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Abstract

Air temperatures in the Arctic are increasing at twice the global rate, making permafrost regions
one of the most vulnerable ecosystems in a changing climate [Jorgenson et al., 2001]. Permafrost, or
ground that remains frozen for two or more consecutive years, covers 24% of the Northern Hemisphere
and contains 60% of the world’s soil carbon [Turetsky et al., 2019a]. Large stores of soil carbon are
bound in permafrost, predominantly as carbon dioxide (CO2) and methane (CH4); this bound soil
carbon is susceptible to rapid decomposition and release into the atmosphere after thaw [Natali et al.,
2019]. As air temperatures rise, permafrost regions experience i) seasonal thawing and freezing,
and ii) permanent thaw and loss of frozen ground. These processes modify ecosystems, change
land cover and surface hydrologic regimes, and release vast amounts of greenhouse gases into the
atmosphere. Due to the amount of permafrost soil carbon susceptible to release into the atmosphere,
there is a critical need to monitor permafrost status and vulnerability to change, as well as project
future behavior of the permafrost system. The vast spatial extent of permafrost regions and their
inaccessibility provides challenges to monitoring efforts. In situ methods of characterizing permafrost
processes are spatially sparse, restricting regional studies of permafrost thaw status, and introducing
uncertainties into climate models.

Remote-sensing techniques are an attractive method for characterizing and monitoring per-
mafrost systems on large scales. Interferometric Synthetic Aperture Radar (InSAR) is a geodetic
technique for measuring temporal variations of the surface of the Earth, in which repeated synthetic
aperture radar (SAR) images are acquired over a region of interest. These images are then inter-
ferometrically combined, and the resulting phase difference between SAR images quantifies surface
topography and deformation of the surface of the Earth. InSAR, with its fine spatial resolution
and broad coverage, presents an attractive method for regional characterization of permafrost thaw
status and active layer thickness at fine resolution. However, in permafrost regions, variations in
soil moisture, vegetation, snow cover, and phase changes of pore-bound water and ice all affect the
observed deformation and can amplify signal decorrelation. This decorrelation can complicate, and
in severe cases preclude, the estimation of surface deformation from InSAR phase observations.

In this dissertation, we use the InSAR technique to observe permafrost processes in the discontin-
uous permafrost zone, with a case study in the Izaviknek Highlands region of the Yukon-Kuskokwim
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delta in Southwestern Alaska. We measure both centimetric seasonal deformation of permafrost
associated with seasonal freeze/thaw processes, as well as long-term, interannual deformation as-
sociated with permafrost thaw and degradation. We find significant long-term deformation on the
order of centimeters per year associated with a complex of wildfire burns in this region, which we
relate to the age of wildfire events, and demonstrate that InSAR successfully captures permafrost
dynamics induced by wildfire decades after the original burn.

We also introduce a method of quantifying and removing decorrelation phase artifacts from In-
SAR observations by exploiting closure phase relations within a subset of SAR scenes. We show that
decorrelation phase biases on the order of tens of degrees can be successfully characterized and re-
moved from the original InSAR signal. Further, we investigate the impact of variable soil moisture on
closure phase observations using a new SAR interferometric imaging model that explicitly accounts
for signal decorrelation treating scattering surfaces as realizations of stochastic processes. Finally,
we construct an algorithm that combines the SAR interferometric imaging model introduced above
with direct closure phase observations to estimate changes in surface soil moisture state directly
from InSAR phase measurements.
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Chapter 1

Introduction

1.1 Problem Definition

Permafrost, which is ground that remains frozen for two or more consecutive years, covers ∼ 24% of
the landmass in the Northern Hemisphere. Despite amounting to only 15% of the global land surface,
permafrost soils contain ∼ 60% of the world’s soil carbon, with the majority of this carbon within
the first few meters of soil [Turetsky et al., 2019a]. Air temperatures in the Arctic are increasing at
twice the global rate; permafrost regions are thus both one of the fastest changing global ecosystems,
and one of the most affected by climate change [Jorgenson et al., 2001]. Furthermore, the vast
stores of bound soil carbon in permafrost soils, predominantly in the form of carbon dioxide (CO2)
and methane (CH4), are susceptible to rapid decomposition and release into the atmosphere as
permafrost soils thaw [Natali et al., 2019]. Permafrost regions have been referred to as the ‘sleeping
giant’ of the global climate and carbon systems by virtue of being one of the most at-risk regions to
changing climate, and having the potential to initiate a positive feedback loop in the global carbon
cycle [Turetsky et al., 2019b]. Despite their disproportionate sensitivity to warming temperatures
and their potential to accelerate climate change, the need for fine spatial resolution coupled with
the vast, inaccessible nature of most permafrost regions has caused them to be poorly monitored in
comparison to other fast-changing regions in the cryosphere (such as the Antarctic and Greenland
ice sheets). It is therefore important to monitor permafrost systems, characterize permafrost status,
processes, and vulnerability to change, and understand future behavior and state. Increasingly,
remote-sensing techniques are being successfully applied to study permafrost systems.

A key descriptor of permafrost soils is the thickness of the active layer – the region of the soil that
seasonally freezes and thaws. Active Layer thickness (ALT) varies considerably across permafrost
regions. InSAR’s fine spatial and temporal resolutions and sensitivity to cm-scale deformation signals
makes it an attractive technique for characterizing permafrost dynamics both locally and over broad
regions of interest. For example, Liu et al. [2012] and Schaefer et al. [2015] have successfully used
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CHAPTER 1. INTRODUCTION 2

InSAR to measure ground deformation due to seasonal freeze/thaw cycles in continuous permafrost
regions. Despite these successes, InSAR applications to date have been restricted to the continuous
permafrost zone. In this thesis, we extend the work first presented in [Liu et al., 2012] and use InSAR
to characterize and measure seasonal and interannual permafrost physical processes in the Yukon-
Kuskokwim river delta, within the discontinuous permafrost zone of Southwest Alaska. We observe
seasonal deformations on the order of 1 − 5 centimeters, corresponding to active layer thicknesses
ranging from 20 − 100 centimeters. Additionally, we present a novel estimate of the time-dependent
behavior of permafrost that has been previously affected by wildfire. We observe recovery rates on
the order of several millimeters a year of wildfire-affected permafrost soils, and estimate a recovery
time of ∼ 65 years required to return to pre-fire thermal equilibrium for both the seasonally freezing
and thawing active layer, as well as the permafrost column as a whole.

Estimating ALT requires assumptions or independent measurements of soil porosity, water sat-
uration fraction, and organic layer properties, all of which are variable across permafrost regions
and vary with surface geomorphology. These parameters dictate the amount of deformation that a
specific region of permafrost will experience due to the change in density of water associated with
freezing and thawing, and therefore must accurately reflect a region if a plausible value of ALT is
desired. Lack of knowledge of surface soil moisture and soil column saturation can be dominant
sources of error during estimation of ALT, complicating ALT retrieval in areas where soil moisture
properties are heterogeneous or not known. Microwave radar remote sensing is highly sensitive to
variations in dielectric permittivity (which is in turn related to water content and freeze/thaw state),
as well as physical surface scattering properties, such as vegetation type and extent, surface rough-
ness, surface water saturation, and snow cover. Consequently, the fidelity of InSAR measurements
over permafrost regions, as well as InSAR-derived estimates of ALT, is highly dependent upon the
soil moisture state of the surface, as well as the temporal stability of surface scattering phenomena
(i.e. the correlation of the surface) [Liu et al., 2012; Schaefer et al., 2015].

It is thus important to characterize the extent to which the effects of soil moisture state and the
phase component of surface decorrelation can be estimated directly from InSAR observations without
independent observations or ancillary data. We develop and present an algorithm that utilizes
multiple observations of interferometric phase triplets to estimate the decorrelation phase component
of the measured interferometric phase. This decorrelation phase term can then be removed to
increase the accuracy of the deformation estimate, and potentially be exploited to estimate surface
soil moisture state. After introducing this algorithm and providing a demonstration of its use, we
develop an interferometric SAR imaging model that explicitly incorporates the statistics of signal
decorrelation due to variable soil moisture state and stochastically rough scattering surfaces. Using
this model, we investigate the sensitivity of closure phase measurements to changes in soil moisture
state, and comment on the implications for both conventional InSAR applications in decorrelating
regions, as well as the potential for soil moisture estimation from InSAR measurements. Finally, we
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demonstrate a simple retrieval algorithm of soil moisture state from closure phase and decorrelation
phase observations, and comment on its implications for future monitoring efforts of permafrost
regions, as well as other regions subject to significant surface decorrelation.

1.2 Contributions

The contributions of this thesis are two-fold. The first focus of this thesis is to develop new methods
and identify applications for InSAR-based characterization of permafrost processes. Analysis of
InSAR data over discontinuous permafrost regions makes apparent that the largest sources of error
in ALT estimation from measured surface deformation were associated with uncertainties in soil
moisture. To that end, the second major focus of this thesis is to identify methods of reducing
this uncertainty. By exploiting multiple, overlapping combinations of InSAR closure phase triplets
– which are sensitive to soil moisture state and other sources of signal decorrelation – we develop
an algorithm to estimate and remove the component of interferometric phase associated with signal
decorrelation. Directly relating decorrelation phase and closure phase measurements to soil moisture
requires an interferometric SAR model that explicitly incorporates soil moisture. We develop a
modified version of the interferometric model described in De Zan et al. [2014] that explicitly
incorporates the statistics of stochastic scattering surfaces. Finally, we explore the potential of
directly estimating soil moisture from decorrelation phase and closure phase observations.

The main contributions of this thesis are summarized below:

1. We present an InSAR-based method of estimating active layer thickness and apply it over a
region of discontinuous permafrost in the Yukon-Kuskokwim delta in Southwest Alaska. We quantify
active layer thickness and compare InSAR-derived estimates of active layer thickness to independent
in-situ field measurements.

2. We demonstrate that long-term trends in permafrost seasonal deformation are related to time
since burn in wildfire burns scars in the YK delta. Using a ‘space for time’ analysis, we estimate
the long-term recovery behavior of wildfire-affected permafrost. We observe permafrost degradation
and active layer recovery rates on the order of a centimeter per year, corresponding to a recovery
time of ∼ 65 years to return to a pre-fire thermal equilibrium state.

3. We derive the relationship between decorrelation phase and closure phase, and propose an
algorithm for estimating decorrelation phase from a redundant network of closure phase observations.
We apply this algorithm to a set of ALOS data, measuring decorrelation phases as large as 45◦,
corresponding to errors in stacked InSAR deformation rates on the order of millimeters per year. In
many applications, these errors are comparable to observed uncertainties. By separating this error
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component from the signal of interest, it can be successfully removed. Further, if this error term is
associated with a systematic process, such as changing soil moisture, these error estimates can be
further studied as a secondary signal of interest.

4. We develop a A SAR interferometric model that explicitly considers both variable soil moisture
and the statistics of stochastically rough and time-varying surfaces. We compare several interfer-
ometric models and scattering distributions for soil moisture estimation from closure phase and
decorrelation phase. We demonstrate that the model developed in this thesis yields more physically
realistic changes in soil moisture than previously published interferometric models.

1.3 Thesis Roadmap

The following chapters in this dissertation are briefly summarized below:
Chapter 2 provides a brief scientific background on permafrost regions and processes, and con-

textualizes their importance within both regional and global climate models and studies. A brief
discussion of soil moisture, its importance as a hydrological and climatological variable, and methods
of its estimation via remote sensing techniques is also provided.

Chapter 3 provides a brief overview of radar imaging, Synthetic aperture radar (SAR), and In-
SAR, as well as the most salient features of InSAR time series analysis pertinent to this dissertation.
We define signal decorrelation, from which closure phase (and the physical reasons for phase nonclo-
sure) are also defined. Finally, we briefly discuss previous applications of InSAR to study permafrost
processes, and give a brief overview.

Chapter 4 is a case study in the Izaviknek Highlands of the Yukon-Kuskokwim (YK) Delta in
Southwestern Alaska. A region of subarctic discontinuous permafrost, the YK delta is characterized
by a variety of permafrost processes and thaw regimes. Further, it has experienced a series of
large wildfires since 1972, making it a natural laboratory to study the interaction between tundra
wildfire and permafrost thaw processes [Michaelides et al., 2019a]. We introduce a modification to
the conventional SBAS method of InSAR time series analysis, and then apply this to an ALOS-
PALSAR dataset to estimate the seasonal subsidence and active layer thickness over a region of
the Izaviknek Highlands. In addition, we quantify the interannual effects of wildfire on permafrost,
and the long-term recovery behavior of permafrost to wildfire. We compare remote sensing results
with in-situ ground-penetrating radar (GPR) and mechanical probing measurements. Finally, the
implications of this regional study for the arctic domain as a whole are briefly discussed.

In Chapter 5, we introduce an algorithm for estimating decorrelation phase from a network of
closure phase observations. This algorithm is motivated by a brief discussion of closure phase and
decorrelation phase, and the mathematical relationship between the two is derived. The algorithm
is described in detail, applied to a case study, and the results are interpreted.



CHAPTER 1. INTRODUCTION 5

We continue to address closure phase in Chapter 6, where we develop an interferometric SAR
imaging model which explicitly incorporates both the statistics of stochastically rough surfaces, and
volume scattering. This imaging model is shown to be consistent with the relationships between
signal decorrelation and closure phase introduced in Chapter 5. The impact of variable soil moisture
on this model, and in turn closure phase, is then discussed, and the potential for estimating soil
moisture from closure phase measurements is proposed. We then synthesize Chapters 5 and 6 by
proposing a simple algorithm for estimating variations in surface soil moisture. A series of InSAR
data over Kilauea is processed, and decorrelation phase is estimated from closure phase observations
using the algorithm introduced in Chapter 5. A simple inversion method for estimating soil moisture
from decorrelation phase using the imaging model proposed in Chapter 6 is introduced, and then
applied on the decorrelation phase estimates. The results are analyzed, and decorrelation due to
both variable soil moisture, and other time-dependent surface scattering properties, are discussed
within the context of conventional geodetic techniques.

Finally, we provide concluding remarks in Chapter 7, and briefly discuss potential areas of future
work.



Chapter 2

Scientific Background

This chapter provides a brief scientific background to the major contributions of this thesis. We
first define permafrost, contextualize its role within the context of a warming arctic, and briefly
review several techniques for quantifying permafrost physical processes and properties. As will be
discussed, soil moisture is a critical environmental parameter that can both influence permafrost
processes and complicate permafrost monitoring via radar remote sensing techniques. We provide
a brief overview of soil moisture, discuss its importance in the global water cycle and permafrost
regions, and mention several conventional radiometric methods of soil moisture estimation.

2.1 Permafrost

Permafrost is ground that remains at or below 0◦C for two or more consecutive years. Permafrost was
first defined in the English language in 1943 by Stanford University professor of Geology S.W. Muller
while advising the U.S. Army Corps of Engineers on the construction of the Alaskan Highway during
World War II ( [Muller, 1943]; for a general overview of permafrost and periglacial environments, see
[French, 2007]). Occurring over 24% of the northern hemisphere, permafrost regions are characterized
by frozen ground and the seasonal freezing and thawing of the uppermost soil column [Jorgenson
et al., 2001]. The spatial distribution of permafrost is predominantly controlled by climate, and to
a lesser degree site-specific thermal conductivity of the soil, vegetation and snow cover, topography,
surface and near-surface hydrology, and wildfire activity [French, 2007]. As climate and temperature
are the leading controls on permafrost distribution, there is a pronounced latitudinal dependence on
permafrost distribution. Continuous permafrost (underlying 90-100% of the landscape) is ubiquitous
throughout the Arctic Circle. With decreasing latitude, continuous permafrost transitions into
discontinuous permafrost (50-90% of the landscape), and finally sporadic permafrost (0-50% of the
landscape, see 2.1).

During the spring thaw period, rising surface temperatures cause pore space water to gradually
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Figure 2.1: Spatial distribution of permafrost extent in the Northern Hemisphere. (credit: Brown
et al. [1997]; International Permafrost Association).
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thaw from solid to liquid. Due to the ∼9% decrease in volume that pore water occupies between
its frozen and unfrozen state, this phase change of water causes the ground to subside due to the
effective decrease in pore water volume in a column of soil during thaw [Liu et al., 2012]. As the
spring season progresses through summer, extended periods of above-zero surface temperature cause
more and more of the subsurface pore water to thaw, thereby causing a greater amount of subsidence.
Eventually, a given region of permafrost will experience its maximum thaw during the thaw season;
this maximum thaw depth is the active layer thickness (ALT). In autumn and winter, this liquid
water freezes again, and the ground experiences uplift as the effective volume of the pore space in a
soil column increases. Thus, over a seasonal cycle, permafrost environments experience freeze/thaw-
associated cycles of subsidence and uplift. Variability of soil physical properties (porosity, water
saturation fraction, organic layer content) and surface physical properties (thermal insulation, snow
cover, vegetation cover, surface water cover, hillslope, shading, topography) all affect the seasonal
freezing and thawing of pore water, as well as any long-term changes in water content, excess ground
ice, soil compaction and subsidence, and surface cover [French, 2007; Jorgenson et al., 2001].

Figure 2.2: Cross-section depicting a massive ice wedge embedded within a typical stratigraphic
section of a mineral layer divided into ice-rich permafrost and ice-poor permafrost, and an active
layer characterized by high organic matter content (credit: Wayne Pollard).
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Permafrost seasonal thaw and secular degradation – particularly of ice-rich permafrost – can
have significant impacts on surface hydrology. Because the pore space is occupied by frozen water,
permafrost acts as an effective aquiclude, modifying surface drainage patterns and impeding hydro-
logical connectivity between surface water and subsurface aquifers. Lowlands and areas of increased
relative subsidence can experience surface water impoundment, while uplands and areas experienc-
ing relatively little subsidence (due perhaps to ecologically-driven thermal insulation) can experience
enhanced drainage [Woo, 1990]. Changes in surface hydrology can, in turn, further induce changes in
permafrost susceptibility to thaw, rates of degradation and accumulation of soil carbon [Schuur et al.,
2008], ecological regimes and wildfire susceptibility [Jorgenson and Osterkamp, 2005], and emission
rates of greenhouse gases such as carbon dioxide and methane [Turetsky et al., 2007]. The complex
interaction of these ecological and physical processes is further complicated by the spatially hetero-
geneous warming that the arctic and subarctic regions are undergoing [Shepherd, 2016; Callaghan
et al., 2010]. Permafrost regions can consequently be divided into a variety of zonal categories, such
as climate-driven, ecosystem-driven, and ecosystem-protected permafrost regions [Jorgenson et al.,
2010].

Air temperatures in high-latitude permafrost regions are increasing at twice the global rate,
which threatens the distribution and stability of permafrost regions worldwide [Jorgenson et al.,
2001; Osterkamp et al., 2009]. Large-scale thawing of permafrost can impact both local ecosystems
and hydrology, as well as the global climate system through the release of bound carbon dioxide
and methane, both of which can become volatile after the frozen ground it is contained within
thaws [Schuur et al., 2008; Turetsky et al., 2007]. Despite covering less than 9% of the world’s land
surface, permafrost soils contain between 25-50% of the world’s soil organic carbon content, making
permafrost regions simultaneously one of the largest, and most vulnerable, sources of carbon in the
global carbon cycle [Bockheim and Hinke, 2007]. There is necessarily great interest in characterizing
and monitoring permafrost status across the arctic and subarctic regions.

ALT is designated by the World Meteorological Organization (WMO) as an essential climate
variable for monitoring the status of permafrost. The standard way to measure ALT is to use a
metal probe or buried temperature sensors, resulting in an extremely sparse global in situ network,
with large, in some cases regional, spatial gaps. The current sparsity of global permafrost monitoring
activities – as well as the poorly understood interactions between climate, permafrost degradation,
surface hydrology, and CO2/methane release – generates uncertainty concerning the role and im-
portance of permafrost in the global climate system, carbon cycle, and water cycle, necessitating a
more complete understanding. A reliable remote sensing technique to measure ALT should allow for
effective global characterization and monitoring of permafrost status, which in turn could lead to a
more complete understanding of the interactions between the global climate system and permafrost
in the Arctic. Statistical regressions of in-situ field data with Hyperspectral NDVI, optical imagery,
and SAR imagery have been previously employed via upscaling techniques to generate extrapolated
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Figure 2.3: Depiction of different permafrost regimes. The transition from continuous through
discontinuous to sporadic permafrost occurs spatially, but can also occur temporally as permafrost
regimes evolve gradually through a warming climate (credit: National Geographic).
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maps of ALT [Gangodagamage et al., 2014; Widhalm et al., 2017]. Geophysical remote-sensing tech-
niques such as airborne electromagnetic imaging (AEM) and P-band airborne radar (AIRMOSS)
have been employed to map permafrost distribution at depth, near-surface moisture saturation, and
thermal state [Minsley et al., 2012; Tabatabaeenejad et al., 2015]. Finally, InSAR has been used to
directly measure surface deformation associated with permafrost freeze-thaw cycles and thermokarst
processes, from which ALT, as well as long-term variations in ALT, can be derived [Liu et al., 2012;
Schaefer et al., 2015].

2.2 Soil Moisture

Soil moisture is a critically important climatic, hydrological, and ecological variable [Decadal Survey,
2018]. Water stored in the soil and vegetation canopies accounts for less than 1% of the global
water volume [Bras, 1990]. Nonetheless, this small volume of water plays a disproportionate role
in the global water cycle, influencing groundwater recharge rates [National Research Council, 2004],
determining transpiration and evaporation rates of bare soil, and influencing the partitioning of
radiative heat fluxes between the atmosphere and ground surface [Brutsaert, 1982; Konings, 2015].
Soil moisture state can influence, and in turn is influenced by, local atmospheric weather patterns and
precipitation rates [Brutsaert, 1982; McColl et al., 2017; McColl et al., 2019]. The long memory of soil
moisture state can induce seasonal and interannual fluctuations on surface water, evapotranspiration
and plant health, precipitation, and radiative transfer [Konings, 2015; Konings et al., 2016; McColl
et al., 2017]. In permafrost environments, soil moisture state can play a dominant role in soil thermal
state, influencing permafrost thaw rates, methane and carbon dioxide emission rates, and initiating
land cover changes [Natali et al., 2015; Lawrence et al., 2015; Walvoord and Kurylyk, 2016].

Despite the importance of soil moisture and vegetation canopy water in an array of physical
processes, it remains difficult to obtain accurate, routine, and cost-effective estimates of soil mois-
ture over significant spatial scales and at necessary spatial resolution. This difficulty hinders the
widespread use of soil moisture products in hydrological, biogeochemical, and ecosystem modeling
efforts [Van Zyl and Kim, 2011]. Significant advances have been made to retrieve soil moisture
products using both passive and active radar remote sensing instruments [Ochsner et al., 2013].
The majority of soil moisture retrievals rely on passive radiometric measurements, which depend
directly on the conductivity of the soil. However, passive radiometry suffers from a coarse spatial
resolution in comparison to active radar imaging techniques such as InSAR. The development of
robust soil moisture retrieval algorithms using active synthetic aperture radar (SAR) data is moti-
vated in large part by the coarse spatial resolution of passive radiometric observations and the high
degree of lateral spatial variability of soil moisture [Famiglietti et al., 2008]. NASA’s Soil Moisture
Active Passive (SMAP) mission was a major effort in this direction, combining passive radiometry
and an active radar system to interpolate within the larger radiometer’s resolution cell to a finer
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resolution [Entekhabi et al., 2010]. Unfortunately, a failure in the active radar system limited the
resolution of the SMAP mission to the basic passive radiometric footprint.

Soil moisture retrievals from active radar measurements commonly rely upon the dependence
of the backscatter coefficient σ0 upon the dielectric permittivity (and thus soil moisture) of the
soil. However, backscatter is also dependent upon surface roughness, the correlation length of the
surface, vegetation, and the viewing geometry of the satellite, complicating the separation of these
various components from a single backscatter observation [Van Zyl and Kim, 2011]. Soil moisture
measurement from single frequency single polarimetric observations have historically relied upon
simple empirical relationships [Dobson and Ulaby, 1986; Schneider and Oppelt, 1998]. The use of
dual and quadruple polarimetric SAR datasets allows for the separation of surface roughness and
soil moisture contributions to SAR backscatter [Dubois et al., 1995; Shi et al., 1997; Oh et al., 1992].
Similarly, the use of overlapping, contemporaneous multifrequency, SAR datasets has shown promise
in isolating the soil moisture component of the SAR backscatter [Entekhabi et al., 1994; Bindlish
and Barros, 2000].

It is well documented that soil moisture impacts the amplitude of active radar data, and while its
impact on phase measurements has been noted [Nolan and Fatland, 2003; Nolan et al., 2003; Barrett
et al., 2013], few studies have addressed developing soil moisture retrieval algorithms exploiting
phase measurements. Most previous phase-based studies were either laboratory measurements under
controlled conditions, or observations of InSAR phase fluctuations that coincided with terrains known
or suspected to be of time-variable soil moisture. Still lacking is a complete imaging model that
relates soil moisture to SAR amplitude and phase; such a model could allow for widespread retrieval
of soil moisture from InSAR measurements.

In 2014 De Zan et al. formulated an interferometric model that explicitly accounts for variations
in surface dielectric permittivity associated with changes in soil moisture (see Figure 2.4). This
model provided a physically rigorous model that reproduced many of the observations from previous
investigations of soil moisture and interferometric phase. Interestingly, this model further predicts
nonzero phase closure when soil moisture variations are considered [De Zan et al., 2014; Zwieback
et al., 2015b; De Zan and Gomba, 2018].

Conventionally, phase and amplitude information have often been considered separately (and
singularly) in most SAR-based environmental parameter retrievals. Phase closure has only been
experimentally observed in recent years; a complete statistical and physical understanding of its
nature is lacking, and its potential for novel soil moisture and vegetation retrieval algorithms has
not been fully explored.
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Figure 2.4: Top: Interferometric phase as a function of soil moisture according to the De Zan model.
Bottom: Real (solid line) and imaginary (dotted line) components of the dielectric permittivity of
soil as a function of the soil moisture state, according to the Hallikainen mixing model (adapted
from De Zan et al. [2014]).



Chapter 3

InSAR Background

3.1 Radar

Radar, which is an acronym for ‘radio detection and ranging’, is a remote sensing technique re-
liant on the transmission, reflection, and detection of radio frequency (RF) electromagnetic energy.
Canonically, a radar measures the two-way travel time of a transmitted pulse between the radar
antenna and the reflecting target of interest. Since the launch of SEASAT in 1978, a variety of radar
instruments have been employed on satellite missions for imaging and remote sensing of the Earth
and other planetary bodies. Because radar is an active-source technique, radar imaging does not
require daytime operating conditions like conventional optical sensors. Furthermore, because the
atmosphere exhibits little attenuation at RF frequencies, radar imaging can penetrate cloud cover,
precipitation, and other atmospheric phenomena which can severely impact other remote sensing
methods.

3.2 Radar Imaging

Most satellite imaging radars are coherent and operate with a pulsed transmission architecture,
with center frequencies typically in the range of MHz (106) to THz (1012), yielding a sensitivity to
scatterers on the order of centimeters to meters. Figure 3.1 illustrates the viewing geometry of a
typical spaceborne radar imager. The radar is mounted on an orbiting satellite with an altitude
h and an along-track (or azimuthal) velocity v. A sidelooking radar antenna emits a sequence of
pulses which propagate along the line of sight (LOS) direction, ultimately illuminating a region of
the Earth’s surface referred to as the swath or radar footprint. The radar antenna receives reflections
(echoes) from scatterers illuminated within the radar swath. The arrival time of each echo depends
upon the position of the scatterer within the footprint in the along-track (azimuth) direction and
the across-track (range) direction. The arrival time is therefore proportional to the total distance
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Figure 3.1: Geometry of a typical spaceborne radar imaging system. The radar instrument (repre-
sented by the antenna) is mounted on a satellite with an altitude h orbiting the Earth with a velocity
v. The line of sight (LOS) direction is defined as the vector between the radar antenna and the illu-
minated ground swath. The azimuth direction is defined parallel to the along-track direction of the
satellite motion, while the range direction is defined to be perpendicular to the azimuth direction.

from the scatterer to the radar antenna.
The received power Pr of a sidelooking radar imager can be expressed, using the radar equation,

as:

Pr = PtGtArAscatσ

(4πR2)2 (3.1)

where Pt is the transmitted power, Gt is the antenna gain, Ar is the area of the antenna, Ascat is the
effective scattering area of the reflecting target, σ is the normalized radar cross-section of the target,
and R is the range from the transmitting antenna to the target. For the remainder of this thesis we
shall implicitly assume a monostatic imaging geometry, whereby the same physical antenna is used
for both transmission and reception.

The total received signal is a summation of all of the reflected transmitted echoes from individ-
ual scatterers within the illuminated ground swath, each time-delayed accordingly. The particular
scattering properties of each scatterer – such as physical size, shape, material composition, and sur-
face roughness – can in turn modulate the amplitude and phase of its associated reflection. Signal
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processing methods are used to discriminate between different scatterers and form radar images.
The two most common figures of merit used to characterize radars and their associated images

are the signal-to-noise ratio (SNR) and resolution of the radar. Beyond merely increasing the peak
power transmitted by a radar, the SNR can also be increased by lengthening the pulse length of the
radar. The range resolution of the radar, however, is linearly proportional to the pulse length. This
fundamental, and seemingly unavoidable trade-off between SNR and resolution, can be remedied by
optimally discriminating between the radar echo and the background noise source. This process,
called matched filtering, correlates the received signal with the transmitted signal, and compresses
the radar energy into an effectively shorter pulse. In this way, a fine range resolution can be achieved
alongside a high SNR. After matched filtering, the range resolution δr of the radar is:

δr = cτ

2 = c

2BW
(3.2)

where c is the speed of light, τ is the transmitted pulse length, and BW is the bandwidth of the
transmitted signal. A finite signal bandwidth is achieved through pulse modulation, most commonly
frequency modulation (chirping).

For a real aperture radar (RAR), the azimuth resolution δaz is determined by the angular
beamwidth Θaz of the antenna:

Θaz = λ

L
(3.3)

which is in turn determined by the size of the antenna L, and the center-frequency wavelength λ

(typical imaging radars have fractional bandwidths of a few percent at most, making the monochro-
matic assumption valid). A typical L-band (λ = 24 cm) or C-band (λ = 5 cm) spaceborne imaging
radar with a 10 m antenna and an operational altitude of 800 km would have an angular beamwidth
of 19 km (L-band) or 8 km (C-band), which is much too coarse for practical applications.

3.3 Synthetic Aperture Radar

The coarse azimuth resolution limitation of RAR can be overcome through synthetic aperture radar
(SAR) processing. The key principle behind SAR processing is the coherent exploitation of the
Doppler phenomenon. Because of the motion of the SAR platform in the range direction, the range
r(t), and hence the phase φ(t), from the SAR antenna to any point on the ground at time t is given
by:
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φ(t) = −4π

λ
r(t) = −4π

λ

√
r2

0 + (vt)2 (3.4)

where r0 is the range from the antenna to the target at closest approach, and v is the velocity of
the SAR platform. The factor of 4 in the numerator of Equation 3.4 is due to the two-way travel of
the radar pulse. This phase history has an associated Doppler frequency fD:

fD = 1
2π

∂φ

∂t
= 2v · u

λ
(3.5)

where v · u is the dot product of the SAR platform’s velocity vector and the line of sight (LOS)
vector from the platform to the scatterer. Defining an xyz coordinate system with x parallel to the
azimuth direction, Equation 3.5 can be simplified to:

fD = 2vx

λR
(3.6)

where x is the position in the x̂ (i.e. azimuth) direction, and R is the range from the SAR platform
to the scatterer (i.e. R =

√
x2 + y2 + z2). From Equation 3.6, it is evident that SAR processing

can resolve position in azimuth as a function of the Doppler frequency:

x = fDλR

2v
(3.7)

The phase history of the ground scatterer in azimuth produces a chirp function analogous to
the chirp used in range compression. By applying an azimuth matched filter, SAR data can be
compressed in azimuth. Conceptually, the responses from any given ground scatterer can be coher-
ently integrated together over multiple radar pulses (within which the returns from the scatterer
of interest occur at different positions and therefore Doppler frequencies). This yields an effective
synthetic aperture size much larger than the physical size of the array, and a correspondingly narrow
synthetic beamwidth. Azimuth matched filtering can improve the azimuth resolution to:

δaz = L

2 (3.8)

Surprisingly, the azimuth resolution is not limited by the physical dimensions of the antenna;
in fact, smaller antennas correspond to finer azimuth resolutions. Conceptually, a smaller physical
antenna will result in a larger physical beamwidth; any given ground scatterer will therefore be
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illuminated by more radar pulses, allowing the azimuth matched filter to coherently integrate more
observations of any given scatterer.

After range and azimuth compression, each pixel in a radar image is a complex-valued scalar
which represents the convolution of the radar’s impulse response with the distribution function of
scatterers contained within the corresponding ground resolution element.

ω ω ω

F[ω]F[ω]F[ω]

Azimuth

R
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ge

Figure 3.2: SAR processing utilizes the Doppler effect to achieve finer resolution in the azimuth
direction. Motion of the SAR system in the positive azimuth direction results in an apparent
motion of illuminated ground targets (red star) in the negative azimuth direction. A given scatterer
will have an associated Doppler frequency (spectrally represented at bottom) that depends upon
the position of the scatterer within the SAR swath. This unique mapping of Doppler frequency to
azimuth position can be exploited to achieve finer azimuth resolution.

3.4 Interferometric Synthetic Aperture Radar

Repeat-pass Interferometric synthetic aperture radar (InSAR) is a technique used for determining
the phase difference between spatially overlapping (coregistered) SAR images acquired at different
times [Goldstein and Zebker, 1987; Goldstein et al., 1988; Massonnet et al., 1993; Rosen et al.,
2000]. InSAR phase differences are more commonly used to characterize surface topography and/or
deformation of the ground surface, although in principle, differences in phase can be attributed to a
range of physical processes and phenomena.

The primary interferometric observable is the complex correlation:
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Figure 3.3: Illustration of the improvement in resolution provided by SAR processing within the
radar swath. Left: Range compression results in a finer resolution in range. Center: Azimuth
compression results in a finer resolution in azimuth. Right: The combination of range and azimuth
compression in SAR processing yields finer resolution in both azimuth and range within the radar
swath.

Lp
Ls

Figure 3.4: Left: Formation of a synthetic aperture of length Ls yields a finer azimuth resolution
than is achievable by the physical antenna length Lp. Right: The smaller green physical antenna
yields a larger radar beamwidth (and therefore swath size) than the larger antenna (black).
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γ̂ = 〈s1s∗
2〉√〈s1s∗

1〉√〈s2s∗
2〉 (3.9)

where γ̂ is the estimated complex-valued correlation, s1 and s2 are two SAR images acquired at
different times, 〈·〉 is an ensemble averaging operator, and q∗ is the complex conjugate of q. The
complex correlation must be statistically estimated, hence SAR images are usually assumed spatially
ergodic over a local neighborhood, and locally neighboring pixels are averaged together (in InSAR
parlance, the image is ‘multilooked’) to estimate the complex correlation (at the expense of spatial
resolution). The interferometric phase φ = � γ̂ and the correlation γ = |γ̂| are, in turn, determined
by the complex correlation.

t2
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Δφ
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Α

Figure 3.5: Illustration of the InSAR geometry. At time t1 the SAR antenna illuminates a ground
resolution element A on the ground surface (black). The range from the SAR antenna to the ground
resolution element is contained within the phase of the measurement φ1. At time t2 the ground
surface has deformed, experiencing a translation in the LOS direction. The SAR antenna illuminates
the same ground resolution element A’ on the ground surface (green). The range from the SAR
antenna to the ground resolution element is contained within the phase of the measurement φ2. The
difference in phase between the two measurements, Δφ, is proportional to the LOS deformation that
occurs between times t1 and t2.

Assuming that both: 1) the topography of a region of interest is known, such as through a digital
elevation model (DEM), and 2): the orbital and viewing geometry of the satellite is known, such
that the relative position of the SAR platform between both image acquisitions is determined, then
a pixel-wise difference in phase between two image acquisitions can be related to a LOS motion
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Symbol Name Structure
φdefo Deformation Phase Spatially/Temporally Correlated
φtopo Topographic Phase Deterministic
φatmo Atmospheric Phase Spatially Correlated
φsys Orbital/DEM Errors Systematic
φn Thermal Noise Random

φdecor Decorrelation Phase Can be Spatially/Temporally Correlated

Table 3.1: Interferometric Phase Terms

of the associated ground resolution element between image acquisitions (see Figure 3.5). At time
t1 a SAR system measures the phase φ1 to a ground resolution element A, corresponding to the
LOS range between the SAR antenna and the ground resolution element. At time t2 the SAR
platform makes another measurement of the phase φ2 to the same ground resolution element A’,
which has now experienced a translation Δr in the LOS direction. If the surface topography and
the orbital viewing geometry are both known, then the components of interferometric phase due
to the surface topography and the viewing geometry can be removed, and the resulting unwrapped
differential interferometric phase Δφ will be proportional to the LOS translation of the ground
resolution element:

Δφ = φ2 − φ1 = −4π

λ
Δr (3.10)

As we shall see below, Equation 3.10 implicitly assumes both a lack of error in the InSAR phase
measurement, and neglects other sources of phase (i.e. other phase terms).

3.5 Interferometric Phase Terms

The presence of additional phase terms, which can be due to an array of physical processes, can
complicate the retrieval of precise deformation-related phase terms from InSAR observations. Here
we briefly describe the major sources of interferometric phase (see Table 3.1). Equation 3.10 can be
more generally expressed as:

Δφ = φdefo + φtopo + φatmo + φsys + φdecor + φn (3.11)

where Δφ is the measured interferometric phase, φdefo is the interferometric phase change associated
with surface of interest (commonly the signal of interest), and all other phase terms are errors, briefly
described below.
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3.5.1 Deformation Phase φdefo

This is most often the phase signal of interest, and corresponds to a scalar translation of the resolution
element in the radar line of sight direction. Deformation phase tends to be both spatially and
temporally correlated, although this is highly dependent upon the specific signal of interest. The
magnitude of the deformation signal in comparison to other error terms is also highly variable; in
the case of coseismic deformation, it is often the largest phase term, while in slow slip applications,
it can be dwarfed by atmospheric noise [Chen et al., 2017a].

3.5.2 Topographic Phase φtopo

Traditional Range-Doppler SAR processing nominally assumes a planar surface, so any topographic
variation over a region of interest will generate phase errors proportional to the topography. Because
this is a deterministic process, prior topographic information, such as a DEM, can be used to
characterize and remove topographic phase.

3.5.3 Atmospheric Phase φatmo

Temporal variations in the signal propagation delay of the atmosphere – usually due to changes
in the tropospheric water content between image acquisitions – can induce phase terms in the
order of fractional wavelengths. Tropospheric delay is non-dispersive, making it difficult to estimate
and mitigate from InSAR measurements. Atmospheric phase is spatially correlated, and often
correlated with topography, though is usually temporally uncorrelated. Atmospheric noise can
be removed with global atmospheric reanalysis datasets [Jolivet et al., 2014], or spatial filtering
[Hanssen, 2001; Lohman and Simons, 2005]. The most common filtering techniques include averaging
redundant observations (‘stacking’) [Chen et al., 2017b], empirically estimating the statistics of
atmospheric noise under a power law assumption [Lohman and Simons, 2005], and empirically
removing atmospheric delay under a purely horizontally stratified assumption [Taylor and Peltzer,
2006].

Variations in total electron count (TEC) of the upper ionosphere can also generate phase terms
that superficially resemble atmospheric noise. However, the two-way integrated phase shift is pro-
portional to TEC and the square of the frequency. Because ionospheric phase is dispersive, it
can be empirically estimated and removed, most commonly using range split-spectrum processing
methods [Fattahi and Amelung, 2015].

3.5.4 Orbital/DEM Errors φsys

Imperfect knowledge of a SAR platform’s orbital geometry can generate phase terms that are unre-
lated to geophysical properties of interest. Orbital phase errors often manifest as long-wavelength
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Figure 3.6: Scattering mechanism model, with scattering mechanisms (Top) and their associated
phase PDFs (Bottom): Left, distributed scatterer: no dominant scatterer results in a uniform-like
phase distribution. Center, dominant scatterer: a dominant scatterer results in a normal-like phase
distribution. Right, single scatterer: a single scatterer results in a Dirac-like phase distribution.

phase ramps, and are therefore highly spatially correlated. These phase ramps can often be em-
pirically removed, although if the deformation signal is of the same spatial scale, they can often
be aliased together. The tight orbital tube control of modern SAR satellites like the Sentinel-1A
satellite greatly minimizes the severity of orbital errors. Residual errors in the DEM used to remove
topographic phase can result in residual DEM errors. DEM errors tend to be small features, and
are often separable from broad geophysical signals.

3.5.5 Thermal Noise φn

Thermal noise is usually modeled as a white Gaussian noise process that contributes a random phase
term.

3.5.6 Decorrelation Phase φdecor

Interferometry requires coherence between two radar signals. Signal decorrelation, however, is com-
mon, and can limit the precision and accuracy of interferometric measurements. Signal decorrelation
is caused by temporal variations in the dielectric properties and/or statistical scattering characteris-
tics of a resolved surface between radar signal acquisitions [Zebker and Villasenor, 1992]. Variations
in soil moisture, bound moisture in the vegetation canopy, vegetation growth, and relative move-
ments of sub-resolution scatterers can all cause signal decorrelation, and generate a decorrelation
phase term independent of the deformation phase term.

As shown in Equation 3.9, the complex correlation, and therefore the interferometric phase, must
be statistically estimated. Signal decorrelation can be due to both stochastic, random fluctuations,
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and systematic temporal variations [Zebker and Villasenor, 1992]. Stochastic decorrelation can
most commonly arise from a lack of spatial ergodicity of the SAR signal, and from distributed
scattering [Shanker et al., 2011; Agram, 2010; Agram and Simons, 2015].

Signal decorrelation due to distributed scattering is conceptually illustrated in Figure 3.6. In a
perfectly distributed scattering regime, SAR backscatter is comprised of the coherent summation
of scatter from many random sub-resolution scattering elements (graphically represented by bent
arrows). The interferometric phase of a collection of random scatterers will be uniformly distributed
between −π and π (the PDF of phase is graphically represented by the blue rectangle). In a dominant
scattering regime, a single scattering element will dominate the backscatter return; the PDF of phase
will be centered around a mean value, and will be increasingly peaked as the dominant scatterer
becomes more and more dominant [Just and Bamler, 1994; Shanker and Zebker, 2007]. In the limit
where backscatter arises from a single scatterer, the phase PDF will be a deterministic, Dirac delta
function. The degree to which scattering is distributed rather than dominated by a single scatterer
(such as a corner reflector) will dictate the degree to which stochastic decorrelation may degrade the
interferometric signal. Similarly, spatial averaging of a non-ergodic signal can introduce stochastic
decorrelation, as the pixels averaged together will exhibit different phase statistics.

In contrast to stochastic decorrelation phase, systematic decorrelation phase can arise from sys-
tematic temporal changes in the surface scattering properties of a resolution element. A change
in the dielectric permittivity of the surface or vegetation canopy can introduce a systematic phase
signal which leads to signal decorrelation [De Zan et al., 2014]. Similarly, correlated motions of
sub-resolution scattering elements,such as the growth of crops between image acquisitions, can in-
troduce a systematic phase signal that is unrelated to the bulk ensemble deformation of the resolution
element [De Zan et al., 2015].

Systematic decorrelation signals are commonly neglected in InSAR studies, and decorrelation is
assumed to be purely stochastic. As a result, it is often treated jointly with thermal noise as a single
error term. However, stochastic and systematic decorrelation can be considered independently, as
will be discussed in Chapters 5, 6, and 7.

3.6 Time Series Analysis

The Small BAseline Subset (SBAS) algorithm is a method for characterizing the temporal evolution
of the ground deformation of a surface of interest using a network of InSAR observations [Berardino
et al., 2002]. The SBAS algorithm utilizes multiple combinations (i.e. subsets) of the total population
of interferograms over an area of interest; these subsets are usually chosen such that the interferogram
pairs in each subset have small orbital and temporal baselines, such that spatial and temporal
decorrelation are minimized. A singular value decomposition (SVD) is then applied to solve for the
best-fitting time series of deformation from the various subsets of interferograms.
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Consider a collection of N coregistered SAR images over a region of interest, where the ith image
is acquired at time ti. The total number of interferograms M that can be formed from this collection
of N scenes will satisfy the following inequality:

N

2 ≤ M ≤ N(N − 1)
2 (3.12)

where M will ultimately be determined based upon the thresholds of spatial and temporal baseline
chosen for forming the subsets used during the inversion. Now consider a particular pixel within
the collection of interferograms, noting that the following equations apply to the image at-large.
Assuming that all interferograms have been unwrapped, the topographic phase component removed,
and all other error terms are negligible, this pixel has a corresponding M x 1 vector of unwrapped
interferometric phase values corresponding to the M interferograms:

ΔφT = [Δφ1, Δφ2, ..., ΔφM ] (3.13)

where the mth interferometric phase is related to the LOS change in deformation between the ith

and jth SAR images used to form the interferogram:

Δφm = φj − φi ≈ −4π

λ
(dj − di) (3.14)

where λ is the radar wavelength, and di is the LOS deformation from the SAR platform to the pixel
of interest in the ith SAR scene, referenced relative to time t0. We can construct a linear system of
M equations with N-1 unknowns of the form of 3.14:

Aφ = Δφ (3.15)

where A is an incidence-like M x N-1 matrix, φT is an N-1 x 1 vector of unknown phase values
referenced to the t0 scene, and ΔφT is an M x 1 vector of known interferometric phase values.

The vector of unknown phase values φT can be approximated as:

φ = A−gΔφ (3.16)

where A−g is the generalized inverse of the matrix A. The matrix A can be decomposed using the
singular value decomposition as follows:
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A = UΣW T (3.17)

where if rank(A) = r, U is a collection of the r left singular vectors of A, W are the r right
singular vectors of A, and Σ = diag(σ1, ..., σr) is a diagonal matrix of the r singular values of A.
The Moore-Penrose pseudo-inverse A† can then be chosen for A−g, where:

A† = WΣ−1UT (3.18)

The minimum norm constraint of the SVD method can often lead to large, physically unrealistic
discontinuities in deformation time series; for this reason Equation 3.14 is often modified by changing
the vector of unknown phase values to the mean phase velocities between time-adjacent SAR scenes:

Bv = Δφ (3.19)

where the vector of phase velocities is:

vT = [v1 = φ1
t1 − t0

, ..., vN = φN − φN−1
tN − tN−1

] (3.20)

Based upon the application, signal of interest, and assumed deformation model, Equations 3.15
and 3.19 can be modified accordingly. The modifications made for applications in permafrost areas
are described below.

3.6.1 ReSALT Model

The ReSALT (Remotely Sensed Active Layer Thickness) algorithm measures ground deformation
due to seasonal freeze/thaw cycles, and then inverts this deformation signature for an estimate of the
seasonal active layer thickness [Liu et al., 2012; Schaefer et al., 2015]. Using the ReSALT method,
an analytical expression for seasonal subsidence is derived from a model of frozen soil expansion. As
the active layer thaws, ice in the soil undergoes a phase change to liquid water, decreasing in volume
and causing the ground to subside. Conversely, when the soil freezes in autumn and early winter,
water in the soil changes to ice and the ground heaves. When the active layer freezes completely in
mid-winter, the heave stops. This subsidence model assumes that the entire active layer is frozen at
the beginning of the thaw season, and the active layer thaws continuously from the top downward as
the thaw season progresses. As the active layer thaws, pore-bound frozen water undergoes a phase
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dδ

dh
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Figure 3.7: Depiction of the seasonal deformation model first developed in Liu et al. [2012]. At
the onset of thaw (left), above-freezing conditions (represented by ADDT) induce a phase change of
pore-bound water from solid to liquid. The 9% difference in density between solid and liquid water
results in a reduction of the pore space occupied by water, and a subsidence of the soil column.
A given change dh in the thaw depth of the soil column results in a corresponding subsidence dδ
(middle). The maximum seasonal subsidence D corresponds to the maximum seasonal thaw depth,
or active layer thickness ALT (right).

change to liquid, decreasing its total effective volume by approximately 9%, and causing the ground
to subside as a result. Assuming that surface subsidence is solely due to the phase change of solid
to liquid water, we can express the incremental thawing of the active layer as:

dδ = PS
(ρw − ρi)

ρi
dh (3.21)

where dδ is the incremental change in surface subsidence [m], P is soil porosity [m3 m−3], S is soil
moisture fraction of saturation [-], ρw is the density of water [kg m−3], ρi is the density of ice [kg
m−3] and dh is the incremental thickness of thawed soil column [m]. Integrating Equation 3.21 over
the definite interval of the active layer will yield the total ground subsidence E expected for an
active layer of a given thickness ALT :

E =
∫ δ

0
dδ =

∫ ALT

0
PS

(ρw − ρi)
ρi

dh (3.22)

where porosity and saturation can be implicit functions of depth.
The ReSALT technique models total measured deformation as a linear combination of elastic

subsidence/uplift due to the seasonal thawing and freezing of pore space water, and inelastic sub-
sidence caused by interannual, long-term changes in ALT and thermokarst subsidence [Liu et al.,
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2012], (see (Figure 3.8)). Total seasonal deformation is modeled as a function of the square root of
the normalized annual degree days of thaw (ADDT). The square root of ADDT has been previously
shown to be related to the amount of permafrost subsidence as a consequence of the thermal diffusion
equation (as in Stefan’s equation; [Harlan and Nixon, 1978]).

Dseasonal = E
√

ADDT (3.23)

where Dseasonal is the seasonal deformation [m], ADDT is the normalized accumulated degree days
of thaw [ ◦C− 1

2 days− 1
2 ], and E is the seasonal coefficient [m ◦C− 1

2 days− 1
2 ].

The long-term, interannual deformation is modeled as linear with time, i.e.:

Dlong−term = R(t2 − t1) (3.24)

where (t2 − t1) is the temporal separation of the two SAR scenes used to generate an interfero-
gram, and R is the long-term subsidence rate [ m

years ]. The total deformation D therefore is a linear
combination of the seasonal and long-term deformation signatures:

D = Dseasonal + Dlong−term = E(
√

ADDT2 −
√

ADDT1) + R(t2 − t1) (3.25)

Seasonal Subsidence

Interannual Deformation

Figure 3.8: Deformation is decomposed into seasonal subsidence (E; Equation 3.22) due to seasonal
freezing/thawing of the active layer, and long-term trends in subsidence (R; Equation 3.24) due to
thinning of permafrost or thermokarst.

Using the ReSALT algorithm results in a modified form of Equation 3.19. Through a system
of linear equations, interferometric phase dφ is proportional to seasonal subsidence E, long-term
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subsidence rate R and εtopo, a topographic error term that accounts for errors in the digital elevation
model [Liu et al., 2014]. This equation can be expressed in matrix form as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δφ1

.

.

.

δφN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t2,1 − t1,1
√

ADDT2,1 − √
ADDT1,1 Bperp,1

... ... ...

... ... ...

... ... ...

t2,N − t1,N

√
ADDT2,N − √

ADDT1,N Bperp,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

R

E

εtopo

⎤
⎥⎥⎦ (3.26)

where δφi terms are InSAR measurements of surface deformation [m] for the ith interferogram,
t2,i − t1,i are the differences in time between any two scenes used to generate the ith interferogram,√

ADDT2,i − √
ADDT1,i are the differences in the square root of the accumulated degree days of

thaw between the two scenes used to generate the ith interferogram, and Bperp is the spatial baseline
of the ith interferogram. These deformation components represent, respectively, long-term trends
in subsidence (R [m yr−1], deformation associated with the seasonal freezing/thawing of the active
layer (E [m]), and an error term associated with errors in the digital elevation model used (εtopo).

3.6.2 ReSALT Model Sensitivity to Soil Moisture

Gaussian error propagation of the ReSALT model demonstrates that total uncertainties in retrieved
active layer thickness are dominated by uncertainties in three input parameters: 1) the measured
subsidence; 2) the total soil carbon content (which partially determines the vertical porosity distri-
bution); and 3) the soil moisture saturation fraction. Deformation uncertainty accounts for ∼ 80% of
total ALT uncertainty. Consequently, the fidelity of retrieved ALT depends heavily on the deforma-
tion estimate. However, soil carbon content and saturation account for ∼ 19% of ALT uncertainties,
which represents a large sensitivity to assumed model parameters (i.e. not uncertainties of direct
observables) [Liu et al., 2012].

We can approximate the adjoint of the model (i.e. its sensitivity with respect to saturation) by
re-expressing Equation 3.21:

dh = ρi

(ρw − ρi)
1

PS
dδ (3.27)

where an incremental deformation dδ is proportional to an incremental thawing of the active layer
dh by 1

S . The adjoint, ∂H
∂S , is therefore proportional to the square of the saturation fraction:

∂H

∂S
∝ S−2 (3.28)
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As the saturation fraction itself decreases, the ReSALT retrieval algorithm increasingly becomes
more sensitive to uncertainties in saturation fraction. In highly saturated environments (S ≈ 1)
such as the Alaskan North Slope or the Yukon-Kuskokwim river delta, ALT uncertainties due to
incorrectly assumed saturation fraction are relatively modest, and dwarfed by observational un-
certainty (InSAR deformation uncertainties). However, even with a saturation fraction as high as
S = 0.84, algorithm uncertainty due to soil moisture becomes comparable to observational uncer-
tainty. Applying the ReSALT algorithm in regions where low saturation fractions can be common
– such as sporadic permafrost regions or inland, non-river delta discontinuous permafrost regions –
would benefit greatly from independent estimates of saturation fraction or soil moisture state. Im-
portantly, radar remote sensing measurements are always sensitive to an average value over the radar
resolution cell; in regions that exhibit high spatial variability of seasonal subsidence, soil moisture
content, or soil porosity over the radar resolution cell, the inferred subsidence or soil moisture will be
a bulk average of all values within the resolution cell, which can further contribute to measurement
uncertainty.

3.7 Closure Phase

As in Equation 3.9, the interferometric complex correlation is defined as:

γ̃ = 〈s1s∗
2〉√〈s1s∗

1〉 〈s2s∗
2〉 (3.28)

where s1 and s2 are complex-valued signals, and 〈·〉 is an ensemble averaging operator, which,
in practice, is usually approximated by a local spatial average [Zebker and Villasenor, 1992]. The
complex correlation is a measure of signal similarity; in the case of InSAR, it represents the similarity
in the surface scattering properties of a given pixel in a pair of radar SLCs as a function of time. The
analogous quantity for a triplet of three unique radar SLCs is the complex bicoherence, a quantity
frequently used in astrophysical interferometry [Jennison, 1958; Chael et al., 2018; Blackburn et al.,
2019]. For any triplet of three SAR images, the bicoherence Ξ̃ is defined as the product of two
complex coherences multiplied by the complex conjugate of the third [Zwieback et al., 2015b]:

Ξ̂123 = γ̂12γ̂23γ̂∗
13 (3.29)

Like the complex correlation, the bicoherence has an associated phasor term. The closure phase
ξ123 is simply the argument of the bicoherence ξ123 = � Ξ̂123, and is therefore a linear combination
of the three interferometric phases of the three possible scene pairs of the triplet:
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ξ123 = � Ξ̂123 = φ12 + φ23 − φ13 (3.30)

The closure phase is invariant to any purely propagational phase terms – such as surface defor-
mation, atmospheric delay, or topographic errors – that contribute to the interferometric phase of
the individual SAR pairs [De Zan et al., 2014; Zwieback et al., 2015b; Michaelides et al., 2019b].
This point is illustrated in Figure 3.9. Under idealized surface deformation, the entire resolution ele-
ment of a surface deforms together coherently, such that the physical arrangement of sub-resolution
scattering elements which contribute to the backscattered signal is unchanged with time. This is
analogous to stating that the deformation is on a spatial scale much broader than the resolution of
the radar system. Under this assumption (which is implicitly made for most InSAR applications),
any deformation that occurs between times t1 and t3 should be exactly equal to the sum of the
deformation contained between times t1 and t2 and t2 and t3. That is, the interferometric phases
should form a ‘closed loop’, with no excess or deficit interferometric phase.

φ12

φ23 φ13
t3

t2

t1
Figure 3.9: Closure phase is invariant to simple, piston-like deformation (i.e. the entire resolution
element moves coherently). For a surface experiencing uplift and imaged at times t1, t2, and t3, 3
possible interferograms, φ12, φ23, and φ13 can be formed. The sum of the deformations measured
by φ12 and φ23 is equal to the deformation measured by φ13, so the closure phase should evaluate
to zero.

For an idealized, perfectly coherent scattering element, the closure phase should always be iden-
tically zero. However, a combination of stochastic signal decorrelation and systematically variable
attenuation rates and transmission wavenumbers during volume scattering can generate nonzero
closure phase [De Zan et al., 2015; Michaelides et al., 2019b]. The stochastic component of clo-
sure phase is graphically illustrated in 3.10. In the absence of systematic decorrelation phenomena,
such as variable dielectric permittivity, interferometric phases are purely propagative. Stochastic
fluctuations in phase noise (represented by dotted lines) result in a closure phase signal that is
zero mean and independent of the complexity of the interferometric phase. The standard deviation
of the closure phase is linearly proportional to the interferometric phase standard deviation. In
the limit where the interferometric phase noise term vanishes – the interferometric noise becomes
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deterministic – the closure phase identically evaluates to zero.

Figure 3.10: Stochastic component of closure phase as a function of the phase noise standard de-
viation. When systematic decorrelation due to changes in dielectric permittivity are neglected,
stochastic fluctuations in phase noise are the only cause of nonzero closure phase. A triplet of three
interferometric phases (green, red, and blue) are plotted as a function of the standard deviation
of the phase noise; dotted lines represent error envelopes. The resulting closure phase is displayed
in magenta. Regardless of the complexity of the interferometric phasor, closure phase arising from
stochastic decorrelation fluctuations are zero mean, and approach zero as the phase noise term
approaches zero.

Closure phase arising from both stochastic and systematic decorrelation effects is illustrated in
Figure 3.11. The closure phase associated with a triplet of SLCs from the Sentinel-1A satellite taken
over Death Valley, California is formed with different numbers of looks taken in both range and
azimuth. For the 1-look case, closure phase is identically zero across the image; there is no phase
deficit or excess. However, as looks are taken, phase excess and deficit occurs, and nonzero closure
phase can be observed across the scene. As the number of looks is increased, a strong correlation
between phase closure and surface geomorphology (and therefore surface scattering properties) is
observed. The central ‘yellow’ feature with consistently positive closure phase corresponds to Cot-
tonball and Badwater basins, two playa lakes occupying the lowest elevation of Death Valley. In
contrast, alluvial fans, arroyos, and ephemeral streams that discharge into the playas display closure
phase values near zero, as does the broad alluvial plan to the east of Badwater Basin, the Amargosa
Range, and the Funeral Mountains. These closure phase signals contain both stochastic and sys-
tematic terms, with the systematic components due to changes in the surface scattering properties
and/or dielectric permittivity of the surface.

We multilook SAR images under the assumption of signal ergodicity. Due to the lack of multiple
realizations of each SLC, we average several adjacent pixels together under the assumption of spatial
ergodicity; i.e. surface scattering properties are identical, and each pixel corresponds to a different
realization from the same distribution of scattering elements. When perfect spatial ergodicity is not
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Figure 3.11: Nonzero closure phase (phase excess or deficit) as a function of the number of looks
taken in range (r) and azimuth (az) during phase estimation for a triplet of Sentinel-1A SLCs over
Death Valley, California.
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preserved (which it rarely is in natural terrain types), stochastic decorrelation of the signal occurs.
This corresponds to the ‘white-noise-like’ component of the closure phase, and is particularly evident
over the Panamint and Amargosa ranges, which are very rough surfaces and thus highly non-ergodic.

Nonzero closure phase signals which are highly correlated with surface geomorphology may be
due instead to systematic signal decorrelation, such as changes in the dielectric permittivity of
the scattering surface between image acquisitions. Increasing the number of looks during phase
estimation over areas with a moderate to high degree of ergodicity results in a decrease in the
standard deviation of the closure phase, and an increasingly more accurate estimate of the closure
phase. This is demonstrated in Figure 3.12 calculated over a highly-coherent portion of Badwater
Basin. The standard deviation of the closure phase monotonically decreases as the number of looks
used during phase estimation; at 16 looks in range and azimuth (corresponding to a pixel size of
∼ 80 x 240 m), the standard deviation of the closure phase is smaller than the mean of the closure
phase estimate.

Figure 3.12: Mean (blue) and standard deviation (red) of estimated closure phase over Badwater
Basin as a function of the number of looks during phase estimation.



Chapter 4

Resolving Permafrost-Wildfire
Interactions with InSAR

The Yukon-Kuskokwim (YK) Delta is a region of discontinuous permafrost in the subarctic of south-
western Alaska. Many wildfires have occurred in the YK Delta between 1971 and 2015, impacting
vegetation cover, surface soil moisture, and the active layer. Herein, we demonstrate that the Re-
motely Sensed Active Layer Thickness (ReSALT) algorithm can resolve the post-fire active layer
dynamics of tundra permafrost. We generate a stack of Advanced Land Observing Satellite Phased
Array type L-band Synthetic Aperture Radar (ALOS PALSAR) interferograms over a study region
in the YK Delta spanning 2007-2010. We apply ReSALT to this stack of interferograms to measure
seasonal subsidence associated with the freezing and thawing of the active layer and subsidence
trends associated with wildfire. We isolate two wildfire-induced subsidence signatures, associated
with the active layer and the permafrost layer. Fire increases the active layer thickness, which
recovers to pre-fire values after approximately 25 years. Simultaneously, fire gradually thins the
permafrost layer by 4 meters, which recovers to pre-fire thickness after 70 years.

4.1 Introduction

Air temperatures in high-latitude regions are increasing at twice the global rate, which threatens
the distribution and stability of permafrost regions [Jorgenson et al., 2001; Osterkamp et al., 2009].
Among terrestrial biomes, tundra and boreal ecosystems underlain by permafrost contain the largest
below-ground carbon reservoirs globally [Hugelius et al., 2014], and these regions are also significantly
impacted by wildfires [Loranty et al., 2016; Genet et al., 2013]. As air temperatures rise and regional
climate changes, wildfires are expected to increase in frequency over the Arctic domain [Hinzman
et al., 2005]. Under favorable environmental conditions, tundra regions are susceptible to burn

35
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[Rocha et al., 2012]. Wildfires rapidly transfer soil and vegetation carbon into the atmosphere.
More significantly, post-fire increases in thaw depth facilitate increased microbial decomposition
and heterotrophic respiration within the thawed soil column, which gradually releases soil carbon to
the atmosphere years after the wildfire event [Natali et al., 2014; Bret-Harte et al., 2013; Rocha et al.,
2012; Grosse et al., 2011]. Furthermore, terrestrial arctic regions are thought to contain roughly
twice the amount of carbon currently in the atmosphere, so any increases in wildfire frequency in
the Arctic could have a marked effect on the global carbon cycle [Schuur et al., 2008].

Fire removes a portion of the insulating organic layer, increasing the ALT for years after the
fire [Swanson, 1981; Mackay, 1995; Shur and Jorgenson, 2007; Rocha et al., 2012]. Regions with poor
drainage, thick organic layers, and fine-grained soil recover rapidly after fire [Shur and Jorgenson,
2007]. As the surface vegetation grows back after a fire, the organic layer re-accumulates, and the
ALT returns to its pre-fire values [Shur and Jorgenson, 2007; Mackay, 1995; Brown et al., 2015].
However, how long this recovery takes is poorly understood. As wildfire frequency is expected
to increase over arctic regions through the 21st century, a more complete understanding of the
interaction between wildfire, permafrost, and active layer dynamics is necessary.

The Yukon-Kuskokwim (YK) Delta is a subarctic lowland in the discontinuous permafrost zone
dotted with lakes, thaw ponds, and wetlands [Burns, 1964]. The YK Delta represents an ecologically-
driven permafrost system where vegetation dynamics control the formation of permafrost. Vegeta-
tion such as moss and grass and the surface layer of organic material thermally insulate the soil in
summer, allowing the buildup of a permafrost layer and controlling ALT [Shur and Jorgenson, 2007;
Pewe, 1963]. Major wildfires have burned across the YK Delta many times over the last hundred
years. We focus on a wetland tundra region within the Izaviknek Highlands approximately 80 km
northwest of Bethel, Alaska that has experienced more than 20 distinct wildfires since 1971 (Figure
4.1). We leverage the high density of fire scars of various ages to study ALT and permafrost thickness
response after fire using the ReSALT algorithm.

4.2 Quantifying Permafrost Processes and Wildfire Interac-
tions

4.2.1 InSAR Processing

Using 8 repeat pass ALOS PALSAR FBS (wavelength λ = 23.6 cm) scenes acquired between
08/12/2007 - 01/02/2010, we generate a stack of coregistered interferograms over the YK Delta
study region using the motion-compensation processing algorithm developed in the Stanford Radar
Group [Zebker et al., 2010]. We use the 5m resolution optical stereophotogrammetric ArcticDEM
dataset to remove the topographic phase term from all interferograms. We multilook interferograms
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Figure 4.1: The Yukon-Kuskokwim Delta field study area. Wildfire burn zones are shown in orange
and labeled by year of burn. Blue dots are the locations of field camps from the 2016 field campaign;
in-situ measurements of thaw depth were made around these sites, characterizing both unburned and
burned regions in nearby fire scars (e.g. the 2006 fire adjacent to site 5 and the 2007 fire adjacent
to site 2).

for increased signal-to-noise ratio at the expense of spatial resolution, and apply a Goldstein fil-
ter to smooth out interferogram phase noise and aid in phase unwrapping [Goldstein and Werner,
1998]. We unwrap interferograms using the SNAPHU algorithm described in [Chen and Zebker,
2002], and deramp them to remove the best fit first-order orbital phase error [Chen et al., 2017a].
We visually examined the set of interferograms and removed those exhibiting ionospheric noise or
severe decorrelation noise (see Appendix B for a table of interferograms used in the final analysis).
As InSAR measures deformation in the line-of-sight (LOS) direction of the radar, we apply a LOS
correction to all interferograms to decompose the deformation values into horizontal and vertical
orientations [Chen et al., 2017a]. We mask consistently incoherent pixels from which precise defor-
mation measurements cannot be retrieved, which masks out major lakes and water bodies in the
study region. As a reference point, we chose an unburned location (61.3544◦N,163.0911◦W; near site
2 in Figure 4.1) where we measured ALT in 2016 and then apply our frozen soil expansion model to
determine the absolute phase differences within the InSAR stack [Liu et al., 2012; Schaefer et al.,
2015].

We apply the ReSALT algorithm on the 14 interferograms listed in B. These interferograms
encompass scenes from the onset and end of summer thaw, as well as winter freeze-up. In general,
the use of more interferograms will result in a more robust solution. Compared to the ALOS satellite,
surface decorrelation is more severe for interferograms generated by the ERS-1 and ERS-2 satellites
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due to their longer temporal baselines and relatively shorter wavelength (λ ≈ 5 cm vs. λ ≈ 23
cm). For this reason previous applications of the ReSALT algorithm have discarded winter scenes
to avoid the potential for misinterpreting spurious signals associated with snow cover [Liu et al.,
2010; Liu et al., 2012]. The longer wavelength (λ ≈ 23 cm) and shorter temporal baseline of the
ALOS PALSAR system used in this study both mitigate surface decorrelation associated with winter
snow cover. Because snow cover is uncorrelated with time between winter-summer and multiple year
winter scene pairs, we retain interferograms containing a winter scene that exhibit surface correlation
comparable to summer-summer interferograms, but note that their inclusion is a potential source of
uncertainty.

As derived in Section 3.6.1, the deformation time series model used is of the form:
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These deformation components represent, respectively, long-term trends in subsidence (R [m yr−1],
deformation associated with the seasonal freezing/thawing of the active layer (E [m]), and an error
term associated with errors in the digital elevation model used (εtopo).

ADDT is calculated from available air temperature records at Bethel, Alaska, and normalized
such that the maximum value is one at the end of the thaw season [Liu et al., 2012]. The ReSALT
algorithm solves for E, R, and εtopo on a pixel-by-pixel basis using least-squares regression. This
technique represents a modification of the Small Baseline Subset (SBAS) algorithm originally for-
mulated in [Berardino et al., 2002] and used extensively in InSAR time series analysis [Hooper, 2008;
Schmidt and Burgmann, 2003; Lauknes et al., 2010; Chen et al., 2014]. Error is taken to be the
model residual errors; the root mean square error of the differences between the subsidence model
and deformations from the interferogram stack [Liu et al., 2012; Liu et al., 2015; Schaefer et al.,
2015]. The residual errors, as well as uncertainties in all model parameters, are propagated through
the inversion routine and summed in quadrature to derive total model uncertainties. For a given
stack of SAR images, this yields a finely-sampled map of derived ALT, and associated uncertainties.

We assume organic content and thus P decrease exponentially with depth from pure organic to
pure mineral soil, consistent with field observation [Liu et al., 2012]. S represents the fraction of
soil pore space filled with water and is safely assumed to be fully saturated soil on the YK Delta
(S = 1). ALT is calculated using numerical integration, and uncertainty in ALT is estimated using
Gaussian error propagation of uncertainty in E [Liu et al., 2012].
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4.2.2 Fire Response Model

Fire increases ALT by removing insulating organic matter from the surface (Figure 4.2). Grass,
moss and dead organic matter build up over time to create an organic layer that insulates the soil
from warm air temperatures. Black soot increases absorption of sunlight and fire removes part of
the organic layer, resulting in deeper summer thaw and larger ALT, and the potential for thinning
of permafrost at depth. Rapid vegetation regrowth after a fire eliminates the albedo effect, but
recovery of the organic layer takes many years. As the organic layer becomes thicker, its insulating
effect increases and the ALT recovers back to pre-fire conditions [Shur and Jorgenson, 2007].

We use the ReSALT output to create a fire response model of seasonal subsidence and permafrost
thickness. We assume post-fire variations in the seasonal subsidence result from variations in ALT,
while variations in subsidence trends result from changes in permafrost thickness. Thermokarst
subsidence is minimal in the YK Delta because the soil contains very little excess ground ice in the
form of ice wedges or layers [Pewe, 1963; Ludwig et al., 2018]. Satellite imagery shows the 2007 fires
occurred several months before the first ALOS scene, so all the fires in the study region occurred
before the ALOS record.

To create a general permafrost thickness and ALT response model, we assume variations in
seasonal subsidence and subsidence trends in burn scars result solely due to variations in time since
initial burn. This implicitly assumes that all areas burned exhibit an identical fire response. We
calculate the mean ReSALT estimates of seasonal subsidence, subsidence trend, ALT, and their
associated uncertainties within each fire zone, yielding 13 estimates of post-fire seasonal subsidence
and subsidence trend for 6 different points in time. We apply a student t-test at 95% significance to
determine if values within the fire scars show a significant difference to values outside the scars. We
generate two general response functions by sampling the subsidence trend and seasonal subsidence
of each fire scar at its respective time since burn, spanning 1971-2007. We apply a nonlinear least-
squares best fit to the subsidence trends with a simple quadratic model of fire response:

Rfire(t) = a1eb1t + c1 (4.2)

where Rfire [cm yr−1] is fire response subsidence trend, and a1, b1, and c1 are empirical coefficients.
Integrating Equation 4.2 gives the subsidence response associated with Rfire:

Dfire(t) =
∫ t

0
Rfire(τ)dτ =

∫ t

0
(a1eb1τ + c1)dτ (4.3)

where Dfire [cm] is the fire response subsidence associated with the Dfire. Similarly, we estimate
the fire response of seasonal subsidence with a nonlinear least-squares fit to a model of the form:
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Efire(t) = a2eb2t + c2t + d2 (4.4)

where Efire [cm] is the fire response in seasonal subsidence, and a2, b2, c2, and d2 are empirical
coefficients that determine the quadratic response of the seasonal subsidence as a function of time.
This function corresponds to the integral of the subsidence trend model in Equation 4.3 so that we
can compare Efire and Dfire. Because E only correlates with recent burns, we fit Equation 4.5 to
fire burns from 1991-2007, as the seasonal subsidence of older fires is statistically indistinguishable
from unburned permafrost (see results). For both response functions, we calculate the 2-norm of the
residuals from the least-squares solution, the 2-norm of the data uncertainty, and treat these two
error sources as dependent uncertainties.

Figure 4.2: A schematic of fire response in permafrost [Shur and Jorgenson, 2007]. (1) Fire removes
vegetation and part of the surface organic layer. (2) The removal of the insulating organic layer and
change in albedo surface increases energy into the soil. (3) The ALT increases over several years. (4)
ALT reaches a maximum. (5) The organic layer gradually thickens as a result of vegetation growth
and the ALT decreases. (6) The permafrost system returns to pre-fire conditions.
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4.2.3 Field Validation and Calibration

We validate the ReSALT estimates of ALT with field measurements from a 2016 summer field cam-
paign. The standard technique for measuring ALT in the field is by mechanical probing of the
active layer [Parsekian et al., 2012]. In addition, we employ field geophysical instruments such as
ground-penetrating radars (GPRs) to image the permafrost table, which exhibits a sharp discontinu-
ity in dielectric constant [Pilon et al., 1985; Chen et al., 2016]. We collected probing measurements
and GPR transects in late August based out of 6 sites within the study region (Figure 4.1). From
these sites, we sampled 2006 and 2007 burn scars and unburned tundra by dragging the GPR along
the tundra surface [Schaefer et al., 2015]. A total of 24 km of GPR transect data was collected,
encompassing approximately 12 km of data over burned and unburned tundra each. We made con-
temporaneous calibration probing measurements to estimate radar velocities, from which the ALT
can be directly estimated from the two-way travel time of the radar. For calibration of ReSALT,
we chose field measurements made in areas unaffected by wildfire, under the assumption that these
unburned regions appear stable over the time period of interest. To assess the agreement between
the ReSALT and GPR ALT values, we average all GPR traces within a single ReSALT pixel, and
compare the absolute value difference between the GPR and ReSALT measurements using the χ2

statistic [Schaefer et al., 2015]:

χ2 = (ALTReSALT − ALTGP R

εGP R
)2 (4.5)

where ALTGP R is the in-situ ALT measured by GPR, ALTReSALT is the ReSALT-estimated ALT,
and εGPR is the uncertainty in ALTGP R. An ideal match occurs when χ2 < 1, indicating ReSALT
and GPR values agree within uncertainty and are statistically identical. A good match occurs when
the uncertainty bars overlap (1 < χ2 < 2). A poor match occurs when the uncertainty bars do
not overlap (χ2 > 2). Variation within these categories has no physical meaning: a χ2 of 0.5 is not
‘better’ than 0.9, since both are statistically identical.

4.3 Relationship between ALT and Wildfire

ReSALT measurements reveal a complex history of the effects of wildfires on permafrost and active
layer dynamics. Fire zones appear as spatial anomalies in subsidence trends that are statistically sig-
nificantly different from the surrounding, undisturbed tundra with low or uniform subsidence trends
(Figure 4.3a). Recent fires exhibit large positive subsidence trends corresponding to subsidence
while older fires exhibit negative subsidence trends corresponding to uplift. This pattern appears
consistent with a post-fire phase of permafrost degradation and thinning, followed by a more gradual
recovery phase. The spatiotemporal correlation of the subsidence trends with wildfire scars suggests
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that the transitory effect of wildfire on permafrost can induce thinning of permafrost for decades
after the fire, and that we can measure this signal with ReSALT. The subsidence trends within fire
scars compare favorably to rates of permafrost degradation estimated by Schur and Jorgenson in
a disturbed ecosystem-driven permafrost system [Shur and Jorgenson, 2007]. Additionally, the re-
sponse appears consistent with modeling efforts to understand the effect of wildfire on permafrost in
lowland boreal forests [41]. Subsidence trends for an ecosystem-driven permafrost region in thermal
equilibrium are expected to be small [Shur and Jorgenson, 2007].

The seasonal subsidence shows a characteristic pattern corresponding to raised peat plateaus and
separated by thermokarst gullies (Figure 4.3c). In general, the gullies have larger seasonal subsidence
than the peat plateaus due to higher water content. The peat plateaus appeared uniformly flat
and raised above the gullies by about three meters. The thickness of permafrost in the YK delta
was previously estimated to be 10m under 1m peat plateaus, assuming a soil column of water
ice [Jorgenson and Ely, 2001]. We observed peat plateaus ranging from 1 − 3 m in height, which is
consistent with soil expansion of 25-74 m of permafrost (Equation 3.22, P = 0.45 for a typical silty
soil). However, we typically could not detect the permafrost table with the metal probes or GPR
within the gullies indicating no permafrost at all or the presence of a thick layer of unfrozen soil
known as a talik. Essentially, we see permafrost under the peat plateaus and no permafrost in the
gullies. ReSALT readily detects seasonal subsidence due to active layer thaw over permafrost on the
plateaus and due to freezing of surface soils in non-permafrost soils in the gullies.

Like in R, the fire scars also appear as spatial anomalies in seasonal subsidence. The most recent
fires show large, statistically significant differences with the surrounding, undisturbed tundra (see
Figures 4.8, 4.9, 4.10). However, the oldest fires show seasonal subsidence statistically identical
to their unburned surroundings. This suggests wildfire has a more transient effect on seasonal
subsidence than subsidence trends.

ALT shows the same mottled pattern as the seasonal subsidence, with larger values in the gullies
and smaller values on the plateaus (Figure 4.3c). However, our field measurements indicate no
permafrost in the gullies. What ReSALT measures as ALT in the gullies actually represents the
thickness of the seasonally frozen surface layer in non-permafrost soil. Like the seasonal subsidence,
we see statistically significant spatial anomalies in the more recent fires, but not for the oldest fires,
suggesting ALT recovers from wildfires quicker than subsidence trends.

Comparison of ReSALT and GPR measurements of ALT yields ideal matches for 53% of the
data and good matches for 13% of the data (Figure 4.4). An ideal match indicates the ReSALT
and GPR values are statistically identical and a good match indicates the uncertainty bars overlap.
ReSALT and GPR agree in the unburned tundra, but not in the 2007 fire zones. The ALOS data
starts immediately after the 2007 fire so that the interferogram stack reflects the pre-recovery stage
of the fire response model (steps 1-3 of Figure 4.2) [14]. We made the GPR measurements in 2016,
nine years after fire and reflecting the last stages of fire recovery of the active layer. The ReSALT
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Figure 4.3: Results from application of the ReSALT algorithm to the YK study region. (a) ReSALT-
derived long-term subsidence trend, positive values correspond to an increase in thaw depth (cm/yr).
(b) Uncertainties in long-term trends. (c) ReSALT-derived average seasonal subsidence from 2007-
2010 [cm yr−1]. (d) Uncertainties in seasonal subsidence. (e) ReSALT-derived ALT (cm). (f)
Uncertainties in ALT (cm). Of particular note are the large positive trends in recent burn areas
from the 2000’s, and negative trends in regions that were burned in the 1970’s. Wildfires are outlined
in gray, and a red box surrounds the fire scar discussed in Figure 4.4.
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ALT shows a positive bias relative to GPR values in the 2007 fire zone, consistent with nine years
of recovery after the fire.

2

Figure 4.4: Comparison between GPR and InSAR estimates of ALT at site 5. Left: Total path of
GPR, color-coded based upon the result of the χ2 test. Right: Correlation between the GPR and
InSAR estimates of ALT, r=0.6410. Both techniques capture fine spatial variability of ALT and
yield mutually consistent results in unburned tundra, while there is little agreement in the region
affected by the 2006 fire (bottom half of the survey).

The incorporation of scenes from either outside the thaw season, or in the uplift season may
necessitate a more physically realistic model of seasonal subsidence than the one used in this work,
as noted in [Chen et al., 2020]. Recently, Hu et al. introduced a composite index that encapsulates
both the thaw subsidence and freeze uplift of permafrost, and demonstrated agreement with GPS
reflectometry data [Yufeng et al., 2018]. Modifying the ReSALT algorithm to consider both freez-
ing and thawing indices is the subject of ongoing work. Additionally, large seasonal variations in
volumetric water content and saturation can be falsely interpreted as deformation signals [Zwieback
et al., 2015a]. Incorporation of independent observations of soil moisture into the ReSALT algo-
rithm is an important piece of ongoing work, as the ReSALT algorithm does not currently take into
consideration spatial or temporal variability of volumetric water content. In general, the use of more
interferograms leads to more robust solutions with the ReSALT algorithm. The launch of the NISAR
mission in 2021 will allow for the collection of L-band (λ ≈ 23 cm) SAR imagery suitable for InSAR
at 6-12 day repeat intervals–a significant improvement to the repeat interval of the ALOS satellite.
This will allow for more accurate characterization of the seasonal subsidence and subsidence trends
of permafrost regions.

Our fire response models indicate seasonal subsidence and ALT recover much faster than subsi-
dence trends after a fire (Figure 4.6). The seasonal subsidence response appears consistent with a



CHAPTER 4. RESOLVING PERMAFROST-WILDFIRE INTERACTIONS WITH INSAR 45

Figure 4.5: Comparison between GPR and InSAR estimates of ALT at site 5. Top left: Total path
of GPR colored in white. Top right: Percentage of data for which ideal or good matches are obtained
between the GPR and InSAR estimates of ALT. Bottom left: InSAR-derived ALT. Bottom right:
GPR-derived ALT.
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Exponential Best Fit

Figure 4.6: Top: Exponential best fit to subsidence trends, exhibiting an increase in permafrost
thinning for the first two decades after fire, followed by a more gradual thickening as the per-
mafrost slowly reforms. Dotted line represents 0 subsidence trend; the intersection of the subsidence
trend with the 0 trend line corresponds to the beginning of permafrost recovery. Bottom: Integral-
Exponential best fit to seasonal subsidence, exhibiting an increase in seasonal thaw depth for the
first decade after fire, and a total recovery of approximately 16 years. Dotted line corresponds to a
pre-fire seasonal subsidence of 3 cm.
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previous study of post-fire active layer dynamics in the Canadian tundra [Mackay, 1995]. Immedi-
ately after a fire, the seasonal subsidence experiences a gradual increase for approximately a decade
reflecting deeper seasonal thaw depths. The seasonal subsidence then reverses sign as the organic
layer gradually re-accumulates and the thaw depth decreases [Mackay, 1995; Shur and Jorgenson,
2007; Rocha et al., 2012]. After 15 years, the seasonal subsidence returns to its pre-fire thermal
equilibrium. As expected, ALT reflects seasonal subsidence and returns to pre-fire values after 15
years (not shown). In contrast, subsidence trends show a much longer response, changing from posi-
tive to negative at 25 years, indicating a change from subsidence to heave, and eventually returning
to zero after 65-70 years.

4.4 Implications for Wildfire Recovery in Discontinuous Per-
mafrost Environments

ReSALT measures two separate, but related responses to fire: active layer thickening and permafrost
thinning (Figure 4.7). The integral of the subsidence trend response model (Equation 4.4) represents
the impact of fire on permafrost thickness. The seasonal subsidence response model represents the
impact of fire on the thickness of the active layer. The removal of vegetation and organic material
by fire increases energy absorption by the ground, which will increase ALT, seasonal subsidence,
and the permafrost temperature. The thickness of permafrost balances freezing from the surface
and warming from the Earth’s interior, so any increase in permafrost temperature would result in a
thinning of the permafrost layer.

Both fire response models show two distinct phases: a perturbation phase and a recovery phase.
Both response curves start at zero, which represents pre-fire thermal equilibrium conditions. In the
perturbation phase, the subsidence increases from zero to a maximum value. In the recovery phase,
the subsidence slowly decreases back to zero or pre-fire conditions. Both response models show a
recovery phase approximately twice as long as the perturbation phase.

Fire increases the thickness of the active layer, resulting in an increase in seasonal subsidence.
The perturbation phases lasts ≈5 years and peaks at 1.7 cm, which, using our soil expansion model,
corresponds to a 26 cm increase in ALT. The ALT response model shows consistent results (not
shown). The vegetation grows back quickly, eliminating the albedo effect and stopping the increase in
ALT after ≈5 years. This appears consistent with the rapid post-fire vegetation regrowth associated
with tundra fires [Viereck and Schandelmeier, 1980]. In the recovery phase, which lasts ≈10 years, the
vegetation and organic layer thicken, insulating the soil and decreasing ALT and seasonal subsidence.
After 15 ± 7 years, the organic layer returns to per-fire conditions, along with ALT and seasonal
subsidence.

Fire raises the temperature of the permafrost layer, thinning the permafrost layer and inducing
permafrost thaw [Rocha et al., 2012]. A warm temperature anomaly introduced at the surface takes
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Figure 4.7: Comparison of the best fitting seasonal subsidence (Equation 4.2; red) and the integrated
subsidence trend (Equation 4.4; blue) induced by wildfire, with their associated uncertainties in grey.
These deformations are associated with, respectively, variations in the seasonal thaw depth of the
active layer, and thinning of permafrost. These two processes occur over 15 ± 7 years, and 66 ± 5
years, respectively.
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years to propagate downward throughout the soil column [Schaefer et al., 2009]. The subsidence
response model peaks at 20 cm about 25 years after a fire. If we assume this subsidence is describable
entirely by the soil physics model we have employed, for an initial permafrost thickness of 25 m of
saturated silty soil with a porosity of 45% (consistent with an ice-rich permafrost column), 20 cm of
subsidence corresponds to a thinning of the permafrost by ≈5 m, or 20%. Such subsidence cannot
result from increases in active layer thaw depth, which would correspond to an increase in ALT of
≈5 m, which we do not observe. Some of this subsidence may be due to soil compaction, for which
our soil physics model does not account. These estimates of permafrost thinning thus represent an
upper bound estimate, as porosity is at the upper limit of silty soils.

The permafrost thinning response depends on the seasonal subsidence response, but takes ap-
proximately five times longer. The seasonal subsidence and ALT response depends on energy balance
in the summer, but the permafrost thinning depends on annual energy balance. The permafrost thin-
ning cannot peak until the seasonal subsidence and ALT peak, but lags due to the time required to
propagate temperature anomalies. As a result, seasonal subsidence and ALT peak after 5 years, but
permafrost thinning peaks after 25 years. Seasonal subsidence and ALT return to pre-fire conditions
after 15 ± 7 years, but permafrost thickness returns to pre-fire conditions after 66 ± 5 years.

Our results emphasize the importance of ecological processes in controlling permafrost dynamics,
where local vegetation plays a significant role in the thermal insulation of permafrost and the post-
fire response [Shur and Jorgenson, 2007]. Removal of surface vegetation and a fraction of the
overlying organic layer of the active layer by wildfire modifies the thermal insulation and albedo of
the surface, making permafrost susceptible to a deeper seasonal thaw depth. In areas with a thick
organic layer, poor drainage and fine-grained soil, the permafrost system can eventually return to
its pre-fire equilibrium state, or reach a new thermal equilibrium [Viereck and Schandelmeier, 1980].
This response is driven by the gradual re-accumulation of an organic layer as a by-product of the
ecological regrowth of the surface vegetation, which insulates the permafrost and gradually decreases
the seasonal thaw depth of the active layer [Shur and Jorgenson, 2007]. Simultaneously, wildfires
induce a thinning of permafrost; the recovery time scales between active layer and permafrost differ
by almost a factor of five, and thickening of the permafrost is first contingent upon the total recovery
of the active layer. Post-fire active layer dynamics differ in dissimilar permafrost regimes, such as
black spruce forests, where fire can initiate irreversible permafrost degradation [Shur and Jorgenson,
2007; Jafarov et al., 2013]. However, we demonstrate that ReSALT can successfully infer and
discriminate between post-fire permafrost and active layer dynamics of permafrost. In the future,
this technique should be extended to other regions under different permafrost and climatic regimes
to further constrain post-fire permafrost active layer dynamics as a function of permafrost regime
and fire severity.



CHAPTER 4. RESOLVING PERMAFROST-WILDFIRE INTERACTIONS WITH INSAR 50

4.5 Summary

In this chapter, we demonstrated that fire in the YK Delta increases seasonal subsidence and ALT
while simultaneously thinning the permafrost layer. We successfully applied the ReSALT algorithm
to the YK Delta to estimate seasonal subsidence, subsidence trends, ALT, and uncertainties. ALT
ranges from 10-120 cm, and correlates with surface geomorphology. We compared the ReSALT
and GPR measurements of ALT agree for 68% of the pixels, with higher agreement in undisturbed
tundra than in fire zones. Using burn scars and fire ages, we constructed fire response models.
Seasonal subsidence and ALT response to fire peaks at 5 years and returns to pre-fire conditions
after 15 ± 7 years. The peak seasonal subsidence response is 1.7 cm corresponding to an increase in
ALT of 26 cm. The permafrost thins in response to fire, with a peak at 25 years and a recovery to
pre-fire conditions after 66 ± 5 years. The peak subsidence associated with permafrost thinning was
20 cm, corresponding to a thinning of the permafrost layer by 5 meters. In the next chapter, we
will address the issue of InSAR decorrelation, its relationship to soil moisture, and geodetic errors
associated with it.
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Figure 4.8: Seasonal deformation (top row) and interannual deformation (bottom row) for a 2007
fire (bottom left fire) and 1972 fire (top right fire).
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Figure 4.9: Seasonal deformation (top row) and interannual deformation (bottom row) for a 2007
fire (top left fire) and 1971 fire (bottom right fire).
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Figure 4.10: Seasonal deformation (top row) and interannual deformation (bottom row) for a 2006
fire (top fire) and 1972 fire (bottom fire).



Chapter 5

Decorrelation Phase from Closure
Phase

In this chapter, we present a novel method for quantifying and correcting phase errors in interfer-
ometric synthetic aperture radar (InSAR) data associated with signal decorrelation. Our method
relates the observed phase nonclosure (referred to as closure phase) of triplet combinations of any
three individual SAR scenes to the decorrelative phase signal in individual interferograms (pairs of
SAR scenes). We apply a singular value decomposition (SVD) method to solve for the minimum-
norm least-squares best fitting estimate of decorrelation phase for any arbitrary collection of SAR
images. We then remove this decorrelative phase from individual interferograms; these corrected
interferograms can then be used with existing InSAR time-series analysis algorithms. We demon-
strate this method on ALOS PALSAR scenes of a groundwater pumping subsidence feature in the
Central Valley of California, and briefly discuss potential future applications of this algorithm to
study a variety of environmental and surface physical processes that contribute to InSAR signal
decorrelation.

5.1 Relationship between Closure Phase and Decorrelation
Phase

Interferometric synthetic aperture radar (InSAR) is a well-established technique of measuring mil-
limeter to centimeter scale surface deformation at fine spatial resolution [Rosen et al., 2000]. Space-
borne InSAR missions, such as Sentinel-1A/B, the ALOS PALSAR satellite, and the upcoming
NISAR mission, provide long time-series of observations of the Earth at a global scale with repeat
times on the order of several days. Conventionally, a series of SAR single look complex (SLC) images
are acquired over a region of interest, from which any possible pair of SLCs can be cross-multiplied

54
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with respect to each other to form a complex correlation. As derived in Section 3.4, the complex
correlation γ̃ is defined as:

γ̃ = 〈s1s∗
2〉√〈s1s∗

1〉 〈s2s∗
2〉 (5.1)

For clarity of the following derivation, we express the interferometric phases in their more fa-
miliar unwrapped notation, while reminding readers that actual implementation of the algorithm is
conducted rigorously by treating all phases as the (wrapped) argument of complex products and con-
jugates. In scenarios where decorrelation phase is significant, phase unwrapping errors can introduce
2π phase ambiguities to the following equations. This phenomenon is more thoroughly discussed in
Section 5.3.2.

For a given image pixel, the resulting interferometric phase is directly related to the change in
range between the sensor location and the illuminated ground target:

φ12 = φ2 − φ1 = −4π

λ
(r2 − r1) + φ... (5.2)

where φ12 is the interferometric phase, φ1 and φ2 are the phases associated with scenes 1 and 2,
respectively, r1 and r2 are the ranges from the sensor to the target for scenes 1 and 2, respectively, λ

is the radar wavelength, and φ... represents additional phase terms (e.g. atmospheric phase screen,
topographic error phase, decorrelation phase).

Recall from Section 3.7 that for any triplet of three SAR images, the bicoherence Ξ̃ is defined as
the product of two complex coherences multiplied by the complex conjugate of the third [Zwieback
et al., 2015b]:

Ξ̃123 = γ̃12γ̃23γ̃∗
13 (5.3)

The closure phase ξ123 is simply the argument of the bicoherence ξ = � Ξ̃123, and is therefore a
linear combination of the three interferometric phases:

ξ123 = φ12 + φ23 − φ13 (5.4)

As discussed in Section 3.7, closure phase is totally insensitive to propagational phase (i.e. surface
deformation, atmospheric phase screen, topographic error terms); the components of the interfer-
ometric phase that are directly related to deformation of the ground’s surface will always sum
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identically to zero for simple piston-like deformation [Zwieback et al., 2016]. To see this, we can
express the interferometric phase of an interferogram as:

φint = φp + φd + φn (5.5)

where φint is the total interferometric phase, φp is the propagative component of interferometric
phase associated with ground deformation, topography, and atmospheric phase screens, φd is the
decorrelative component of interferometric phase introduced from temporal decorrelation, and φn

is a zero-mean Gaussian additive noise term due to thermal noise. The decorrelative component is
due to temporally varying electrical and scattering properties of the surface; in most InSAR time-
series algorithms, φd is neglected, or folded into the additive noise term [Nolan and Fatland, 2003;
Nolan et al., 2003; Nesti et al., 1995]. However, temporal decorrelation is correlated across SAR
scenes and is not a simple additive noise term [Agram and Simons, 2015]. With the definition of the
interferometric phase in Equation 5.5, we can express the closure phase for any 3 SAR scenes as:

ξ123 = φ12 + φ23 − φ13

ξ123 = φp
12 + φd

12 + φp
23 + φd

23 − φp
13 − φd

13 + φn
N

ξ123 = −4π

λ
(φ2 − φ1) + φd

12 − 4π

λ
(φ3 − φ2) + φd

23 + . . .

+ 4π

λ
(φ3 − φ1) − φd

13 + φn
N

(5.6)

where φn
N is a combined additive noise term for the three scenes. For simple piston-like deformation,

the propagative phase terms cancel, and Equation 5.6 simplifies to:

ξ123 = φd
12 + φd

23 − φd
13 + φn

N (5.7)

For single look interferograms, where no spatial averaging (multilooking) is applied during phase
estimation, Equation 5.7 will always evaluate identically to zero [Samiei-Esfahany et al., 2016].
Similarly, for a perfectly coherent surface with time invariant scattering and electrical properties,
the total closure phase will always sum to zero. Signal decorrelation, and multilooking during
coherence estimation introduces non-zero closure phase [Agram and Simons, 2015]; because nonzero
closure phase is fundamentally a product of signal decorrelation, it is directly related to variations
in the scattering and electrical properties of the ground surface.

Because closure phase is directly related to decorrelation phase, and totally insensitive to prop-
agative phase terms, closure phase can be exploited to reduce interferogram phase errors, and im-
prove InSAR time series analysis and deformation monitoring. In Section 5.2, we present an efficient
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algorithm that resembles the popular SBAS algorithm [Berardino et al., 2002], which can be imple-
mented to solve for the best fitting set of decorrelation phases for a given stack of interferograms
and their associated phase triplets. In Section 5.3, we demonstrate this algorithm by applying it
to a set of ALOS PALSAR data collected over a subsidence feature in California’s Central Valley
associated with agricultural groundwater pumping. We discuss the results of the algorithm, and its
potential for reducing phase errors and improving deformation monitoring [Zwieback et al., 2017].
In Section 5.4 we discuss future refinements that can be made to the algorithm, comment on its
potential applicability to the study of a range of physical properties and environmental parameters
that contribute to InSAR signal decorrelation, and provide concluding remarks.

5.2 Algorithm Formulation

Consider a series of N focused SAR images that have been coregistered to the same geographic region
of interest, indexed by their relative order of acquisition. The total number of possible interferograms
M that can be formed from these N images satisfies the following inequality from [Berardino et al.,
2002]:

N

2 ≤ M ≤ N(N − 1)
2 (5.8)

In the SBAS technique, the number of interferograms M will depend upon the number of small
baseline (SB) subsets of interferograms in the inversion, which is determined by the chosen spatial
and temporal baselines. The total number of possible closure phase triplets K that can be formed
by N images satisfies the following inequality:

N

3 ≤ K ≤ N(N − 1)(N − 2)
6 (5.9)

Similarly, the number of triplet subsets in the inversion will depend upon the chosen spatial and
temporal baselines. For any coregistered pixel, we can express the kth closure phase ξk as a function
of the associated interferometric phases:

ξk = φk1 + φk2 − φk3

ξk = φp
k1

+ φd
k1 + φp

k2
+ φd

k2 − φp
k3

− φd
k3 + φn

N

(5.10)

where φk1 , φk2 , and φk3 are the three interferograms associated with the kth closure phase ξk, and φn
N

is a combined additive noise term for the three scenes. For simple piston-like deformation, Equation
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5.10 simplifies to:

ξk = φd
k1 + φd

k2 − φd
k3 + φn

N (5.11)

Equation 5.11 defines a system of K equations with M unknowns, which can be expressed as:

ξ = Bφd (5.12)

where ξ is a [K x 1] vector of closure phases, φd is an [M x 1] vector of decorrelation phase, and B
is a [K x M] matrix whose elements are either 0 or ±1. In general, B will be rank deficient; While
N SAR images can form

(
N
2
)

interferograms and
(

N
3
)

closure triplets, only N − 1 interferograms and(
N−1

2
)

triplets are independent. The rank of B is therefore
(

N−1
2

)
. Equation 5.12 can be solved

with the SVD method as in [Berardino et al., 2002], whereby the pseudo-inverse B† of B yields a
minimum-norm least-squares solution for φ̂ξ of the form:

φ̂d = B†ξ (5.13)

Because wrapped interferometric phase is used both for closure phase estimation and the SVD
inversion, the best fitting decorrelation phase will also be a wrapped phase. The process of unwrap-
ping interferometric phase converts the modulo 2π wrapped phase φint to an unwrapped phase ϕint

by estimating the total integer number of 2π phase cycles associated with the interferometric phase.
We can express the unwrapped interferometric phase of any interferogram ϕint as follows:

ϕint = 2πX + φint (5.14)

where X is an integer, and φint is the wrapped interferometric phase. Similarly, we can define the
unwrapped decorrelation phase ϕd as:

ϕd = 2πY + φd (5.15)

where Y is an integer, and φd is the wrapped decorrelation phase. We can express the true wrapped
propagative phase as:
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φp = φint − φd (5.16)

which is equal to the true unwrapped propagative phase, modulo 2π:

ϕp = mod[(φint − φd), 2π] (5.17)

The phase closure SVD algorithm provides an estimate of the wrapped decorrelation phase φ̂d.
We can therefore express an estimate of the unwrapped propagative phase ϕ̂p as:

ϕ̂p = mod[(φint − φ̂d), 2π] (5.18)

We employ several simplifying assumptions to make this problem easier to solve, although we
note that in the general case these assumptions may not always be valid. First, we assume that the
magnitude of the decorrelation phase is less than 2π, i.e. Y = 0. In this case, the estimate of the
wrapped decorrelation phase φ̂p is equivalently an estimate of the unwrapped decorrelation phase,
i.e. ϕ̂p = φ̂p. We can rewrite Equation 5.18 as:

ϕ̂p = 2πX + (φint − φ̂d) (5.19)

As long as the magnitude of the estimated wrapped decorrelation phase is much smaller than the
magnitude of the wrapped interferometric phase (i.e. |φ̂d| 	 |φint|), then φint − φ̂d ≈ φint, in which
case the estimate of the integer number of phase cycles in the unwrapped phase will be identical
whether or not we remove the wrapped decorrelation phase estimate before phase unwrapping. If,
however, φint − φ̂d 
= φint, then removing the wrapped decorrelation phase estimate can introduce
a residue into the phase unwrapping process. The introduction of residues can potentially alter
the global unwrapped phase estimate from SNAPHU. Alternatively, Equations 5.12-5.13 can be
reformulated to explicitly solve for the phase ambiguity via an ILS method as in [Samiei-Esfahany
et al., 2016], although this technique is more computationally intensive and does not explicitly solve
for decorrelation phase.

After removing the best fitting decorrelative phase from the interferometric phase, this estimate
of the propagative phase can then be unwrapped and incorporated into existing InSAR time series
algorithms, such as PSI and SBAS [Hooper et al., 2004; Berardino et al., 2002; Hooper, 2008].
Furthermore, the propagative phase component can be further separated into ground deformation
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components and atmospheric phase screen components, for which several methods are available [Jo-
livet et al., 2014; Bekaert et al., 2015]. Our algorithm is represented in a block diagram form in
Figure 5.1. Blue arrows correspond to standard steps in InSAR processing for time series applica-
tions, whereas the additional steps due to our algorithm are in black.

Form M 
Interferograms

Form K Closure 
Phase Triplets

Estimate 
Decorrelative 

Phase with SVD

Remove 
Decorrelative 
Phase from 

Interferograms

Phase 
Unwrapping

Deformation 
Time Series

N SAR Scenes

Figure 5.1: Block diagram of the presented algorithm. Arrows in blue correspond to standard steps
in InSAR post-processing; arrows in black correspond to steps added as part of this algorithm.

5.3 Demonstration of Algorithm

5.3.1 ALOS dataset, California Central Valley

We applied the algorithm to a set of N = 19 ALOS-PALSAR SAR images acquired between 2007-
01-05 and 2011-03-03 over an area of ground subsidence in the Central Valley, California associated
with groundwater pumping. These SAR images are generated as in [Zebker et al., 2010], with 16
(32) looks taken in range (azimuth), and a total of M = 171 interferograms and K = 969 phase
closure triplets are generated (of which 153 are independent). The best fitting phase error due
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Figure 5.2: Demonstration of the phase closure SVD algorithm for a single pixel. Top left: The
actual K = 969 closure phase values for a single pixel are plotted in blue, while the forward model
of closure phase (Equation 5.12) are plotted in red. Bottom left: a smaller portion of the top left
figure is shown to illustrate the good agreement between the actual phase closure and the forward
model of the phase closure. Top right: The actual M = 171 interferometric phases for the same
pixel are plotted in blue, while the estimated decorrelation phases (Equation 5.13) are plotted in
red. Bottom right: The actual M = 171 interferometric phases for the same pixel are plotted in
blue, while the corrected propagative phase (Equation 5.16) are plotted in red.
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to phase nonclosure is solved for and removed from the set of interferograms with a truncated
SVD method (see Figure 5.2 for an example). We unwrap both the original and the corrected
interferograms using the SNAPHU algorithm [Chen and Zebker, 2002], phase calibrate both sets of
unwrapped interferograms, and then stack each set of interferograms to estimate the mean line of
sight (LOS) velocity associated with the subsidence feature as in [Chen et al., 2017b]. These results,
along with the difference in estimated LOS velocity between the corrected and uncorrected sets of
interferograms, and the average coherence of the stack of interferograms, are displayed in Figure 5.3.

For suitably large deformation signals, such as the central surface subsidence feature in Figure
5.3, The difference in inferred mean LOS velocity due to decorrelation phase is small. Notice, how-
ever, deviations in velocity estimates associated with agricultural fields, where variable vegetation
and soil moisture superimposes phase errors over the deformation signal (see Figure 5.4). Even in
regions of high coherence (γ > 0.7), standard deviations in differences in velocity estimates on the
order of several millimeters per year can be observed between adjacent bare agricultural surfaces,
likely reflecting variable soil moisture. In agricultural fields distant from the subsidence feature,
these deviations in deformation rates are comparable to the magnitude of the total inferred ground
deformation rates themselves. Even minor temporal decorrelation can introduce systematic biases
in inferred deformation rates, which can be significant when considering subtle deformation signals.

We can directly compare the empirical variance of the best fitting decorrelation phase to the
Cramer-Rao lower bound, which is commonly used for uncertainty analysis in InSAR applica-
tions [Seymour and Cumming, 1994; Guarnieri and Tebaldini, 2007]. We model the coherence
as containing a temporal, spatial, and thermal component as in [Zebker and Villasenor, 1992]:

γtotal = γtemporal · γspatial · γthermal (5.20)

where the thermal decorrelation is defined as:

γthermal = 1
1 + 1

SNR

(5.21)

The SNR of the ALOS PALSAR instrument ranges from 20-30 dB, yielding γthermal ≈ 0.9.
The spatial decorrelation is due to variations in the path length to distributed scatterers contained
within each resolution cell caused by variable spatial baseline between SAR image acquisitions, and
is derived in [Zebker and Villasenor, 1992] as:

γspatial = 1 − 2|Bp|Razcos2(θ)
λr

(5.22)
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Figure 5.3: Top left: Estimated LOS velocity for stack of original interferograms. Top right: Esti-
mated LOS velocity for stack of corrected interferograms. Bottom left: Difference between estimated
LOS velocities for original and corrected interferograms (i.e. the component of the mean LOS ve-
locity estimate due to decorrelative phase). Bottom right: The average coherence of the series of
interferograms. Positive velocities correspond to subsidence.
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Agricultural Fields
Difference between 

two Velocity Estimates

Difference between two Velocity Estimates

Figure 5.4: Top left: Difference between estimated LOS velocities for original and corrected in-
terferograms, with scene-wide mean and standard-deviation of regions with γ > 0.35. Top right:
Difference in velocity estimates of two agricultural fields corresponding to the red box in the top
left figure. Bottom: Histogram of difference in velocity estimates between agricultural fields 1 and
2, with their respective mean values and standard deviations noted.
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where |Bperp| is the magnitude of the perpendicular spatial baseline, Raz is the native azimuth
resolution (5 m for ALOS PALSAR), θ is the incidence angle (34.3◦ for this dataset), λ is the
wavelength (23.7 cm), and r is the range from the radar to the illuminated surface (r ≈ 847, 166 m
in this case).

We assume that nonzero phase closure is due solely to temporal decorrelation, and we therefore
estimate the total temporal decorrelation by rearranging Equation 5.20:

γtemporal = γtotal

γspatial · γthermal
(5.23)

The Cramer-Rao bound on phase variance, as in [Seymour and Cumming, 1994; Guarnieri and
Tebaldini, 2007; Samiei-Esfahany et al., 2016], is:

σϕcr
= 1

2L

1 − γ2

γ
(5.24)

where L is the number of looks and γ is the coherence. We can modify Equation 5.24 by substituting
γtemporal for γ:

σϕtemporalcr
= 1

2L

1 − γ2
temporal

γtemporal
(5.25)

To derive the Cramer-Rao lower bound on phase variance due to temporal decorrelation. Figure
5.5 illustrates that the variance of the best fitting decorrelation phase is properly bounded by Equa-
tion 5.24, and that as the temporal coherence increases, the decorrelation phase variance approaches
the Cramer-Rao bound. However, for heavily decorrelated regions, where decorrelation phase errors
are large, the actual phase variance is noticeably larger than the Cramer-Rao lower bound. Nonethe-
less, it is evident that the empirical variance of the decorrelation phase is strongly correlated with
coherence, and can be approximated by the Cramer-Rao bound. These results further show that
nonzero phase closure arises from signal decorrelation, and that this relationship is captured by the
simple model described in Section 5.1.

5.3.2 Potential Phase Unwrapping Errors

Application of the phase closure SVD algorithm modifies the inputs for phase unwrapping, introduc-
ing the potential for different unwrapped phase solutions. We investigate this algorithm’s suscepti-
bility to generating phase unwrapping errors by unwrapping both the original (‘uncorrected’) and
the decorrelation-corrected (‘corrected’) interferograms using SNAPHU. We then compare both the
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Variance of Decorrelation PhasePhase Variance Cramer-Rao Bound

Average Coherence Decorrelation Phase Variance

Phase Variance Cramer-Rao Bound Variance of Decorrelation Phase

Figure 5.5: Top left: Cramer-Rao lower-bound of phase variance. Top right: The empirical variance
of the decorrelation phase. Bottom left: The average coherence of the series of interferograms.
Bottom right: Decorrelation phase variance vs. coherence, lower-bounded by the Cramer-Rao bound.
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Figure 5.6: SNAPHU phase unwrapping solution cost for corrected vs. uncorrected interferograms.

solution costs and the final solutions for both cases. A lower SNAPHU solution cost corresponds to a
better solution to the phase unwrapping problem [Chen and Zebker, 2002; Chen and Zebker, 2001].
Figure 5.6 shows a scatter plot of the SNAPHU phase-unwrapping solution costs for the corrected vs
uncorrected interferograms. Points lying under the diagonal line indicate a lower solution cost, and
therefore an improved phase unwrapping solution, for the corrected interferograms compared to the
uncorrected interferograms. When the decorrelation phase solved for with this algorithm is removed
from the original interferograms, a more reliable estimate of the true unwrapped propagative phase
is found.

We can define the relative cost improvement (RCI) of removing the best fitting estimate of phase
decorrelation as follows:

RCI = c1 − c2
c1

(5.26)

where c1 is the SNAPHU solution cost for unwrapping the phase of the uncorrected interferogram,
while c2 is the SNAPHU solution cost for unwrapping the phase of the corrected interferogram.
Values of RCI > 0 therefore correspond to improved unwrapping solutions after applying the decor-
relation phase correction. The RCI as a function of both the temporal and spatial baselines of each
interferogram pair is displayed in Figure 5.7. It is apparent that RCI increases as the temporal
baseline increases. Intuitively, temporal decorrelation is strongly correlated with temporal baseline,
so for larger temporal baselines we expect larger decorrelation phases. Conversely, we do not observe
as direct of a relationship between RCI and spatial baseline. There are several interferograms with
small spatial baselines for which RCI is negative, but this may be due to the correlation between
spatial and temporal baseline for the ALOS spacecraft (i.e. these negative RCI values are actu-
ally attributable to small temporal baselines rather than spatial baselines). Traditionally, temporal
decorrelation is assumed independent of spatial baseline and attributed merely to the stochastic
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Figure 5.7: RCI vs. temporal (left) and spatial (right) baselines.

random motions of surface scatterers within a resolution element between image acquisitions (which
is consistent with the behavior in Figure 5.6). If, however, temporal decorrelation is partially at-
tributable to propagation through a decorrelative volume such as a vegetation canopy or snowpack,
then significant differences in spatial baseline will result in different path lengths through the decor-
relative volume, in which case one might expect a more pronounced correlation between spatial
baseline and decorrelation phase (and thus RCI). Nonetheless, these results suggest that the esti-
mate of decorrelation phase provided by the phase closure SVD solution is comparable to the true
decorrelation phase, and its successful removal results in improved phase unwrapping solutions.

For scenes with significant decorrelation, isolated patches of coherent phase distributed across the
scene can exhibit 2π phase ambiguities with respect to each other. Integer phase ambiguities between
different patches is a commonly-reported issue in phase unwrapping [Lauknes et al., 2011; Reeves
et al., 2011]. Application of the phase closure SVD algorithm can change the scene-wide distribution
of 2π phase ambiguities between isolated patches of phase. This is illustrated in Figure 5.8; color
groups (i.e. green, yellow, and blue) correspond to different estimates of the integer number of
phase cycles per pixel during phase unwrapping as between the original unwrapped interferograms
and the corrected interferograms. We note, however, that these phase ambiguities are normally
distributed, and for a suitably large set of interferograms (N=171 in this study), the difference in
phase ambiguities between isolated decorrelation patches tends towards zero when the entire stack
of interferograms is considered.

Whether or not this phase closure SVD algorithm is used, the phase unwrapping procedure can
introduce 2π phase ambiguities. However, we have demonstrated that removing the best fitting
decorrelative phase from a set of interferograms using the phase closure SVD algorithm leads to
improved phase unwrapping solutions for the majority of interferograms analyzed. The potential to
use closure phase for improved phase unwrapping solutions has been noted by others [Zhang et al.,



CHAPTER 5. DECORRELATION PHASE FROM CLOSURE PHASE 69

Figure 5.8: Color groups (i.e. green, yellow, and blue) correspond to different estimates of the integer
number of phase cycles per pixel during phase unwrapping between the corrected and uncorrected
interferograms. A single interferogram (top), illustrating phase ambiguities over several agricultural
fields, (bottom) the average integer difference of phase cycles over the entire set of interferograms is
effectively constant for a suitably large set of interferograms (N=171 in this study).
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2018]. Interferometric phase closure can be exploited to both quantify the decorrelative component
of phase noise, and to retrieve improved unwrapped phase solutions for InSAR applications.

5.4 Summary

The algorithm presented in this chapter leverages the intrinsic information contained within closure
phase triplets to estimate the component of the interferometric phase that is due solely to signal
decorrelation in InSAR. Conceptually, the algorithm is analogous to the SBAS algorithm, where the
closure phase triplets and the decorrelative component of interferometric phase in this algorithm
are analogous to the deformation phase and interferometric phase as described in [Berardino et al.,
2002].

We apply this algorithm to a set of ALOS SAR scenes collected over a subsidence feature in
California’s Central Valley, and demonstrate that the variance of the algorithm’s estimated decor-
relative phase component is comparable to the theoretical phase variance due to signal decorrelation
as calculated in [Rodriguez and Martin, 1992]. We demonstrate an improvement in phase unwrap-
ping solutions after removing the decorrelation phase. Furthermore, differences in the mean LOS
velocity between stacks of uncorrected and corrected interferograms can differ by several millime-
ters per year. In applications where deformation rates are expected to be small, such as slow slip
earthquakes or interseismic deformation, or where surface deformations are strongly correlated with
temporal decorrelation, such as the freezing and thawing of permafrost, phase errors due to signal
decorrelation can introduce a significant bias to inferred deformation rates.

Because this is a simple linear model, it is relatively straightforward to introduce a-priori knowl-
edge of the temporal behavior of the decorrelative phase. Additionally, the decorrelative phase can
be further subdivided into components arising from specific physical processes, such as time-variable
dielectric permittivity (due to variable soil moisture content as in [De Zan et al., 2014; Zwieback
et al., 2015b]), or surface roughness. Given a suitable physical model to describe the effect of these
decorrelative phenomena on the radar signal phase, this technique could be applied to time-series
analysis of properties such as soil moisture (recently as in [De Zan and Gomba, 2018]), snow water
equivalent (SWE), vegetation cover/biomass, surface roughness, and others. These points are ad-
dressed in the following chapter, where we derive a simple physical decorrelation model, and discuss
the potential for soil moisture estimation using closure phase and decorrelation phase observations.



Chapter 6

Closure Phase-Consistent
Interferometric Model

In this chapter, we derive a general imaging model for interferometric synthetic aperture radar (In-
SAR) that explicitly considers the statistical properties of surface roughness and volume scattering.
We show that this ‘partially-correlated interferometric model’ (PCIM) reduces to the common imag-
ing models used by the SAR community when idealized simplifications concerning the statistics of
scattering elements are made. The PCIM model provides analytic solutions when more physically
realistic assumptions of scattering statistics, surface roughness, and volume scattering are retained,
while simpler imaging models cannot adequately capture this physical behavior. We demonstrate
the potential of the PCIM model for more accurate investigations of interferometric closure phase,
and its sensitivity to wavelength-dependent behavior in interferometric closure phase – which has
not previously been reported in the literature. We discuss the benefit of the PCIM model for both
improved error quantification in existing geodetic techniques, and its potential for soil moisture
retrieval; specifically within the context of the upcoming dual-frequency NISAR mission. Finally,
we propose a methodology for retrieving soil moisture information from closure phase observations.
We briefly discuss implementation of this methodology, and then discuss the degree to which the
assumed interferometric soil moisture model, and the assumed statistics of surface scatterers impacts
the sensitivity of closure phase observations to surface soil moisture.

6.1 Soil Moisture and InSAR Signal Decorrelation

Interferometric synthetic aperture radar (InSAR) is a radar-based geodetic technique capable of re-
solving centimetric-level deformation of the Earth’s surface with millimetric precision at high spatial
resolution [Rosen et al., 2000]. Decorrelation of the radar signals in an interferometric pair is often

71
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the critical limiting phenomena that precludes precise geodetic measurement. For this reason, much
effort has been devoted to understanding both the physics and statistics of decorrelation noise, as
well as the geophysical processes and properties that give rise to interferometric decorrelation [Zebker
and Villasenor, 1992; Agram and Simons, 2015]. Since the publication of Zebker and Villasenor’s
work on interferometric decorrelation, many subsequent papers have related decorrelation to a range
of imaging properties [Tough et al., 1995; Gatelli et al., 1994; Lee et al., 1994; Joughin et al., 1994;
Touzi et al., 1999; Ferretti et al., 1999], and surface/geophysical properties [Treuhaft et al., 1996;
Treuhaft and Siqueira, 2000; Rabus et al., 2010; Luo et al., 2000; Hoen and Zebker, 2000; Hensley
et al., 2011; De Zan et al., 2014; De Zan et al., 2015; Zwieback et al., 2015a].

There has been significant interest in recent years in understanding the effects of soil moisture
on interferometric measurements [Nolan and Fatland, 2003; Nolan et al., 2003; Barrett et al., 2013].
Several scattering models have been proposed that relate variations in the dielectric permittivity of
the surface and near subsurface (associated with changes in volumetric water content) to variations
in measured interferometric phase [De Zan et al., 2014; Zwieback et al., 2015b]. It has also has been
noted that phase nonclosure, or lack of phase triangularity (hereafter referred to as closure phase) is
similarly sensitive to the soil moisture state of the surface and near subsurface. As a result, there is
continuing interest in exploiting phase closure as a method of mapping soil moisture, as the spatial
resolution of active SAR instruments is several orders of magnitude finer than most radiometers
used for conventional soil moisture measurement [De Zan and Gomba, 2018; Entekhabi et al., 2010].
An initial attempt at a soil moisture retrieval using closure phase showed promising results [De Zan
and Gomba, 2018], although additional work is needed to more fully formulate a complete physical
understanding of the physical link between closure phase and variable soil moisture, as well as how
closure phase manifests in active radar imaging systems.

Here, we demonstrate that a mathematical idealization made in Zebker and Villasenor [1992],
and implicitly adopted by most subsequent studies on interferometric decorrelation, is inconsistent
with several of the other implicit assumptions made by scattering models that explicitly consider soil
moisture. Namely, the assumption made of statistically uncorrelated scatterers (i.e. any ensemble
distribution of scatterers with a Dirac delta autocorrelation function) is invalid when a volume of
scatterers with variable dielectric permittivity is considered.

In this chapter, we propose a more general formulation of the interferometric scattering model
described in Zebker and Villasenor [1992], which is generalized for scattering targets of any arbi-
trary autocorrelation function. We demonstrate that this partially-correlated interferometric model
(PCIM) is reducible to the models derived in De Zan et al. [2014] and Zwieback et al. [2015] under
idealized scattering assumptions. We further demonstrate that the PCIM model provides a more
complete physical basis for the manifestation of interferometric closure phase which is dependent
upon both systematic changes in dielectric permittivity as well as the statistics of the scattering el-
ements themselves, thus explicitly linking closure phase to both systematic phase effects (variations
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in dielectric permittivity) and stochastic phase effects (statistical scattering). Using Monte Carlo
simulations, we discuss closure phase within the context of signal decorrelation, and demonstrate
key differences between the PCIM model and previous scattering models. We discuss the potential
of the PCIM model for soil moisture retrievals, with a specific focus on the upcoming NASA-ISRO
Synthetic Aperture Radar (NISAR) mission. Lastly, we propose a simple algorithm for estimating
changes in soil moisture from closure phase and decorrelation phase observations.

The rest of the chapter is organized as follows: Section 6.2 provides a brief background on
interferometric decorrelation and interferometric closure phase. Section 6.3 details the PCIM model.
Section 6.4 contains the results from model simulations based upon the PCIM. Section 6.5 discusses
the most salient aspects of the PCIM model, as well as its potential for improved soil moisture
retrieval using closure phase measurements. Section 6.6 details the simple soil moisture retrieval
algorithm, and Section 6.7 provides concluding remarks.

6.2 Closure Phase and Surface Scattering Properties

A focused SAR image is an array of complex-valued pixels, each of which corresponds to the complex
SAR backscatter from a given resolution element (resel) from the surface of the earth. As shown in
Section 3.7, the complex correlation is:

γ̂ = 〈s1s∗
2〉√〈s1s∗

1〉√〈s2s∗
2〉 (6.1)

For any three SAR images, the bicoherence is defined as:

Ξ̂123 = γ̂12γ̂23γ̂∗
13 (6.2)

Like the correlation, the bicoherence is a complex quantity with a corresponding phase term, the
closure phase:

ξ123 = � Ξ̂123 (6.3)

The closure phase is invariant to any purely propagational phase terms – such as surface defor-
mation, atmospheric delay, or topographic errors – that contribute to the interferometric phase of
the individual SAR pairs [De Zan et al., 2014; Zwieback et al., 2015b; Michaelides et al., 2019b]. For
an idealized, perfectly coherent scattering element, the closure phase should always be identically
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zero. However, a combination of stochastic signal decorrelation and systematically variable atten-
uation rates and transmission wavenumbers during volume scattering can generate nonzero closure
phase [De Zan et al., 2015; Michaelides et al., 2019b].

In this manner, closure phase is most sensitive to the physical scattering properties of the en-
semble of scatterers that give rise to SAR backscatter in any given resel. This direct sensitivity
to target scattering properties and invariance to propagational phase terms makes closure phase a
potentially powerful complementary interferometric observable to interferometric phase and corre-
lation. However, the physics and statistics that give rise to closure phase have yet to be completely
determined. While the models proposed by [De Zan et al., 2014] and [Zwieback et al., 2015b] show
potential to leverage closure phase for retrieval of surface soil moisture content, we propose a mod-
ification to De Zan’s 2014 model. By explicitly accounting for 1): Snell’s Law refraction and the
horizontal divergence of transmitted ray paths that it induces in volume scattering, and 2): a more
general expression for the autocorrelation of the ensemble scattering elements that give rise to SAR
backscatter, our model detailed below offers applicability to a greater range of scattering targets
and phenomena.

6.3 PCIM Model

In the most general formulation, we can model the time-dependent scattering target of the surface,
near-subsurface, and any vegetation layers or diffusely distributed sub-resolution scattering elements
as a general ensemble volume of stochastic scatterers g(x, y, z, t). Ignoring the y-axis without loss
of generality, we can express the SAR signal s acquired at time t = t1 as:

s1 =
∫ ∫

ρ(x1, z1, t1)e−i2k0r1e−i2kx1x1e−i2kz1z1dx1dz1 + n1 (6.4)

where the complex SAR backscatter ρ(x1, z1, t1) is a product of the radar system impulse response
(assumed constant) and the ensemble distribution of complex scatterers (i.e. g(x, y, z, t)) at time
t = t1, k0 is the wave velocity of the radar wave in vacuum (assumed time-invariant and purely
real), r1 is the component of the ray path that propagates in vacuum (i.e. the range to the target),
x1 and z1 are the horizontal and vertical components of the ray path within the scattering volume,
respectively, kx1 and kz1 are the corresponding components of the transmitted complex wavenumber
in the scattering volume, and n1 is an additive thermal noise term. We can similarly define the SAR
signal s2 measured by the SAR interferometer at time t = t2 as:

s2 =
∫ ∫

ρ(x2, z2, t2)e−i2k0r2e−i2kx2x2e−i2kz2z2dx2dz2 + n2 (6.5)
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The complex correlation I12 formed by complex conjugation of these two signals is therefore:

I12 = 〈s1s∗
2〉 =

∫ ∫ ∫ ∫
〈ρ(x1, z1, t1)ρ(x2, z2, t2)∗〉[K]dx1dx2dz1dz2 + 〈n1n∗

2〉 (6.6)

where:

[K] = e−i2k0(〈r1−r2〉)e−i2(〈kx1x1−k∗
x2x2〉)e−i2(〈kz1z1−k∗

z2z2〉) (6.7)

Note that this expression is equivalent to the numerator of Equation 6.1 (i.e. the unnormalized
complex correlation). Because scattering is a stochastic process, I12 is implicitly a statistical esti-
mator, the fidelity of which depends upon the number of independent samples (‘looks’) taken during
the ensemble averaging during estimation. The statistics of the complex correlation I12, as well as
the interferometric phase φ12 = � I12, are therefore dependent upon the statistics of each ensemble
average in Equation 6.6. Real-valued and complex-valued wavenumbers, as well as scatterer posi-
tions are usually assumed to be deterministic parameters, while the complex SAR backscatter is
generally assumed a stochastic random process [Zebker and Villasenor, 1992; De Zan et al., 2014].

The two dominant noise terms that manifest during complex correlation estimation are speckle
and thermal noise [Goodman, 1985; Rodriguez and Martin, 1992; Ulaby and Long, 2014]. Speckle
noise arises from the stochastic nature of the distribution of scattering elements. A common sim-
plification is made by assuming that backscatter arises from uniformly distributed and uncorrelated
scattering centers, whereby the ensemble average of the product of the two SAR backscatter terms
becomes:

〈ρ(x1, z1, t1)ρ(x2, z2, t2)∗〉 = f(x1, z1, t1)δ(x1 − x2, z1 − z2, t1 − t2) (6.8)

where f(x, z, t) is a real function that encodes the radar cross-sections of embedded scatterers, and
δ(q − q′) is the Dirac delta function. In most InSAR applications, volume scattering is neglected,
and by insertion of Equation 6.8, Equation 6.8 simplifies to:

I12 = 〈s1s∗
2〉 =

∫ ∫
f(x1 = 0, z1 = 0, t1)e−i2k0(〈r1−r2〉)dx1dz1 + 〈n1n∗

2〉 (6.9)

whereby the interferometric phase is a function purely of the ensemble expectation of the change in
range between the illuminated ground surface at x1 = 0, z1 = 0 and the SAR platform. Subsurface
penetration of the SAR signal was considered in De Zan et al. [2014] and Zwieback et al. [2015], by
modifying Equation 6.8 to:
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〈ρ(z1)ρ(z2)∗〉 = f(z1)δ(z1 − z2) (6.10)

whereby the scatterer radar cross-section distribution is assumed time-invariant and a function solely
of depth, which reduces Equation 6.6 to:

I12 = 〈s1s∗
2〉 =

∫ ∫
f(z1)e−i2k0(〈r1−r2〉)e−i2(〈kz1z1−k∗

z2z2〉)dz1 + 〈n1n∗
2〉 (6.11)

In addition to the change in range between image acquisitions, the interferometric phase is now
also affected by changes in the complex vertical wavenumber kz. Variations in the real component
of the vertical wavenumber generate a phasor term analogous to the phasor caused by changes in
range, while the imaginary component of the wavenumber attenuates the complex correlation (which
in turn can induce a depth-dependent phase excursion). If variations in the refraction angle at the
air-surface interface are assumed negligible and Equation 6.10 is taken to be constant with depth –
as in De Zan et al. [2014] – then Equation 6.11 has an analytic solution of the form:

I12 = 〈s1s∗
2〉 = 1

2i(kz1 − k∗
z2) (6.12)

In actuality, physically realistic variations in the complex dielectric permittivity of a scattering
volume can generate variations in the refraction angle which can in turn generate divergences of
the refracted ray path on the order of millimeters to centimeters for soils, and tens of centimeters
for vegetation canopies (see Appendix C). Such deviations between image acquisitions modifies the
autocorrelation of the volume ensemble of scattering elements, introducing systematic biases in both
interferometric phase and complex correlation.

Equation 6.8 can be more generally expressed as:

〈ρ(x1, z1, t1)ρ(x2, z2, t2)∗〉 = R(x1 − x2, z1 − z2, t1 − t2) (6.13)

where R is the autocorrelation of the complex signal ρ. In the case of time-invariant uncorrelated
scatterers, the autocorrelation of such a distribution reduces to the form of Equation 6.8. Such a
simplification is idealized, and invalid either when scattering distributions are more accurately mod-
eled as stochastic processes, and/or when variable dielectric permittivity during volume scattering
causes a horizontal divergence of the transmitted ray path.

By way of example we first consider the case of a homogeneous volume of time-variant dielec-
tric permittivity and explicitly account for horizontal divergences in refracted ray paths. We then
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consider a volume with fluctuations in dielectric permittivity (conceptually analogous to either com-
positional variations, changes in volumetric soil moisture, pore space, and/or surface roughness),
which we model as stochastic random processes. We derive an expression for the complex correla-
tion for the above volume in the presence of a time-variant bulk dielectric permittivity. Finally, we
consider the general case of a scattering volume with time-variant bulk dielectric permittivity and
time-dependent dielectric fluctuations.

Case 1: Time-variant homogeneous scattering volume

Conceptually, this scenario is equivalent to the model derived by [De Zan et al., 2014] with the explicit
inclusion of variable refraction angle. For simplicity, we drop the range phasors and thermal noise
terms from Equation 6.6, as these are not affected by the volume integration. For a homogeneous
scattering volume, we first assume that scatterers are uncorrelated vertically and perfectly correlated
horizontally. This is equivalent to making the assumption of uncorrelated scatterers in Equation
6.8 while explicitly considering divergence of refracted ray paths. From Appendix C, we have noted
that the horizontal wavenumber is unchanged upon transmission and purely real (i.e. kx1 = k∗

x2),
so Equation 6.6 simplifies to:

I12 =
∫ ∫ ∫

f(z1)e−i2(〈kx(x1−x2)〉)e−i2(〈(kz1−k∗
z2)z1〉)dx1dx2dz1 (6.14)

We note that x1 − x2 is equivalent to the horizontal offset between the refraction ray paths (see
Appendix C). Making use of the linearity of the horizontal offset with respect to depth, we can
rewrite Equation 6.14 as:

I12 =
∫

f(z1)ei2(〈kx
∂χ12

∂z z1〉)e−i2(〈(kz1−k∗
z2)z1〉)dz1 (6.15)

where the partial derivative of the horizontal offset with respect to depth, ∂χi

∂z , is independent of
horizontal position.

We can see that Equation 6.3 is analogous to the expression derived by [De Zan et al., 2014] with
the addition of a phasor term that is the product of the horizontal wavenumber and ∂χi

∂z . Both the
horizontal and vertical phasors are dependent upon the dielectric contrast; the horizontal phasor
through the term ∂χi

∂z , and the vertical phasor through the term (kz1 − k∗
z2).

Notably, the signs of these two terms remain the same regardless of dielectric contrast (or the
sign of the dielectric contrast); however the sign change of the horizontal phasor ensures that the
horizontal and vertical phasors act contrary to each other. Conceptually, neglecting to account for
horizontal phase shifts due to variable refraction ray path as in De Zan et al. [2014] and Zwieback
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Figure 6.1: Right: Geometry of subsurface scattering. Variations in refractive angle due to variations
in complex permittivity result in different ray paths between the SAR platform and the embedded
scatterer. Top left: The autocorrelation of a stochastic random process is dependent upon the
spatial lag, xχ. Bottom right: The magnitude of the autocorrelation is dependent upon the standard
deviation of the surface heights σ and the correlation length Lχ of the surface.

et al. 2015 results in an overestimate of the interferometric phase due to propagation through a
volume of time-variant dielectric permittivity.

Case 2: Time-invariant scattering volume with spatial dielectric fluctua-
tions

The model described in De Zan et al. [2014] and Zwieback et al. 2015 implicitly assumes that
variations in refractive angle as a function of subsurface dielectric permittivity are small enough
to be ignored. If, however, variations in refractive angle are explicitly accounted for in conjunction
with stochastically rough surfaces, the autocorrelation of any volume distribution of scatterers will no
longer be an idealized Dirac delta function. This point is demonstrated in Figure 6.1, which illustrates
a stochastically rough surface overlying a homogeneous, time-variable dielectric halfspace with an
embedded scatterer. Variations in the dielectric permittivity of the subsurface cause variations in
the refractive angle at the air/surface interface; this in turn causes a variation in the total ray path
between the embedded scatterer and the SAR interferometer. For any two ray paths corresponding
to acquisition times with different bulk dielectric permittivities of the subsurface, the refraction
points at the air/surface interface will differ from one another.

Analogously, for two ray paths that each impinge upon the surface at the same refraction point,
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differences in subsurface dielectric permittivity will cause differences in refractive angle, yielding an
increasing divergence between the two subsurface ray paths as a function of depth. Mathematically,
this is equivalent to de-focusing the SAR interferometric imaging response; due to the divergence of
the subsurface ray paths, the impulse response of the SAR interferometer is no longer a Dirac delta
function. Instead, the interferometric impulse response (which is equivalent to the autocorrelation
of the scatterer distribution) is actually a function of the surface roughness (or more generally,
the statistics of the entire ensemble volume of scatterers), the dielectric contrast between image
acquisitions, and the depth to discrete scatterers.

This interferometric impulse response can be represented as:

〈ρ(x1, z1)ρ(x2, z2)∗〉 = R(x1 − x2, z1 − z2) (6.16)

This generalized model of the SAR interferometer’s impulse response is illustrated in Figure
6.1, for an example wide-sense stationary (WSS) stochastic process with a Gaussian autocorrelation
function. As the depth to any scatterer increases, and/or the contrast in dielectric permittivity
between image acquisitions is made more pronounced, the horizontal spatial offset – and therefore
the offset in refraction point at the air/surface boundary – will increase in turn. The smaller
the autocorrelation length of the rough surface, the faster the autocorrelation of the rough surface
approaches zero. The simplified model proposed by [De Zan et al., 2014] and [Zwieback et al., 2015b]
corresponds to the limiting case where the autocorrelation length of the surface approaches zero,
generating a Dirac delta autocorrelation function. Using the generalized autocorrelation expression
in Equation 6.16, Equation 6.6 becomes:

I12 =
∫ ∫ ∫ ∫

R(x1 − x2, z1 − z2)e−i2k0(r1−r2)e−i2kx(x1−x2)e−i2(kz1z1−k∗
z2z2)dx1dx2dz1dz2 (6.17)

The following changes of variables can be made:

x2 = x1 + χ χ = x2 − x1 (6.18)

z2 = z1 + ζ ζ = z2 − z1 (6.19)

k∗
z2 = kz1 + κz κz = k∗

z2 − kz1 (6.20)
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where χ and ζ are the increments of their respective stochastic processes, x and z. Assuming
stationarity of increments, the autocorrelation function depends only upon the increment rather than
the position in the stochastic process [Waechter et al., 2004]. Inserting these changes of variables
into Equation 6.17 and simplifying yields:

I12 =
∫ ∫

R(χ, ζ)e−i2k0(r1−r2)e−i2(kz1−k∗
z2)z1ei2(kxχ+k∗

z2ζ)dx1dz1 (6.21)

Upon inspection of Equation 6.17, it is evident that it is merely a more generalized form of the
model first derived in De Zan et al. [2014]. When the autocorrelation of the stochastic distribution of
scatterers is taken to be a Dirac delta function (as in De Zan et al. [2014] and Zwieback et al. 2015),
χ → 0, ζ → 0 R(χ, ζ) → 1, the last exponential in Equation 6.21 evaluates to 1, and the integration
kernel in Equation 6.21 reduces to the form of Equation 6.11. We can therefore consider this last
exponential term as a ‘perturbation term’ which encodes phasors associated with both horizontal
spatial offset due to variable refractive angle, as well as small-scale (i.e. sub-facet) vertical surface
roughness:

ei2(kxχ+k∗
z2ζ) = ei2kxχei2k∗

z2ζ (6.22)

where we have divided the exponential perturbation term into two components, the first of which
encodes horizontal spatial offset, and the second of which encodes vertical small-scale roughness vari-
ations. Recognizing that the vertical roughness, z, is itself a WSS stochastic process with horizontal
position x as the independent variable, we can express the exponent of the second exponential in
Equation 6.22 as:

ζ = z′ − z = z(x + χ) − z(x) (6.23)

If we assume that the autocorrelation of the surface roughness is jointly distributed, then:

R(χ, ζ) = R(χ)R(ζ) (6.24)

For a stationary process, the expectation of ζ will be zero:

E[ζ] = E[z(x + χ) − z(x)] = E[z(x + χ)] − E[z(x)] = 0 (6.25)
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and the exponential perturbation term reduces to:

ei2kxχ = ei2(〈kx
∂χ12

∂z z1〉) (6.26)

as in the previous section. We can then rewrite Equation 6.21 as:

I12 =
∫ ∫

R(χ, ζ)e−i2k0(r1−r2)e−i2(kz1−k∗
z2)z1ei2kxχdx1dz1 (6.27)

Again, we notice that for spatially uncorrelated scatterers with identically zero correlation
lengths, Equation 6.27 reduces to the form derived in De Zan et al. [2014] and Zwieback et al.
2015. If more physically realistic distributions of scatterers are considered, Equation 6.27 progres-
sively deviates from the simpler form of Equation 6.11 as a function of both the autocorrelation of
the stochastic process (in particular, the correlation length), and the horizontal offset (which is in
turn a function of the dielectric contrast, and the scatterer depth).

Because the horizontal offset is implicitly a function of depth, and the wide-sense stationarity of
the autocorrelation implies that the autocorrelation is a function only of the horizontal offsets (and
not the horizontal positions), if we assume (1) that the scatterer distribution is purely a function of
depth, and (2) that vertical interfaces are uncorrelated with each other, then Equation 6.27 simplifies
to:

I12 =
∫

R(χ)e−i2k0(r1−r2)e−i2(kz1−k∗
z2)z1ei2kx

∂χ12
∂z z1dz1 (6.28)

where the dependence of the horizontal lag χ on depth z has been made explicit, and the complex
correlation is now an integral only with respect to depth. If the autocorrelation is taken to be a
Dirac delta function, the horizontal perturbation term evaluates to unity, and Equation 6.28 reduces
to the familiar form derived in De Zan et al. [2014]. If horizontal layers are assumed to be perfectly
correlated with themselves, then R(χ) = 1 for all χ, and Equation 6.28 reduces to:

I12 =
∫

f(z1)e−i2k0(r1−r2)e−i2(Kz1−k∗
z2)z1ei2kxχ(z1)dz1 (6.29)

This is analogous to the solution from De Zan et al. [2014], with an additional phase term
in the integrand. Because the sign of the horizontal perturbation is opposite that of the vertical
propagation term, this horizontal perturbation term generates a phase contrary to the phase caused
from variations in the vertical wave velocity. In this sense, neglecting the horizontal phase terms
caused by variable refractive angle results in an overestimate of the interferometric phase term due
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to propagation in a volume of time-variant dielectric permittivity.

Case 3: Time-variant scattering volume with spatio-temporal dielectric
fluctuations

To account for time-dependent behavior of the distribution of scatterers – due to, for example,
progressive decorrelation due to random reorientation of surface scatterers or redistribution of surface
roughnesses – one can generalize the equations from Case 2 by making the complex SAR backscatter
explicitly a function of time. The autocorrelation of the complex SAR backscatter will therefore be:

〈ρ(x1, z1, t1)ρ(x2, z2, t2)∗〉 = R(x1 − x2, z1 − z2, t1 − t2) (6.30)

Assuming stationarity in time as well as space, the integral corresponding to the interferogram
will therefore be:

I12(τ) =
∫ ∫

R(χ, ζ, τ)e−i2k0(r1−r2)e−i2(kz1−k∗
z2)z1ei2kxχdx1dz1 (6.31)

where τ = t1 − t2 is the temporal baseline between the two image acquisitions. While it is relatively
straightforward to derive these mathematical expressions, the choice of what the most appropriate
statistical model to use for the distribution of scatterers and its associated autocorrelation is less
obvious. We shall defer further consideration of this point until Section 6.5.

6.4 Comparison of PCIM Model with Monte Carlo Simula-
tions

To assess the validity of the PCIM model presented in Section 6.3, we compare it to both the model
described in De Zan et al. [2014] (referred to as the ‘De Zan model’), and simulations from a Monte
Carlo scattering model [Zebker, 2020]. The most salient difference between the De Zan model and
the PCIM model is a change in the integration kernel (i.e. Equation 6.21). the integration kernel of
the PCIM model has an additional depth-dependent phasor term associated with horizontal ray path
divergence, as well as an additional depth-dependent attenuation rate associated with the statistics
of the ensemble scattering volume. As such, both models depend heavily upon: 1) the assumed
distribution of scatterers, in particular the vertical distribution of scatterers within the volume and
their associated autocorrelation functions, and 2) the assumed dielectric mixing model.

Figure 6.2 compares the De Zan and PCIM models using the Hallikainen dielectric mixing model
[Hallikainen et al., 1985] and two vertical scatterer distributions: 1) a constant, depth-independent
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Figure 6.2: Comparison of the De Zan and PCIM models for a linear soil moisture gradient with
initial soil moisture mv0 = 0.1 and the dielectric mixing model from Hallikainen et al. [1985].
Both a constant, depth-independent scatterer distribution (solid line), and an exponential depth
distribution (dashed lines) are shown. The wavelength dependence of the closure phase is only
captured by the PCIM model with a depth-dependent scatterer distribution. Mean closure phase
values from MCMC simulations for an exponential distribution of scatterers are plotted alongside
the theoretical results.
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distribution, and 2) an exponentially decaying distribution. For simplicity, we assumed a linear
gradient in soil moisture between the 3 image acquisitions; that is, the soil moisture content in
Image 3 is twice that of Image 2, which is in turn twice that of Image 1. As stated in Section 6.3,
the PCIM model systematically estimates a smaller phase closure value than the De Zan model for
both vertical distributions of scatterers.

The PCIM model predicts a noticeable wavelength-dependence on the closure phase for depth-
dependent scattering models. In contrast, the De Zan model predicts a slight wavelength depen-
dence for the exponential distribution, and wavelength independence for the constant distribution,
as illustrated in Figure 6.3. This wavelength dependence arises from the real and imaginary com-
ponents of the analytic expression for the bicoherence being equally proportional to the wavelength
in Equation 6.12; the complex argument will therefore be independent of wavelength. Imposing
a nonzero, wavelength-independent attenuation (which is purely real), breaks this independence,
as the real and imaginary components are no longer equally proportional to the wavelength. The
wavelength-dependence of the closure phase from the PCIM model is even more pronounced, as the
autocorrelation of the distribution of volume scatterers introduces an additional attenuative term,
even in the case of a constant distribution of vertical scatterers.

Comparing the results from our Monte Carlo model simulations to both the De Zan and PCIM
models, we can see that the PCIM model yields a closer match to the simulation results than the
De Zan model. Figure 6.4 illustrates the integration kernel of the two models, evaluated at a depth
of 15 cm. The wavelength dependence of the closure phase is clear, as is the closer fit between
the PCIM model and the simulation results. While the wavelength dependence is captured by the
integration kernel of the De Zan model, without accounting for the phase terms associated with
the horizontal depth-dependent ray path divergence, the De Zan integration kernel has a higher
wavenumber than the PCIM kernel (see the leftward translation of the dotted line with respect to
the solid line in Figure 6.4). This higher wavenumber is responsible for the observed leftward shift,
which is observed for all integration depths (see Figure 6.5). The De Zan model systematically
predicts a larger wavenumber than the PCIM model. as a result it diverges less from the infinite
integration depth solutions (solid green and blue lines) than the PCIM model and Monte Carlo
simulations, which better agree with each other. When integrated to arbitrary (or infinite) depth,
the over-prediction of the wavenumber in the De Zan model results in a systematic over-estimate of
the interferometric phase in comparison to the PCIM model and simulation results (see again Figure
6.2).

We generated numerical simulations and Monte Carlo simulations of closure phase as a function
of both soil moisture gradient and effective integration depth. Figure 6.6 displays the results for
both L-band and S-band. The numerical simulations of the analytic model and the Monte Carlo
modeling generally agree, though they begin to diverge for large soil moisture gradients. It is evident
that the analytical solution for a constant vertical depth distribution integrated to infinity presented
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Figure 6.3: Wavelength Dependence. Top: The real component of the complex wavenumber for
a constant vertical distribution. Middle: imaginary component. Bottom: The theoretical closure
phases for L-band (black) and S-band (purple) yield identical results for a constant vertical distribu-
tion (curve 1). An exponential vertical distribution yields a very weak wavelength dependence with
the De Zan model (curve 2). An exponential vertical distribution yields a more apparent wavelength
dependence with the PCIM model (curve 3). Color schemes in top and middle plots are consistent.
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Figure 6.4: Comparison of the integration kernel of the De Zan (dotted) and PCIM (solid) lines
evaluated at a depth of 15 cm. MCMC simulation results are plotted alongside for comparison.
Standard deviation between the simulation results and the De Zan and PCIM models are inset.

Figure 6.5: Left: De Zan analytic model. Middle: PCIM analytic model. Right: Monte Carlo
simulations. The PCIM model and Monte Carlo simulations both resolve a greater divergence
between the infinite integration depth solutions (solid green and blue lines) and finite integration
depth solutions (dotted lines), than the De Zan model.
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Figure 6.6: Comparison between analytic and Monte Carlo closure phase in L-band (top) and S-band
(bottom) for: an infinite subsurface integration depth and constant vertical scatterer distribution
using the De Zan model (solid blue line); an infinite subsurface integration depth and constant
vertical scatterer distribution using the PCIM model (solid green line); varying discrete integration
depths using the PCIM model (dotted lines); and Monte Carlo simulations for varying discrete
integration depths (dots, colors are consistent with dotted lines).

in De Zan et al. [2014] is an upper-bound estimate for all solutions with a more physical finite depth
of integration. For finite integration depths at both frequencies, penetration of at least ∼ λ

10 is
necessary for significant closure phase. Closure phase increases rapidly with increasing penetration
depth for a small range, and then gradually decreases as integration depth continues to increase.
Past an integration depth of ∼ λ, significant closure phase is not observed. Despite the fact that
the analytical solution for infinite integration depth is wavelength-independent, there is a clear
wavelength dependence for finite integration depths, with larger wavelengths (lower frequencies)
producing larger closure phase excursions. Notably, the solutions for finite integration depths are
not monotonic as a function of soil moisture gradient. This is true for both the De Zan model
and the PCIM model. However, as the vertical distribution of scatterers is constrained to be an
exponential or Gaussian distribution, the behavior becomes more monotonic (as in Figure 6.2).

The numerical results from Figure 6.6 are repeated in Figure 6.7, where closure phase is now
displayed as a function of effective integration depth (vertical axis) and increasing soil moisture
gradient (horizontal axis). The 1

e penetration depths for each image used to form a closure phase
triplet are shown in magenta (where images with larger soil moisture values correspond to shallower
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penetration depths). The qualitative similarity between the two frequencies is apparent, as is the
wavelength-dependence. Significantly, nonzero closure phase is mostly confined to a narrow band of
integration depth and soil moisture, which suggests that measured closure phase is most sensitive to
the soil moisture state at a given depth (∼ Dpene

2 ). Furthermore, this depth sensitivity is wavelength-
dependent, with higher frequencies (smaller wavelengths) sensitive to shallower depth bands.

This wavelength sensitivity to different depths immediately suggests the potential to use multifre-
quency closure phase observations to characterize soil moisture at different depths. The upcoming
dual-frequency L-band and S-band NISAR mission would provide an ideal opportunity to gener-
ate contemporaneous, dual-frequency closure observations. Furthermore, the nonmonotonic nature
of the closure phase as a function of soil moisture gradient suggests that contemporaneous, mul-
tifrequency closure phase measurements could exploit this systematic wavelength dependence for
improved soil moisture characterization.

The sensitivity of the PCIM model to the gradient in soil moisture suggests that the exponential
decay in soil moisture observed following precipitation events [Njoku et al., 2003; McColl et al.,
2017] provides a natural physical process around which to develop an initial closure phase-based soil
moisture retrieval algorithm (see Figure 6.8). Because the gradient in soil moisture is constantly
varying during an exponential decay, the closure phase signature associated with a soil moisture
drydown should in turn be unique at any point in time. By generating time series of contemporaneous
L-band and S-band NISAR observations of expected or known drydown events – associated with
precipitation events or flooding events, for example – a time series of interferometric phase, closure
phase, and decorrelation phase (through the algorithm presented in Chapter 5) could be made.
Observation of unique closure phase signatures as a function of time since initiation of a drydown
event, as well as systematic differences between L-band and S-band observations, would provide a
powerful validation of the PCIM model proposed here.

Successful validation of soil moisture estimates from the PCIM model would require a combina-
tion of in-situ measurements of soil moisture and independent, simultaneous retrieval estimates of
soil moisture from a radiometer such as SMAP [Colliander et al., 2017; Grassotti et al., 2003]. Di-
rect comparison to in-situ measurements, and cross-calibration with existing soil moisture retrieval
algorithms would be the most robust methods of assessing the fidelity of closure phase-based soil
moisture estimates. [Narvekar et al., 2013; Al-Yaari et al., 2017; Al-Yaari et al., 2019]. Furthermore,
overlapping datasets of radiometric and active radar observations would allow for error quantifica-
tion of multiple retrieval algorithms using the statistical method of triple-collocation [McColl et al.,
2014]. Finally, the difference in spatial resolution between passive radiometric and active radar
measurements can be as large as a factor of 100, providing a unique opportunity to compare how
soil moisture varies across spatial scales, which is of paramount importance for regional hydrologic
modeling, watershed characterization, and climate forecasting [McCabe and Wood, 2006].
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Figure 6.7: Numerical simulations of closure phase as a function of integration depth and soil
moisture gradient (under the assumption of a monotonic gradient across 3 SAR images) for a constant
vertical distribution of scatterers at L-band (left column) and S-band (right column). First row: De
Zan model. Second row: PCIM model. Third row: difference between PCIM and De Zan model.
Penetration depth for each image shown in magenta (solid: Image 1, dot-dashed: Image 2, dotted:
Image 3).
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Figure 6.8: Top: Depiction of an idealized time-series application test for the proposed closure phase
model. The blue line represents a time series of soil moisture for an impulse event such as a rain storm
or agricultural flood event; soil moisture is constant until the impulse event, and gradually decays
to its previous value. If several repeat SAR observations (represented as red circles) are collected
over the course of the event, a dense network of closure phase triplets can be formed for different
soil moisture gradients (the derivative of the blue line). Bottom: An example from SMAP-derived
soil moisture values displaying this exponential behavior as the wetted soil undergoes a drydown
(adapted from McColl et al. [2017].

6.5 A Preliminary Soil Moisture Retrieval Algorithm

While nonzero phase closure is fundamentally due to signal decorrelation between SAR scenes within
a triplet [Michaelides et al., 2019b], there has been particular interest in relating closure phase to
temporal variations in surface and near-subsurface soil moisture state [De Zan and Gomba, 2018]. We
will assess the degree to which soil moisture can be retrieved using closure phase-based inversions. We
demonstrate an inversion of decorrelation phase from closure phase with Sentinel-1A InSAR imagery
collected during the 2018 Kilauea Eruption, and demonstrate the potential for phase closure to bias
conventional geodetic time series estimates. Finally, we estimate temporal changes in soil moisture
from the inferred decorrelation phase.

6.5.1 Estimating Decorrelation Phase from Closure Phase

Chapter 5 of this thesis presented an algorithm with which to estimate the component of inter-
ferometric phase that is due to signal decorrelation by exploiting subsets of closure phase triplets
[Michaelides et al., 2019b]. Because closure phase is invariant to propagational phase terms, Equa-
tion 5.4 can be re-expressed as:

ξ123 = φd
12 + φd

23 − φd
13 (6.32)
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where φ̂d
ij are decorrelation phase terms. For a series of coregistered SAR scenes, a system of

linear equations of the form of Equation 6.32 can be constructed and inverted via a singular value
decomposition (SVD) to solve for the best-fitting estimate of decorrelation phase values for each
interferogram pair:

ξ = Bφd φd
est = B†ξ (6.33)

where B† is the pseudo-inverse of B and φd
est is the best-fitting estimate of the decorrelation

phase. An example is demonstrated in Figure 6.9. Sentinel-1A data was collected over Hawaii
from 4/11/2018 - 11/01/2018 during the 2018 Kilauea eruption. The first row of Figure 6.9 displays
the average coherence and a single closure phase triplet formed from the 04/11/2018-04/23/2018-
09/20/2018 scenes. The following rows shows the three corresponding interferogram pairs, and their
associated solutions for decorrelation phase after application of the SVD algorithm.

The separation of the surface deformation associated with the Kilauea eruption is evident in
the decorrelation phase. Similarly, there are clear spatial patterns within the decorrelation phase
associated with vegetation cover, various lava channels within Hawaii Volcanoes National Park, and
along the slopes of Mt. Kilauea.

6.5.2 Soil Moisture Gradient Estimation

After estimating the decorrelation phase associated with each interferogram pair, we convert the
estimates of decorrelation phase into temporal variations of soil moisture. To do so, it is necessary
to have both an interferometric model that incorporates variations in soil moisture (and therefore
dielectric permittivity of the near subsurface), as well as a model for the vertical distribution of
scattering elements that give rise to SAR backscatter within each surface resolution element [De
Zan et al., 2014]. We compare the interferometric model derived in De Zan et al. [2014] with the
‘PCIM’ model.

The impact of variable soil moisture on interferometric phase depends upon both the spatial
distribution and autocovariance function of the scatterers that give rise to SAR backscatter. As
illustrated in Figure 6.10, the assumption of a constant scatterer distribution with depth (constant)
vs. an exponential distribution with depth (exponential), and the assumption of uncorrelated scat-
terers with Dirac delta-like autocorrelations (-) vs. a partially-correlated correlated distribution of
scatterers with exponential autocorrelations (PCIM) can modify the sensitivity of interferometric
phase to changes in soil moisture.

Even modest differences, such as prescribing a constant depth-distribution vs. an exponential
depth-distribution (with a decay constant of 0.14 cm−1), or an exponential autocorrelation with a
correlation length of 3.6 cm can change the sensitivity of interferometric phase to soil moisture by
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Figure 6.9: Demonstration of decorrelation phase estimates from closure phase. Top row: av-
erage coherence (left), closure phase triplet 04/11/2018-04/23/2018-08/27/2018 (right). Following
rows: 3 possible interferometric pairs corresponding to closure phase triplet 04/11/2018-04/23/2018-
08/27/2018 (left) and their associated decorrelation phase estimates (right). Note that decorrelation
phase is insensitive to propagational phase terms (atmospheric noise and surface deformation), but
is sensitive to surface features (lava flow channels in Hawaii Volcanoes National Park, bare soil, and
lightly vegetated surfaces).
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a factor of 3 or more. For physically realistic estimates of soil moisture from interferometric phase,
it is therefore necessary to have a reasonably accurate model of the scattering statistics of an area
of interest.

We estimate the change in soil moisture between the 04/23/2018 and 08/27/2018 scenes from
the associated decorrelation phase estimate for the different sensitivities displayed in Figure 6.10.
A lower sensitivity of the interferometric model to soil moisture results in a larger inferred dynamic
range of soil moisture gradients. In this particular example, the exponential depth-distribution
of scatterers with exponential autocorrelation functions seems to give the most physically realistic
estimate of soil moisture gradients.

6.6 Concluding Remarks and Summary

We have presented here a more general derivation of the interferometric scattering model first pro-
posed in De Zan et al. [2014]. Explicitly considering both volume scattering and the statistical
autocorrelation of stochastically rough surfaces, results in a more general interferometric model
that is valid for a range of scattering distributions, rough surfaces, and volume scattering regimes.
Neglecting to include more realistic scattering autocorrelation functions can result in a systematic
over-estimate of the interferometric and closure phase associated with variable dielectric permit-
tivity, potentially biasing phase-based soil moisture retrievals. Additionally, phase changes due to
variable dielectric permittivity are shown to be frequency-dependent when more realistic vertical
scattering distributions are considered.

While it is relatively straightforward to derive the general form of the PCIM interferometric
model, choosing the most appropriate statistics to represent the vertical distribution of scatterers
and their associated autocorrelation function is less obvious. Constant vertical distributions [De Zan
et al., 2014; De Zan and Gomba, 2018] and linear depth distributions [Zwieback et al., 2015b] have
been previously used for their simplicity and closed form expressions for the complex correlation,
although these modeling results suggest that they may be more appropriate as upper-bound esti-
mates. While Gaussian and exponential distributions yield closer agreement to model simulations,
their analytical expressions are more complex (see Appendix D), and they require more prescribed
parameters. Discrete sums of scattering elements, and scattering volumes with finite integration
depths, similarly display good agreement with modeling results, but their model complexity may
limit their applicability. More rigorous comparisons between different scattering distributions with
modeling results and real data is needed.

We have presented a simple theoretical experiment to validate the PCIM model for soil moisture
retrievals using close phase observations. By exploiting the dependence of the model on soil moisture
gradients – as well as the frequency dependence of the model – we propose to investigate precipitation
drydown events, which have been previously shown to display exponential behavior in soil moisture
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Figure 6.10: Estimation of soil moisture gradients from decorrelation phase estimates. Top left:
sensitivity of different interferometric models and scatterer distributions to changes in soil moisture.
Top right: soil moisture estimation for a constant depth-distribution of scatterers and the interfer-
ometric model from De Zan et al. [2014]. Bottom left: soil moisture estimation for an exponential
depth-distribution of scatterers (decay constant of 0.14 cm−1) and the interferometric model from
De Zan et al. [2014]. Bottom right: soil moisture estimation for an exponential depth-distribution
of scatterers (decay constant of 0.14 cm−1), an exponential scatterer autocorrelations with a 3.6 cm
correlation length.
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content as a function of time. Resolving time-dependent differences in closure phase associated
with a drydown would validate the model’s dependence upon the measured soil moisture gradient.
Frequency dependence of closure phase values would similarly be consistent with the PCIM model,
and might be used to infer differences in soil moisture as a function of sensing depth, as well
as determine the vertical profile of scattering elements giving rise to backscatter. The upcoming
NISAR mission is an excellent candidate for such a validation experiment.

We have also presented a preliminary, demonstrative soil moisture retrieval scheme based upon
closure phase and decorrelation phase observations. In order to develop dedicated soil moisture re-
trieval algorithms that utilize interferometric closure phase and decorrelation phase, a more thorough
understanding of the scattering physics that give rise to these phase terms, as well as the scatter-
ing statistics of various surface types, is necessary. The main advantage of the estimation scheme
presented here over the method proposed in De Zan and Gomba 2018 [2014] is its computational
efficiency, reliance solely on interferometric phase as an observable (i.e. does not use coherence
magnitude as part of the inversion), and its ability to be incorporated relatively seamlessly into
conventional InSAR time series workflows. However, we do not claim at present that this estimation
scheme is superior to the one presented in De Zan and Gomba 2018; further comparison of the
two methods is warranted. At present, we note that this proposed method is both computationally
efficient and provides physically plausible estimates of soil moisture variations from InSAR decorre-
lation phase; more thorough analysis is needed to determine its accuracy. Additionally, closure phase
is sensitive to other forms of systematic decorrelation, such as changes in vegetation canopy water
content. These additional decorrelation terms can confound any soil moisture signal that might be
contained within a closure phase observation, necessitating a more thorough understanding of other
forms of systematic InSAR decorrelation sources.



Chapter 7

Conclusion

7.1 Summary

In this thesis, we have introduced techniques for quantifying permafrost processes, soil moisture,
and surface scattering properties with InSAR. We demonstrated that seasonal thaw subsidence
and active layer thickness can be successfully estimated in discontinuous permafrost environments.
Furthermore, we estimated the long-term behavior of permafrost that has been affected by wildfire,
and provided bounds on post-fire permafrost recovery timescales. These results both broaden the
known range of permafrost environments that can be successfully monitored with InSAR, and provide
a novel method for studying permafrost and wildfire interactions.

We proposed a novel algorithm that utilizes InSAR closure phase observations to estimate the
component of interferometric phase that is due to signal decorrelation. We demonstrated this algo-
rithm over a large subsiding portion of California’s Central Valley, showing that the decorrelation
phase component – due to temporal variations in surface scattering properties such as crop growth
and soil moisture – can be successfully separated from the deformation component of the InSAR
phase signal. We demonstrated that uncertainty due to signal decorrelation on the order of mm/yr
can be separated from the deformation signal; such errors can be of the same order of magnitude as
the signal of interest in several InSAR applications.

Lastly, we derived a physics-based interferometric SAR imaging model that considers the effects
of variable soil moisture and surface scattering properties by explicitly incorporating the relevant
physics into the imaging model. We compared this imaging model to previously-proposed imaging
models and numerical simulations, and discussed the major differences between our model and other
imaging models. Finally, we discussed the potential that our proposed model has for resolving soil
moisture at fine spatial resolution, and presented a preliminary procedure for quantifying temporal
changes in soil moisture that relies on a synthesis of the work presented in Chapters 5 and 6. We hope
that the work presented in this thesis will be helpful in expanding the range of physical processes
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that can be regularly studied with InSAR platforms. To that end, we have identified a few areas of
future work that are natural extensions from the work presented in this thesis.

7.2 Future Work

In Chapter 4, we demonstrated that seasonal and interannual deformation processes can be resolved
by InSAR in discontinuous permafrost zones. Extending the work presented here to a region of
sporadic or isolated permafrost would be valuable to ascertain the full range of permafrost envi-
ronments that can be monitored with InSAR methods. Such an analysis, drawing on the results
presented here, would go a long way towards implementing a framework for regional-scale permafrost
monitoring efforts. Additionally, the ability to quantify post-fire permafrost behavior with InSAR
is a powerful new technique. However, the large variability of both permafrost and wildfire regimes
across the Arctic means that the estimates provided here are not necessarily applicable to the entire
Arctic domain. Future studies of other Arctic wildfires would shed light on the full range of post-
fire permafrost behavior, and provide a more complete understanding of the interactions between
wildfire and permafrost within the context of a warming Arctic.

The closure phase-based algorithm presented in Chapter 5 shows promise as a method of quan-
tifying uncertainties in conventional InSAR analyses due to signal decorrelation. In many regions,
such as vegetated surfaces, wetlands, or areas that experience snow cover, signal decorrelation can
preclude precise geodetic measurements with InSAR, as errors introduced by signal decorrelation
can be on the same order of magnitude as the signal of interest. A more rigorous analysis of signal
decorrelation errors might shed greater light on the full potential of this technique for uncertainty
quantification and error mitigation. Additionally, the flexibility of the design matrix used in this
technique allows for the incorporation of empirical and physics-based models of signal decorrelation,
which might allow for the further separation of decorrelation phase, such as distinguishing between
soil moisture variations, vegetation water content, and snow water equivalent in a permafrost envi-
ronment.

In Chapter 6, we derived a physics-based SAR imaging model that incorporates the statistics
of stochastically rough scattering surfaces and volumes, as well as the effect of variable dielectric
permittivity due to changing soil moisture. Examination of this model and comparison with nu-
merical simulations revealed that this model is dependent upon the statistical characteristics of the
scatterers that contribute to SAR backscatter. In light of this, future research into the statistics of
different scattering volumes, as well as the ability to estimate these statistics from InSAR observa-
tions, is warranted. We also introduced a preliminary method for quantifying temporal variations
in soil moisture at active radar spatial resolutions by combining the results from Chapters 5 and 6.
The full potential for soil moisture retrieval from decorrelation phase and closure phase has not yet
been rigorously studied, however. Such an analysis is an obvious extension of this thesis, and would



CHAPTER 7. CONCLUSION 98

provide further insight into the degree to which soil moisture can be estimated with active radar
phase measurements.

Lastly, the general nature of the imaging model derived in Chapter 6 gives it explanatory power
for a range of physical scattering processes beyond merely the scenario of temporally-varying soil
moisture. Volume scattering elements that undergo changes in dielectric permittivity – such as
vegetation canopies, melting snow packs, and thawing permafrost active layers – can all be modeled
with our proposed imaging model. The range of physical processes that can give rise to systematic
decorrelation phase and nonzero closure phase is potentially vast, and should be studied in greater
detail. Such analysis would also require a more thorough understanding of the statistics of scatterers,
which may be unique to each physical process of interest.

For ease of demonstration, we analyzed InSAR data with the algorithm proposed in Chapter 5 and
the imaging model derived in Chapter 6 over California’s Central Valley and Hawaii’s Mt. Kilauea
– areas that have been extensively studied with InSAR and exhibit some areas of bare surfaces that
maintain temporal coherence. Testing these techniques in more complicated environments, such as
permafrost regions, is another obvious extension of this thesis. Initial results show great promise,
with variations in surface scattering properties due to seasonal permafrost processes observed, as
well as systematic changes in closure phase, decorrelation phase, and inferred scattering properties
observed between wildfire-affected and unaffected permafrost. The ongoing nature of this research
precluded its inclusion in this thesis, but we hope to continue refining the techniques presented in
this thesis, and expand the range of physical processes that can be studied with InSAR.



Appendix A

ReSALT Processing Methodology
Employed in Chapter 4
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Figure A.1: Diagram of processing applied to InSAR data as described in Section 4.2. Data at
various levels of processing are in blue; processing steps described in Section 4.2.1 are in orange;
processing steps described in Section 3.6.1 are in green; processing steps described in Section 4.2.2
are in pink.
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Appendix C

Variable Refractive Angle
Sensitivity Analysis

Consider the viewing geometry illustrated in C.1. A SAR signal at time t1 impinges upon a horizontal
surface at depth z = 0 and horizontal position x = 0. The transmitted ray path is refracted, where
the angle of the refracted ray path with respect to the normal of the surface is modified according
to Snell’s Law:

√
ε0 sin θ0 = √

ε1 sin θ1 (C.1)

where ε0 is the dielectric permittivity of free space, ε1 is the real component of the complex dielectric
permittivity of the subsurface (we assume ε1 > ε0 and is spatially uniform), and θ0 and θ1 are
the incidence angle and refraction angle, respectively. As the refracted ray path penetrates the
subsurface, it intercepts horizontal interfaces at progressively larger distances from the impingement
point at x = 0:

x1(z) = z tan θ1 (C.2)

where the horizontal distance is linear with depth z. Combining Equations C.1 and C.2, Equation
C.2 can be rewritten as:

x1 = z tan(sin−1(
√

ε0 sin θ0√
ε1

)) (C.3)
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Consider a separate SAR signal at time t2 that impinges upon the same point of the surface.
Now, however, the real component of the dielectric permittivity of the subsurface has changed to
ε2. This change in dielectric permittivity results in a different refraction angle, and therefore the
horizontal component of the refracted ray path diverges from the impingement point at a different
linear rate:

x2 = z tan(sin−1(
√

ε0 sin θ0√
ε2

)) (C.4)

assuming that ε2 > ε1, then θ2 < θ1, and the second refracted ray path diverges from x = 0 less
than the first ray path. The difference between the horizontal interception of these two paths, which
we call the horizontal offset χ, is:

χ12 = x2 − x1 (C.5)

Combining Equations C.3 and C.4 with C.5, the horizontal offset can be re-expressed as:

χ12 = z[tan(sin−1(
√

ε0 sin θ0√
ε2

)) − tan(sin−1(
√

ε0 sin θ0√
ε1

))] (C.6)

the horizontal offset is linear with respect to depth, and the rate at which it changes with depth is
related to to incidence angle and the dielectric contrast of the subsurface between the two image
acquisitions. We can re-express the real component of the dielectric permittivity at acquisition 2 as:

ε2 = ε1 + Δε (C.7)

where the dielectric contrast Δε can be positive or negative. Equation C.6 then becomes:

χ12 = z[tan(sin−1(
√

ε0 sin θ0√
ε1 + Δε

)) − tan(sin−1(
√

ε0 sin θ0√
ε1

))] (C.8)

As stated above, the horizontal offset is linear with depth, and therefore the partial derivative of the
horizontal offset with respect to depth is:

∂χ12
∂z

= tan(sin−1(
√

ε0 sin θ0√
ε1 + Δε

)) − tan(sin−1(
√

ε0 sin θ0√
ε1

)) (C.9)
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Target Dielectric Dielectric Penetration Horizontal
Permittivity (R) Permittivity (I) Depth (cm) Divergence (cm)

Dry soil 2-6 0-3 6 1.5
Wet Soil 20-40 3-15 3 .25

Ice 3.-3.2 10−5-10−2 1366 22
Dry Snow 1-3 0-0.5 27 13
Wet Snow 2-15 0.5-2.5 12 4

Vegetation Canopy 1-1.2 10−4-10−2 837 108

Table C.1: Horizontal Divergence of Representative Geophysical Targets at L-band, adapted from
[Cihlar and Ulaby, 1974; Stiles and Ulaby, 1981; Tomasanis, 1990; Schmugge and Jackson, 1992;
Ulaby, 1985].

Similarly, the partial derivative of horizontal offset with respect to dielectric contrast is:

∂χ12
∂Δε

= −z
√

ε0 sin θ0

2(ε1 + Δε)3/2( −ε0 sin2 θ0+ε1+Δε
(ε1+Δε) )3/2

(C.10)

Equations C.8, C.9, and C.10 can be evaluated for a range of dielectric contrasts and depths for
different geophysical targets. Table C lists several such targets evaluated at L-band, as well as
representative ranges of dielectric constants, autocorrelation lengths, and realistic sensing depths
(on the order of the penetration depth). Clearly, significant horizontal offsets are physically realistic
for a range of geophysical scattering volumes.
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Figure C.1: Refraction through a volume with a time-varying bulk dielectric permittivity results in
a varying angle of refraction. This in turn causes a horizontal divergence of the refracted raypaths,
which increases with depth.



Appendix D

Vertical Scatterer Distribution
Analytical Solutions

Beginning with Equation 6.11, if the vertical distribution of scatterers is taken to be constant with
depth f(z) = f0, than Equation 6.11 can be written as:

I12 =
∫ ∞

0
f0e−i2k0(r1−r2)e−i2(Kz1−k∗

z2)zei2kx
∂χ
∂z zdz (D.1)

This is analogous to the model derived in [De Zan et al., 2014], with an additional phase term
associated with the horizontal divergence of the refracted raypaths. The analytical solution of
Equation D.1 is:

I12 = −if0e−i2k0(r1−r2)

2(kz1 − k∗
z2 − kx

∂χ
∂z )

(D.2)

This is analogous to the solution in [De Zan et al., 2014], with an additional term that ‘damps out’
the phase excursion do to the variable vertical wave velocity (note that ∂χ

∂z is constant with respect
to depth, and depends on the dielectric contrast between image acquisitions). The solution for an
exponential distribution of scatterers follows immediately:

I12 = f0e−i2k0(r1−r2)

2i(kz1 − k∗
z2 − kx

∂χ
∂z ) + σ

(D.3)

where σ is the extinction coefficient of the scattering distribution.
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If we relax the assumption of idealized scatterer autocorrelations, we can derive an analytical
solution for the complex coherence. We assume that scatterers are distributed constantly as a
function of depth f(z) = f0, and we assume a Gaussian autocorrelation of horizontal scattering
interfaces in the form:

R(χ(z)) = R(∂χ

∂z
z) = e− ( ∂χ

∂z
z)2

2L2 (D.4)

where L is the correlation length of the interface. Equation 6.11 then becomes:

I12 =
∫ ∞

0
f0e− ( ∂χ

∂z
z)2

2L2 e−i2k0(r1−r2)e−i2(kz1−k∗
z2)zei2kx

∂χ
∂z zdz (D.5)

which has an analytical solution of the form:

I12 = if0L
∂χ
∂z

√
π

2 e−i2k0(r1−r2)·

e
−(
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z2+kx
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)2
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∂z

)2
)
·

erfi(
L2(2kz1 − 2k∗

z2 − 2kx
∂χ
∂z ) − i( ∂χ

∂z )2z√
2L ∂χ

∂z

) + C (D.6)

where C is an integration constant. When evaluated from z = 0 to z = ∞, Equation D.6 reduces to:

I12 = f0L
∂χ
∂z

√
π

2 e−i2k0(r1−r2)·

e
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·
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√

2L(kz1 − k∗
z2 − kx

∂χ
∂z )

∂χ
∂z

)] (D.7)



Appendix E

Effects of Nonzero Perpendicular
Baseline

As shown in the main text, the interferometric phase is proportional to a linear combination of the
contrast in complex vertical wavenumber, as well as horizontal divergence of the refracted ray paths:

I12 ∝ e− i4π
λ (x1 sin θ01−x2 sin θ02)e− i4π

λ (z1
√

ε1 cos θr1−z2
√

ε2 cos θr2) (E.1)

Consider first the phasor associated with the horizontal wavenumber:

e− i4π
λ (x1 sin θ01−x2 sin θ02) (E.2)

Any nonzero variations in the component of the spatial baseline perpendicular the the LOS will
result in an incremental change in the incidence angle of the SAR signal [Zebker and Villasenor,
1992]. We can furthermore relate x1 and x2 with their horizontal offset χ:

θ02 = θ01 + Δθ

x2 = x1 + χ (E.3)

Inserting Equations E.3 into Equation E.2 yields:

e− i4π
λ (x1 sin θ01−(x1+χ) sin(θ01+Δθ)) (E.4)
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For small variations in the incidence angle (i.e. Δθ 	 1), then the following approximation can be
made:

sin(θ01 + Δθ) = sin θ01 cos Δθ + cos θ01 sin Δθ

if Δθ 	 1

sin(θ01 + Δθ) ≈ sin θ01 + Δθ cos θ01 (E.5)

and Equation E.4 reduces to:

e
i4π

λ χ sin θ01e
i4π

λ x2Δθ cos θ01 ≈ e
i4π

λ χ sin θ01e
i4π

λ
x2|B| cos2 θ01

r (E.6)

where |B| is the magnitude of the spatial baseline, and r is the range from the spacecraft to the
illuminated target. We can see that the phasor associated with the horizontal wavenumber is com-
posed of two terms: a term related to the horizontal divergence of the refracted ray paths that was
derived in Appendix C, and a term proportional to the incremental change in the incidence angle
associated with a nonzero spatial baseline.

We can similarly analyze the vertical component of the interferometric phasor:

e− i4π
λ (z1

√
ε1 cos θr1−z2

√
ε2 cos θr2) (E.7)

where θr is the refracted ray path angle with respect to the normal (determined via Snell’s Law
refraction). We can linearly approximate the incremental change in the refracted raypath angle as:

θr = sin−1(
√

ε0 sin θ0√
εr

)

θr2 = θr1 + Δθr (E.8)

and relate the vertical depths z1 and z2 with their vertical offset:

z2 = z1 + ζ (E.9)

and we can approximate linear variations in the dielectric permittivity as:
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√
ε2 ≈ √

ε1 + Δε

2√
ε1

(E.10)

where Δε is the incremental change in the real component of the complex dielectric permittivity.
Inserting Equations E.8-E.10 into Equation E.7 yields:

e
− i4π

λ (z1
√

ε1 cos θr1−(z1+ζ)(√
ε1+ Δε

2√
ε1

) cos(θr1+Δθr)) (E.11)

which can be rearranged as:

e− i4π
λ (√

ε1−√
ε2)z1 cos θr1e− i4π

λ

√
ε2ζ cos θr1e− i4π

λ

√
ε2z2Δθr sin θr1 (E.12)

We can see that, similar the horizontal phasor, the vertical phasor is composed of: 1) a term
proportional to the dielectric contrast between acquisitions, 2) a term proportional to the vertical
offset (which is zero-mean for most stationary stochastic processes), and 3) a term proportional
to the incremental change in the incidence angle associated with a nonzero spatial baseline. For
small baseline magnitudes relative to the range from the sensor to the target, Equation E.12 is
approximately:

e− i4π
λ (√

ε1−√
ε2)z1 cos θr1e− i4π

λ

√
ε2ζ cos θr1e− i4π

λ

√
ε2z2|B| cos θ01 sin θr1

r (E.13)

For modern spaceborne SAR platforms with tight orbital control (such as the Sentinel constellation
and the upcoming NISAR mission), the ratio of the spatial baseline to the range is small enough
that the phasor terms proportional to the baseline in E.6 and E.13 are negligible compared to the
other phasor terms.
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penetrating radar to measure near-saturation soil water content in peat soils. Water Resources
Research, 48(2):n/a–n/a. W02533.

[Pewe, 1963] Pewe, T. L. (1963). Ice-wedges in alaska-classification, distribution, and climatic sig-
nificance. Proceedings Permafrost International Conference, pages 76–81.

[Pilon et al., 1985] Pilon, J. A., Annan, A. P., and Davis, J. L. (1985). Monitoring permafrost
ground conditions with ground probing radar (G.P.R.), pages 71–73.

[Rabus et al., 2010] Rabus, B., Wehn, H., and Nolan, M. (2010). The importance of soil mois-
ture and soil structure for insar phase and backscatter, as determined by fdtd modeling. IEEE
Transactions on Geoscience and Remote Sensing, 48(5):2421–2429.

[Reeves et al., 2011] Reeves, J. A., Knight, R., Zebker, H. A., Schreüder, W. A., Shanker Agram,
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