Supporting Information 
File S4, we examine two alternative statistics, G′

ST,Nei
 due to Nei 

(1987) and G′′

ST
 due to Meirmans and Hedrick (2011), designed as 

modified versions of FST and G′

ST
, respectively, and both incorporat‐

ing a factor dependent on the number of subpopulations. We show 

that G′

ST,Nei
 and G′′

ST
 are constrained by the value of M similarly to 

FST and G′

ST
, respectively, but to a slightly lesser degree (Supporting 

Information Figures S3–S5). These constraints are stronger if K = 2, 
decreasing as K increases (Supporting Information Figure S2). Along 
with computations by Alcala and Rosenberg (2017) showing con‐
straints on the Weir–Cockerham estimator θ (Weir & Cockerham, 
1984) as a function of M, these results suggest that mathematical 
constraints on FST‐related statistics are pervasive, rather than fea‐
tures of particular formulations of the measure.

As a first step in analyzing a dataset, similarly to the proposal 
from Wang (2015), we suggest evaluating FST, G′

ST
, and D in re‐

lation to another statistic dependent on allele frequencies. This 
exploratory step ensures that dependencies among statistics are 
identified. In addition, we suggest displaying the maximal values of 
the statistics (Equations 9–11). Indeed, we showed that when cor‐
recting for the mathematical maximum in terms of M, all measures 
provide similar information. This result accords with that of Heller 
and Siegismund (2009), who found a strong correlation among em‐
pirically reported FST, G′

ST
, and D values. Meirmans and Hedrick 

(2011) further highlighted theoretical connections among them, 
showing that limK→∞

(G�

ST
∕FST)=1∕(1−HS). In agreement with their 

result, we found that maximal FST and G′

ST
 values are particularly 

close when K is large and when an allele is fixed in each subpopula‐
tion—producing HS = 0. Meirmans and Hedrick (2011) also showed 
that limK→∞

(D∕G�

ST
)=HT, which accords with our result that the 

maximal D approaches HT when K is large, and the maximal G′

ST
 

approaches 1.
FST and other genetic differentiation statistics are often used 

to search for loci responsible for local adaptation. Following from 
the initial approach of Lewontin and Krakauer (1973), many tests 
compute the distribution of FST in a set of genotyped loci and con‐
sider loci with FST values above a threshold as candidates for local 
adaptation (see e.g., OutFLANK, Whitlock & Lotterhos, 2015 for 
a modern implementation). FST bounds in terms of M demonstrate 
that if such methods do not account for the frequency of the most 
frequent allele, certain loci will be undetectable even if they con‐
tribute to local adaptation: irrespective of the threshold chosen, 
there exist large M values for which the upper bound on FST lies 
below the threshold.

Some outlier studies of adaptation eliminate loci from consid‐
eration based on a cutoff such as M = 0.95 (Whitlock & Lotterhos, 
2015). Because the value of M above which associated FST values 
necessarily lie below a threshold Fthreshold depends on Fthreshold, 
depending on the threshold and the cutoff for M, filtering loci 
according to a cutoff for M could either eliminate loci for which 
FST outliers could potentially be detected or retain loci for which 
FST outliers could never be detected. Importantly, because of their 
similar behavior in relation to M, G′

ST
 and D would have the same 

limitation.
In this context, normalizing the differentiation statistic of inter‐

est by its maximum given M could produce a measure that does not 
have the limitation that some loci would be undetectable by outlier 
tests. However, because the variability of the statistic across loci 
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depends on M, such a normalization would inflate the variance of 
the statistic, potentially interfering with the ability of outlier tests 
to identify the loci of greatest interest. By contrast, methods that 
consider the joint distribution of differentiation statistics such as FST 
and other variables, such as heterozygosity statistics (Beaumont & 
Nichols, 1996), potentially avoid this concern.

The process by which we assess the position of FST, G′

ST
, and 

D values between their minimal and maximal values—computing 
the ratio of the values of each differentiation measure to a max‐
imum value given a variable (here M)—is similar to the derivation 
of standardized differentiation statistics (Hedrick, 1999, 2005; 
Meirmans, 2006). This result shows that we can perform other 
kinds of standardizations, by the maximum value of the statis‐
tics given M rather than by the maximum given HS. Our work re‐
fines the classification of differentiation statistics from Meirmans 
and Hedrick (2011), which included three classes—F statistics, 
standardized statistics such as G′

ST
, and D‐like statistics—making 

standardized statistics based on HS a subclass among a plethora 
of other possible standardizations, each of which would lead to 
specific behaviours. Because summary statistics unconstrained 
in relation to all potentially interesting aspects of allele frequen‐
cies probably do not exist, however, we caution that sequentially 
multiplying normalizations might not be the best approach to un‐
derstand genetic differentiation. Rather, plotting observations of 
a genetic differentiation statistic as a function of a variable of in‐
terest such as M, as in Figures 3–7, while highlighting the maximal 
values of the statistic, enables an enlightened interpretation. If a 
normalization is desired, performing a normalization of FST by its 
maximum value given M provides results similar to those obtained 
by normalizing G′

ST
, which is already normalized by its maximum 

value given HS.
We used normalization to show that taking into account the 

maximal values of the three statistics, they are similarly affected by 
migration. Under the island model of migration and considering a 
multiallelic locus with an infinite alleles mutation model, Whitlock 
(2011) and Alcala, Goudet, and Vuilleumier (2014) found that for a 
fixed value of the migration rate, unnormalized values of FST, G′

ST
, 

and D can be very different. We confirmed these results under the 
same migration model but using a biallelic infinite sites mutation 
model. Nevertheless, we showed that normalized statistics are strik‐
ingly similarly affected by migration. Finding such strong similarities 
rather than differences among the three statistics is a first step to 
reconcile their results, emphasizing that the different measures have 
more features in common than might be apparent from the existence 
of strong arguments in favour of one or another among them.
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APPENDIX A
The minimal values of G′

ST
 and D

In this appendix, we show that the only allelic configuration for 
which G�

ST
=0 is p1 = p2 = … = pK = M. This configuration is also the 

only configuration for which D = 0.
From Equation 7, G�

ST
=0 if and only if either K − 1 + HS = K − 1 − 

2S + 2M = 0 or K(S − M2) = 0. Because HS ≥ 0 and K > 1, 
K − 1 + HS ≥ K − 1 > 0. From Alcala and Rosenberg (2017, “Lower 
bound’’ subsection), K(S − M2) = 0 if and only if pk = M in all sub‐
populations k. Similarly, from Equation 8, D = 0 if and only if 
K(S − M2) = 0.

Consequently, p1 = p2 = … = pK = M is the only allele frequency 
vector that yields G�

ST
=0 and the only vector that yields D = 0; this 

configuration can be reached for all M ∊ [1/2, 1). Because from Alcala 
and Rosenberg (2017, “Lower bound’’ subsection), p1 = p2 = … = pK = M 
is also the only configuration that yields FST = 0, we can conclude 
that the minimal values of FST, G′

ST
, and D are the same and equal to 0 

irrespective of M, for any value of the number of subpopulations K.

APPENDIX B
G′

ST
 and D as functions of S

In this appendix, we show that both G′

ST
 (Equation 2) and D 

(Equation 3) are increasing functions of S= 1

K

∑K

k=1
p2
k
, with pk ∊ [0, 1] 

for all k.
We take the derivatives of Equations 7 and 8 with respect to S:

(B1)
dG�

ST

dS
=
K[1−2M(1−M)]− (1+2S−2M)2

(K−1)M(1−M)(1+2S−2M)2
,

(B2)
dD

dS
=

2K[1−2M(1−M)]

(K−1)(1+2S−2M)2
.

https://doi.org/10.1111/j.1365-294X.2009.04185.x
https://doi.org/10.1111/j.1365-294X.2009.04185.x
https://doi.org/10.1093/bioinformatics/18.2.337
https://doi.org/10.1093/bioinformatics/18.2.337
https://doi.org/10.1534/genetics.112.144758
https://doi.org/10.1111/j.1365-294X.2008.03887.x
https://doi.org/10.1111/j.1365-294X.2008.03887.x
https://doi.org/10.1353/hub.2003.0058
https://doi.org/10.1353/hub.2003.0058
https://doi.org/10.1093/molbev/mss187
https://doi.org/10.1093/molbev/mss187
https://doi.org/10.1016/0040-5809(70)90047-X
https://doi.org/10.1016/0040-5809(70)90047-X
https://doi.org/10.1554/05-631.1
https://doi.org/10.1111/j.1755-0998.2010.02927.x
https://doi.org/10.1073/pnas.70.12.3321
https://doi.org/10.1073/pnas.70.12.3321
https://doi.org/10.1111/j.1558-5646.1986.tb00516.x
https://doi.org/10.1016/j.tpb.2004.07.001
https://doi.org/10.1086/380416
https://doi.org/10.1086/380416
https://doi.org/10.1017/S0016672300029827
https://doi.org/10.1017/S0016672300029827
https://doi.org/10.1111/j.1558-5646.1993.tb01215.x
https://doi.org/10.1111/j.1558-5646.1993.tb01215.x
https://doi.org/10.1006/tpbi.1997.1355
https://doi.org/10.1006/tpbi.1997.1355
https://doi.org/10.1111/mec.13204
https://doi.org/10.1111/mec.13204
https://doi.org/10.1111/j.1365-294X.2010.04996.x
https://doi.org/10.1111/mec.13280
https://doi.org/10.1086/682949
https://doi.org/10.1111/mec.15000


1636  |     ALCALA and ROSENBERG

The denominator in Equation B1 is positive because 
1 + 2S − 2M = 1 − HS > 0 (using Equation 4). The sign of dG�

ST
∕dS is 

therefore determined by the sign of its numerator. Because from 
Equation 5, HT = 2M(1 − M), the numerator of Equation B1 is

From Hedrick (2005, p. 1634), HT ≤ (HS + K − 1)/K and hence 
1 − HT ≥ (1 − HS)/K, equality requiring that each allele be present 
only in a single subpopulation. Thus, K(1 − HT) ≥ 1 − HS. Because 
0 ≤ HS < 1, we also have HS(1 − HS) ≥ 0, equality requiring HS = 0. 
Consequently, Equation B3 is nonnegative, as is the numerator of 
dG�

ST
∕dS. We conclude that dG�

ST
∕dS is nonnegative, with equality 

possible only at the point S = M, and that G′

ST
 is an increasing function 

of S.
The denominator in Equation B2 is also positive, so the sign of 

dD/dS is determined by the sign of its numerator. The numerator 
equals 2K(1 − HT) and hence is positive, as 0 < HT < 1 for polymor‐
phic loci. Consequently, dD/dS is positive, and we conclude that D is 
an increasing function of S.

APPENDIX C
Upper bounds for the case of K = 2
In the case of K = 2, because 1/2 ≤ M < 1, ⌊KM⌋=1, and 
{KM}=KM−⌊KM⌋=2M−1. Equations 9–11 then simplify:

Denoting the upper bounds in Equations 9–11 by F*(M), G*(M), 
and D*(M), respectively, for the case of K = 2, Equations C1–C3 give

The denominator in Equations C4–C6 is positive in the permissi‐
ble range for M, as 4M2 − 6M + 3 has no real roots. We can then ob‐
serve that G*(M) ≥ F*(M) and G*(M) ≥ D*(M), with equality in both 
cases if and only if M = 1/2. We also have F*(M) < D*(M) for 
1/2 < M < 3/4, F*(M) > D*(M) for 3/4 < M < 1, and F*(M) = D*(M) for 
M = 1/2 and M = 3/4.

APPENDIX D
Normalized mean G′

ST
 and D

This appendix provides the formulas to compute the normalized 
means, ̄G�

ST
∕
̄G�

max
 and ̄D∕ ̄Dmax, used in Figures 5–7.

Given a set of Z loci, we denote by G′

z
, Dz, and Mz the values of G′

ST
, 

D, and M at locus z. The mean G′

ST
 and D for the set, denoted by ̄G′

ST
 

and ̄D, are

From Equations 10 and 11, the corresponding mean maximal 
values given the observed Mz at the Z loci are denoted by ̄G′

max
 and 

̄Dmax:

(B3)

K[1−2M(1−M)]− (1+2S−2M)2

=K(1−HT)− (1−HS)
2

=K(1−HT)− (1−HS)+HS(1−HS).

(C1)FST≤
1−M

M

(C2)GST≤
(1−M)(−4M2

+6M−1)

M(4M2−6M+3)

(C3)D≤
4(1−M)2

4M2−6M+3
.

(C4)G∗(M)−F∗(M)=
4(1−M)2(2M−1)

M(4M2−6M+3)

(C5)F∗(M)−D∗(M)=
(1−M)(2M−1)(4M−3)

M(4M2−6M+3)

(C6)G∗(M)−D∗(M)=
(1−M)(2M−1)

M(4M2−6M+3)
.

(D1)̄G�

ST
=
1

Z

Z∑

z=1

G�

z

(D2)̄D=
1

Z

Z∑

z=1

Dz.

(D3)
̄G�

max
=
1

Z

Z�

z=1

�
[K(K−1)+2{KMz}(1−{KMz})]

K(K−1)[K−2{KMz}(1−{KMz})]
×

(⌊KMz⌋+{KMz}
2
−KM2

z
)

Mz(1−Mz)

�

(D4)̄Dmax=
1

Z

Z�

z=1

2K
�
⌊KMz⌋+{KMz}

2
−KM2

z

�

(K−1)
�
K−2{KMz}(1−{KMz})

� .


