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Abstract

The Cascadia subduction zone, famous for its potential to generate very large earth-

quakes, is one of the regions where slow slip events (SSEs) were first detected. While

conventional earthquakes result from fast slip on the faults and take place in a few

seconds or minutes, SSEs rupture much more slowly and can take place over weeks

or even months. While these seismically silent events themselves are not dangerous,

they can significantly alter their surrounding stress field, which in turn, influences the

local seismic hazard potential. Although the discovery of SSEs is largely attributed to

continuous Global Navigation Satellite System (GNSS) networks, GPS observations

alone often lack the spatial resolution needed to model slow slip at depth. Interfero-

metric synthetic aperture radar (InSAR), on the other hand, is an established geodetic

technique that can provide dense surface measurements over large areas. However,

the application of InSAR techniques to the study of SSEs is severely limited due

to low signal to noise ratios (SNR). Since Cascadia has a vast forest cover due to

abundant rainfall and mild climate, interferograms formed in this region also have

large decorrelated areas. Furthermore, where measurement is possible, the relative

small slow slip signal of < 1 cm is overprinted by noises such as atmospheric phase

delay which can reach 2 cm standard deviation at large spatial scales, satellite orbit

errors, and residual topographic correction errors. Therefore, it is nearly impossible

to determine slow slip signals using only a few interferograms.

We present here the use of InSAR time-series techniques to measure deformation
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associated with both slow slip events and inter-SSE velocity in the Cascadia region.

Specifically, we address the statistical properties of different interferometric phase

components in interferogram stacks and develop time-series approaches that take full

advantage of the dense temporal sampling of modern InSAR datasets. We created

more than 4500 interferograms with 303 scenes acquired across 96 different dates over

the majority of Cascadia region using both Sentinel-1A and 1B data from June 2015

to May 2018. We focus on the 2015-2016 winter Central Cascadia slow slip event and

produce two maps: one displays the average annual line-of-sight (LOS) velocity of

the region during the three year observation window, and the other shows the LOS

magnitude of the SSE surface deformation. The inter-SSE velocity map shows a 8

mm/year difference across the image. The observed inter-SSE velocity does not only

reflect tectonic motion, but also any long-term deformation that took place during

the observed time period. The observed SSE LOS deformation mostly reflect ver-

tical movements of the surface resulting from the slow slip at depth. The range of

SSE LOS deformation is around 1 cm across the studied area. Due to InSAR ’s in-

sensitivity to north-south motion, combined with large uncertainties of GPS vertical

measurements, comparisons between GPS measurements and InSAR measurements

are not particularly informative. Nonetheless, projected LOS GPS measurements also

shows 1 cm range of SSE deformation with a similar uplift to subsidence deformation

pattern. Direct comparisons between GPS and InSAR measurements show that they

agree within their respective 1-σ uncertainty bounds – for InSAR measurements, these

error bounds range from 2 mm to 10 mm. Slip distributions obtained from InSAR

measurements show a comparable moment magnitude (Mw 6.6) to slip distributions

obtained from GPS horizontal data (also Mw 6.6). However, slip distributions ob-

tained from InSAR measurements are concentrated in an area one third the size of

those in GPS solutions with a peak slip magnitude three times the peak slip from

GPS measurements.
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We have also developed software to form and analyze interferograms efficiently.

With the anticipation of an ever-growing SAR archive, our effort in producing stan-

dardized and user-friendly InSAR products will help maximize InSAR’s potential in

helping the scientific community better understand our dynamic planet.
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Chapter 1

Introduction

1.1 Problem Definition: Slow Slip Events in Cas-

cadia

Earth’s tectonic plates are in constant motion. The relative movements between

adjacent plates build up stress in the Earth’s crust and cause earthquakes. While

conventional earthquakes exhibit fast slip on the faults and take place in a few sec-

onds or minutes, slow slip events (SSEs) rupture much more slowly and can take place

over days or even weeks. While these silent events themselves are not dangerous, they

can significantly alter the surrounding stress field, which in turn, influences the local

seismic hazard potential.

The Pacific Northwest (Fig. 1.1), home to populous cities such as Seattle and

Vancouver, sits on top of the Cascadia subduction zone, which is one of the regions

where deep-seated subduction zone SSEs were first detected (See Fig. 2.3). Dragert

et al. (2001) reported that a cluster of seven GPS sites reversed their landward mo-

tion for a period of about 2 weeks in the fall of 1999 and explained this unexpected
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Figure 1.1: Map of the Cascadia subduction zone (black box). The Pacific Northwest
area often refers to the region bounded by the Pacific Ocean to the west and by the Rocky
Mountains to the east, primarily includes British Columbia, the states of Washington,
Oregon and Northern California.
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phenomenon later by an aseismic slip of ∼ 2 cm below the seismogenic zone. Further

studies of the GPS network revealed that SSEs take place regularly in the Casca-

dia region with an average recurrence period of about 14 months in Washington, 24

months in Oregon and 10 months in Northern California (Miller et al., 2002; Dragert

et al., 2004). Each SSE lasts for about 2-4 weeks, releasing strains equivalent to

Mw 6.5-6.8 earthquakes (Dragert et al., 2004). Given that the Cascadia subduction

zone is capable of producing very big earthquakes – the last of which was a Mw 9.0

earthquake in 1700 – it is in the interests of the general public to understand the

roles of SSEs in the earthquake cycle. To wit, are SSEs postponing or advancing the

inevitable occurrence of the really big one? Will SSEs trigger big earthquakes?(e.g.

Kato et al., 2012; Segall and Bradley , 2012)

Although the discovery of SSEs is largely due to continuous GNSS networks, GPS

observations alone lack the spatial resolution needed to model slow slip at depth. The

large uncertainties in GPS vertical observations also mean that the use of GPS data

for slow slip modeling is limited. Interferometric synthetic aperture radar (InSAR),

on the other hand, is an established technique that can provide dense surface mea-

surements sensitive mostly to vertical displacements in large areas. In addition, with

the recent fleet of SAR satellites including Sentinel-1, ALOS-2, COSMO-SkyMed, and

RADARSAT-2 (Fig.1.2), the temporal resolution of InSAR measurements has been

significantly improved. However, the application of InSAR techniques to the study of

SSEs is severely limited due to low signal to noise ratios (SNR). Nonetheless, several

studies have demonstrated the capability of InSAR to monitor SSEs. For example,

Chen et al. (2014) proposed a small baseline subset (SBAS) algorithm to extract both

secular motion and transient ground deformation from noisy InSAR measurements

and successfully identified the 2010 slow slip event in the south flank of the Kilauea

volcano, Hawaii. Bekaert et al. (2016) combined geodetic observations from GNSS
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Figure 1.2: Historic and active Synthetic Aperture Radar satellites. Image from https:

//www.unavco.org/instrumentation/geophysical/imaging/sar-satellites

and InSAR to model the 2006 Guerrero SSE using a Network Inversion Filter (Segall

and Matthews , 1997; Miyazaki et al., 2006) and demonstrated that the use of InSAR

data provided better constraints than using GPS data only.

However, InSAR applications in the Cascadia region have been limited because

of poor measurement quality over this region. Combined with small surface displace-

ments associated with Cascadia SSEs (< 1 cm), it is not possible to identify a SSE

using a small number of interferograms. A large set of high-quality interferometric

measurements is needed to enhance signal-to-noise ratio to make SSE detection by

InSAR possible.
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1.2 Approach: The Use of Modern SAR Datasets

Synthetic Aperture Radar (SAR) is a two dimensional radar imaging technique that

produces coherent images of Earth’s surface with meter level resolution over large

spatial scales. Interferometric SAR takes advantage of the coherent nature of com-

plex SAR images to measure topography, motion, or scattering property changes of

the surface of the Earth.

In the past few years, three new InSAR satellites, Sentinel 1A/B and ALOS-2,

became operational. This new generation of satellites provides the temporal sampling

rate and spatial coverage needed to revolutionize InSAR’s ability to reduce noise and

capture small crustal deformation signals over large spatial areas. Fig. 1.2 shows the

lifespan of recent SAR missions. It is obvious that with current and anticipated new

SAR satellites becoming operational in the near future, we have access to a large set

of modern high-quality SAR observations covering the entire globe every few days.

In this work, we focus on the Sentinel-1 satellites.

Sentinel-1 is a constellation of two polar orbiting SAR satellites, operated by the

European Space Agency, and provides day and night synthetic aperture radar images

free of charge to users all over the world. Both satellites (1-A and 1-B) operate in the

C-band (wavelength is 6 cm) and have an orbit repeat cycle of 12 days. Sentinel-1A

was launched in April 2014 and Sentinel-1B was launched in June 2016. The short or-

bit repeat time combined with small orbital tube, i.e., small spatial baselines (within

150 meters), makes Sentinel-1 an ideal candidate for observing small amplitude sig-

nals in noisy environments.

Another important fact about Sentinel-1 is that it operates using the Terrain
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Observation with Progressive Scans SAR (TOPSAR) imaging mode. TOPSAR ac-

quisition provides large swath width, which results in short orbit repeat time. Fig.

1.3 compares Sentinel-1A coverage of the Pacific Northwest with that of the Japanese

satellite ALOS-1. ALOS-1 operates with the more conventional stripmap imaging

mode and has a swath width of 70 km (shown in blue). In contrast, Sentinel-1 has a

swath with of 250 km (shown in gray). The black dots are recorded tremor locations

of the 2016 February SSE in Oregon (tremors are seismic signals that are related to

SSEs). As can be seen, to cover the spatial scale of one SSE, we need the large spatial

coverage Sentinel-1 provides.

1.3 Contributions

There are two main focuses of this thesis. First, we focus on developing tools that

help us best exploit modern InSAR datasets and push its limits in observing very

small signals in very noisy environments. Second, we apply these processing and

analyzing tools to study slow slip events in Central Cascadia, an area that is tradi-

tionally difficult for InSAR observations. We extract deformation signals associated

with the 2015-2016 winter Central Cascadia slow slip event and use these measure-

ments to learn about slip distributions at depth, in order to answer more fundamental

questions about the underlying physical processes of the Cascadia subduction zone.

Specifically, we have made the following contributions:

1. We have developed an efficient and user-friendly InSAR processing algorithm

whereby we geocode and compensate for topography-related phases in Single-

Look Complex SAR scenes. We subsequently developed software packages

adopting this algorithm for ALOS-1 and COSMO-SkyMed satellites data pro-

cessing.
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Figure 1.3: Comparison between Sentinel-1 swath width (gray rectangle), ALOS-1 swath
width (blue rectangle) and the spatial coverage of tremors related to the 2015-2016 winter
Central Cascadia slow slip event (black dots). It is clear that Sentinel-1 enjoys much greater
spatial coverage and hence is more applicable to large spatial scale studies.
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2. We have developed a Sentinel-1 software package adopting a variation of the

Geocoded and Topography Corrected SAR algorithm. We geocode and to-

pography correct Sentinel-1 scenes while co-registering all scenes to the same

geographic area of interest. This workflow enables us to combine different SAR

acquisitions with ease and without generating large number of intermediate files.

3. We have developed and validated a covariance model for decorrelation phase

noise. Our model shows that incorporating redundant interferograms into time-

series analysis can significantly reduce decorrelation noise for low correlation

areas.

4. We have developed an algorithm to estimate the atmospheric noise covariance

matrix from the interferogram stack. Using this algorithm, we can keep track

of atmospheric noise propagation through the stack.

5. We have applied two different stacking strategies to interferograms formed over

Central Cascadia, which are optimized for noise reduction, and produced the

deformation map for the 2015-2016 winter Oregon slow slip event as well as the

inter-SSE velocity map of the same area.

6. We have developed 2D and 3D slip models of the slow slip event and demon-

strated that InSAR data provides more accurate estimates of the uppermost

and lowermost points of the slip zone.
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1.4 Thesis Roadmap

The remainder of this thesis is organized as follows:

We begin in Chapter 2 and Chapter 3 by introducing the basics about Cascadia

SSEs and InSAR.

In Chapter 4 we present the concept of topography-corrected and geocoded SAR

and demonstrate how it can be implemented in the frame of motion-compensation

techniques, and in Sentinel-1 SAR products. This chapter is based on materials pub-

lished in IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing in 2017 (Zheng and Zebker , 2017).

In Chapter 5 we discuss noise reduction in interferogram stacks. Specifically, we

present covariance matrices for atmospheric noise and decorrelation noise, and discuss

how errors propagate in stacks and how to optimize noise reduction by choosing the

best stacking strategy. This chapter is mostly based on materials currently under

review in Journal of Geophysical Research.

In Chapter 6 we illustrate how we can extract slow slip deformation signals from

large Sentinel-1 datasets by stacking. We also present 1-sigma uncertainty of the

retrieved slow slip deformation and compare our results with GPS measurements.

In Chapter 7 we present 2D and 3D models of the 2015-2016 winter Central Cas-

cadia slow slip event and show that by including InSAR data, we can better resolve

slow slip at depth, especially the up-dip and down-dip limit of the SSE zone on the

plate boundary. This chapter and Chapter 6 will be submitted to the Journal of
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Geophysical Research.

Finally we provide some concluding remarks and discussions in Chapter 8.



Chapter 2

Cascadia Slow Slip Events:

Background

2.1 Geologic Setting

Cascadia refers to the region where the relatively young oceanic Juan de Fuca, Gorda,

and Explorer plates descend at a speed of approximately 4cm/year with respect to

the stable Continental North American plate (Fig. 2.1). Geographically, Casca-

dia stretches about 700 miles from British Columbia to Northern California, and is

bounded by the Pacific Ocean to the west and the Rocky Mountains on the east.

Tectonic loading of the locked seismogenic zone resulting from continuous motion

of the converging plates can give rise to great earthquakes. Although the Casca-

dia subduction zone (CSZ) has not produced any big earthquakes in modern times,

various studies have established that great earthquakes (M9.0 or greater) have reg-

ularly occurred in this region in the past, with a repeat interval of 400 to 600 years

(Atwater and Hemphill-Haley , 1997; Atwater , 1987; Clague, 1997). The last known

such megathrust earthquake took place in January, 1700. The estimated magnitude

11
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Figure 2.1: Schematic tectonic map of Cascadia. From Gomberg et al. (2010)

9 earthquake created a tsunami that rampaged across the Pacific and caused damage

in coastal villages in Japan (Satake et al., 1996). There is no doubt that the CSZ

presents great seismic hazard. Understanding of the seismic mechanisms of the sub-

duction zone, therefore, is critical for potential hazard analysis and preparation.

Fig. 2.2 illustrates a simple dislocation model for a subduction zone. As the

denser oceanic plate subducts under the light overriding continental plate, a shallow

portion of the fault is locked, and only at a deeper depth does the fault slide at the

full plate convergence rate, Vpl. As a result, the accumulating elastic strain energy in

the locked portion of the fault is released periodically in future earthquakes. Apart

from the locked and creeping zones, a transitional zone is often adopted in models to

make a smoother transition of slip velocity from zero to Vpl between the locked and

the creeping portions of the fault. Slow slip events, which are the focus of this thesis,
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Figure 2.2: Illustration for a simple elastic dislocation model for subduction zone defor-
mation.

are believed to mostly occur in the transitional zone of the fault.

Knowledge of the down-dip limit of the locking zone is critical for seismic hazard

estimation because a deeper rupture implies greater seismic hazard for major popu-

lous cities such as Seattle and Portland. However, since no significant earthquakes

have taken place in Cascadia in the past 300 years, there are no coseismic data to

support direct assessment of the locked zone down-dip limit. Instead, geodetic studies

have been focused on interseismic deformation (e.g. Hyndman and Wang , 1995; Flück

et al., 1997; McCaffrey et al., 2007; Burgette et al., 2009) and slow slip events (e.g.

Szeliga et al., 2008; Wech and Bartlow , 2014; Michel et al., 2018). These studies sug-

gest significant along-strike variations in the locked zone depth and width. The repeat

interval of SSEs also vary latitudinally (Brudzinski and Allen, 2007). Brudzinski and

Allen (2007) demonstrated that the recurrence interval for SSEs is about 14 months

in Washington, 2 years in central Oregon, and 10 months in northern California.
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Figure 2.3: Comparisons of slip and tremor observed for the Victoria area (Rogers and
Dragert , 2003). Blue dots are east component recorded by GPS site ALBH in Victoria
island. While a long-term eastward motion is apparent (green line), reversals of motion
every 13 to 16 month can be clearly identified. These regular reversals of motion correspond
to slow-slip events, which correlate with peaks of tremor activities.
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2.2 Slow Slip Events in Cascadia

Slow slip events are common to many subduction zones and they differ from fast

earthquakes in that they occur periodically and have much slower slip speed. These

events have been found in a variety of places such as Cascadia (Dragert et al., 2001;

Miller et al., 2002; Szeliga et al., 2008), in southwest Japan (Hirose et al., 1999;

Miyazaki et al., 2006), in Mexico (Kostoglodov et al., 2003; Lowry et al., 2001), and

also along the San Andreas fault (Linde et al., 1996; Murray and Segall , 2005). Slow

slip plays an important role in the earthquake cycle and the associated seismic haz-

ard. Hence it is important to understand how and why slow slip occurs.

Slow slip events were first seen in Japan, and subsequently was first discovered in

Cascadia via GPS measurements. Fig. 2.3 shows the eastward motion recorded by a

GPS site on Victoria island between 1996 and 2003. While the GPS site exhibits a

long-term eastward motion, regular reversals of motion can be clearly identified and

are related to slow slip events. Recognition of the slow-slip phenomenon in Cascadia

has revealed a zone at depths of approximately 25 to 40 km on the plate boundary

where faults, or portions of faults, slip in ways intermediate between end-member

behaviors of stick-slip and steady creep (Dragert et al., 2001; Miller et al., 2002).

These aseismic events occur with surprising regularity along the length of Cascadia,

and are always accompanied by tremor, hence also often known as Episodic Tremor

and Slip (ETS). Typically a slow slip event in Cascadia lasts for one to five weeks

and results in approximately 5 mm surface displacement.

Progress in understanding SSEs in Cascadia have led to additional understanding

of the strength of coupling of the interface between the subducting Juan de Fuca plate

and overlying North America plate. Since SSEs originate in the region between the
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locked zone, which was estimated to be offshore at plate boundary depths of < 15 km

(Hyndman and Wang , 1995), and the steady creeping zone below, analyses of SSEs

suggest that the locked zone and the down dip rupture limit of future great earth-

quakes may extend 60 km farther inland (Chapman and Melbourne, 2009). Since

there is no historical record of the last megathrust earthquake (Mw ∼ 9) in Cascadia

that happened in the year 1700, the constraint from SSEs can serve as a primary

control for the determination of the down dip rupture limit for the Cascadia region.

Another significant practical implication from studies of SSEs is the connection

between these benign slow slip phenomena and destructive earthquakes. Although

SSEs themselves are not dangerous and accommodate ∼ 50% of the relative plate mo-

tion on the plate boundary (Chapman and Melbourne, 2009), they can significantly

perturb the stress field acting on the locked zone and surrounding faults. A num-

ber of authors have discussed the possibility of SSEs triggering or even evolving into

large earthquakes (Rubinstein et al., 2009; Segall and Bradley , 2012). Most geodetic

observations of slow slip in Cascadia so far have been made using GPS techniques.

Inversion of GPS data has limited resolution due to the low spatial density of GPS

stations. InSAR and GPS are fully complementary in that InSAR provides high spa-

tial resolution measurements with wide coverage. Therefore, the adoption of InSAR

techniques has the potential of providing new insights in the exploration of slow slip

phenomena in the Cascadia subduction zone.

2.3 InSAR in Cascadia

The InSAR technique combines interferometry and conventional Synthetic Aperture

Radar (SAR) and observes the phase differences between two SAR images. The re-

sulting interferometric phase is proportional to the change in range over time between
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the radar instrument and the ground (Massonnet and Feigl , 1998; Bürgmann et al.,

2000). While the InSAR technique allows us to map mm-cm level deformation over

wide areas with meter-level resolution, three factors limit the application of InSAR

techniques in observing slow slip events in Cascadia:

• Small signal strength

Slow slip signals measured by GPS typically have a peak displacement amplitude

of ∼ 0.5cm – 1 cm, which will only account for 1/24 to 1/12 cycle of phase in

L-band (24 cm wavelength) interferograms.

• Decorrelation

If the imaged surface has rapidly changing scattering properties (e.g., the growth

of vegetation will change the surface scattering property rapidly), then the radar

signals will decorrelate and no meaningful measurements are possible.

• Atmospheric noise

The spatiotemporal heterogeneity of water vapor contents in the lower atmo-

sphere causes variance in time delays of the radar signal as it propagates through

the atmosphere, which overprints on the desired deformation signals.

Since Cascadia has a vast forest cover due to abundant rainfall and mild climate,

interferograms formed in this region have large decorrelated areas. Furthermore,

where measurement is possible, the relatively small slow slip signal of about 1 cm is

overprinted by signal due to the variability in the atmospheric phase delay which can

reach 2 cm rms at large scales (Zebker et al., 1997), plus satellite orbit errors and

residual topographic correction errors. Therefore, it is almost impossible to determine

slow slip signals using individual interferograms.

InSAR time series analysis, a class of techniques that extends conventional InSAR,

has been developed to address these limitations. The most used algorithms include
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stacking, persistent scatter InSAR, and small baseline InSAR. These algorithms work

reasonably well in areas of interferograms with small to moderate decorrelation. Cas-

cadia has always been a challenging region for the application of InSAR due to its

heavy vegetation and as a result, there are few examples of InSAR studies over the

region. In this dissertation, we focus on extending the limits of InSAR applicability

in Cascadia region by extending or developing novel methodologies and techniques to

retrieve small slow slip signals in low SNR measurements.



Chapter 3

InSAR: Background

This chapter presents the basics of Synthetic Aperture Radar (SAR) and Interfero-

metric SAR (InSAR) processing.

3.1 SAR imaging

Synthetic Aperture Radar (SAR) refers to a signal processing method that creates

an image of the Earth’s surface using radar from a spaceborne or airborne platform.

Spaceborne SAR was first introduced to Earth remote sensing with the 100-day NASA

SEASAT mission in 1978 (Cumming and Bennett , 1979). Unlike optical data, SAR

provides all-weather, day and night imaging capability and can produce meter-level

resolution images covering areas on the order of tens of thousands of square kilome-

ters. The launch of European Remote Sensing satellite ERS-1 in 1991 enabled SAR

to continuously orbit the Earth and deliver images on a reliable and operational ba-

sis for applications such as mapping, oceanography, agriculture, forestry and so on.

Since then, more satellite sensors devoted to remote sensing have been launched and

the ever-growing SAR data availability and user interests have stimulated the devel-

opment of many new applications. Interferometric SAR, the technology we focus on

19
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in this thesis, is one of the most exciting developments.

3.1.1 Geometry

Fig. 3.1 depicts the imaging geometry of a spaceborne SAR system. As the satellite

moves along its orbit at a height h with a velocity v, the radar instrument mounted

on the satellite points a radar beam roughly perpendicular to the satellite motion

towards the Earth and illuminates a swath on the ground. The transmitted radar

echoes are phase encoded and reflect off scatterers in the illuminated swath and are

recorded by the radar instrument mounted on the satellite at a later time. The time

delay of the received echoes is proportional to the distance between the radar instru-

ment and illuminated scatterers in the swath. The intensity of the received radar

echoes are determined by the imaging geometry (radar echo incidence angle θ – the

angle between the normal to the ground surface and the radar echo propagation di-

rection, satellite height h, etc.) and the radar reflectivity of scatterers on the ground.

Unlike data collected by optical sensors, SAR data requires extensive two-dimensional

phase-sensitive signal processing in order to form a focused image. One dimension

is parallel to the radar beam, which we define as the range direction or the across-

track direction. The other dimension is along the satellite motion direction, and is

often referred to as the azimuth direction, or the along track direction. In the range

direction, a pulse compression technique is used to concentrate reflected energy from

scatterers located in range from the radar. In the azimuth direction, the difference

in Doppler shift in the reflected energy from scatterers located at different azimuth

locations is utilized to improve resolution to one-half of the antenna length. In the

following section, we will briefly review key SAR processing steps. Detailed discus-

sions can be found in Curlander and McDonough (1991) and Cumming and Wong
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Figure 3.1: Illustration of the imaging geometry of a spaceborne SAR system. The radar
antenna mounted on a satellite at height h sends out a signal that illuminates a swath on
the ground. The azimuth direction is the satellite motion direction and the range direction
is parallel to the radar beam.

(2005).

3.1.2 Range and Azimuth Compression

We can think of raw SAR data as a 2-D function of range and azimuth. It is conve-

nient to consider SAR processing first in the range and then in the azimuth direction.

In the range direction, the radar antenna often sends out a linear frequency mod-

ulated (FM) pulse (often referred to as a chirp) given by

sp(t) = rect(
t

T
)exp

(
j(2πfct+ πKt2)

)
(3.1)



CHAPTER 3. INSAR: BACKGROUND 22

where t is range time, T is pulse duration, fc is carrier frequency and K is the FM

rate of the pulse. Linear FM pulses have a constant amplitude in the time domain

and provide a uniformly filled bandwidth in the frequency domain. What’s more,

linear FM signals arise naturally in the azimuth direction due to sensor motion. In

reality, the transmitted signal is real-valued and quadrature demodulation is used to

generate base-band and complex signals. The reflected energy from the illuminated

swath is a convolution of the chirp sp and the ground reflectivity g:

sr = g ∗ sp (3.2)

We can significantly enhance the radar performance in the range direction by opti-

mally filtering (correlating) the received signal with a replica of sp. Therefore, the

impulse response in the time domain is approximately a sinc function for a large

time-bandwidth product (T · BW = T ·KT = KT 2):

simp(t) ≈ Tsinc(KTt) (3.3)

The range resolution δR, is given by

δR =
c

2BW
=

c

2|K|T (3.4)

As aforementioned, the radar echo is also a chirp function in the azimuth direc-

tion. As the radar instrument moves forward, it transmits radar echoes at the pulse

repetition frequency (PRF). Therefore, each target on the ground is illuminated by

multiple radar pulses. The received signals have the same waveform, but are shifted

in frequency due to the relative movement between the radar instrument and the

illuminated scatterer in the swath, an effect that is in analogy with the well known

“Doppler effect” in physics. Assuming a simple geometry as shown in Fig. 3.1 where
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the radar antenna sends out radar pulses sideways with zero squint angle (i.e., the

radar antenna does not look ahead nor look back), the phase history of an illuminated

scatterer in the swath is approximately

φ(t) = −4π

λ
(r0 +

v2t2

2r20
) (3.5)

where λ is the wavelength corresponding to the central frequency fc of the chirp

pulses, r0 is the distance between the radar instrument and the scatterer when they

are at the closest approach, and v is the velocity of the radar instrument. Comparing

(3.5) with (3.1), we can define the azimuth FM rate as

Kaz =
1

2π

d2φ(t)

dt2
= −2v2

λr0
(3.6)

The time that the scatterer is illuminated by the radar pulses is approximately

τaz =
r0λ

vl
(3.7)

where l is the length of the antenna. r0λ/l is approximately the beam-width in the

azimuth direction and is also referred to as the “synthetic aperture length”. Hence

the bandwidth in the azimuth direction is

BWaz = |Kaz| · τaz = 2v

l
. (3.8)

The azimuth resolution δaz, is given by

δaz =
v

2BWaz

=
l

2
. (3.9)

For a typical spaceborne SAR system, both the range and the azimuth resolution

are on the order of a few meters.
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3.2 InSAR

Interferometric SAR is a technique where two or more SAR images are combined to

produce interferograms, which can be used to generate fine measurements of surface

topography or crustal deformation over large areas with meter-level resolution (Ze-

bker et al., 1994; Bamler and Hartl , 1998; Rosen et al., 1998; Bürgmann et al., 2000,

etc.).

3.2.1 Basics

A conventional SAR image is inherently two-dimensional. The InSAR technique

combines interferometry and SAR to compute the phase differences between two

complex-valued SAR measurements. Given two SAR measurements over the same

resolution cell, s1 = a1e
iψ1 and s2 = a2e

iψ2 , the interferometric measurement z12 is

z12 = s1 · s∗2 = a1a2e
i(ψ1−ψ2) (3.10)

Therefore, the phase φ12 of the complex interferometric measurement z12 is the

phase difference between s1 and s2: φ12 = ψ1 − ψ2, which is determined by the

geometric path length difference between the two SAR antennas and the common

image point. Depending on the configuration of the InSAR system, interferometric

phases can be utilized to provide additional information on the third dimension.

The most common interpretations for interferometric phase in Earth observations are

topography mapping and crustal deformation.

Fig. 3.2 illustrates the imaging geometry of InSAR. The interferometric phase

is proportional to the range difference: φ12 = 4π
λ
(r1 − r2) and can be related to the
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Figure 3.2: Illustration of the imaging geometry of a spaceborne SAR system. The
interferometric phase φ12 between measurements collected by S1 and S2 is proportional to
the range difference r1 − r2, and can be related to the topographic height H of the image
point given the imaging geometry, which can be defined by the look angle θ, the baseline B,
and the angle α which is the angle the baseline makes with respect to a horizontal plane.

topographic height H of the image point given knowledge of 1) the look angle θ, which

is the angle between the line-of-sight direction and nadir, 2) the relative position of

the two SAR antennas, which can be characterized by the baseline B, and 3) the angle

α, the angle the baseline makes with respect to a horizontal plane. The performance

of topographic mapping with InSAR relies on how accurately we can measure phase

uncertainties, the baseline between the antennas as well as the distance between the

antenna and the imaging point:

δz ≈ r

B
· δr. (3.11)

δr =
λ

4π
δφ (3.12)

As an example, with r = 800 km, B = 1 km, and δr ≈ 0.06 cm, we have δz = 0.5 m.

The first demonstration of using an InSAR system for topographic mapping was by

Graham (1974). More sophisticated systems were later implemented with airborne

systems (Zebker and Goldstein, 1986) and spaceborne platforms (Goldstein et al.,

1988).
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Figure 3.3: Decomposition of the Interferometric phase formed from two SAR acquisitions
taken over the Kilauea volcano in Hawaii. Interferometric phase contains signals from 1)
the local topography due to the spatial separation of the sensor locations and 2) any radar
line-of-sight displacements of the imaged target occurring between the two SAR acquisitions.

InSAR systems designed for topography mapping (e.g. TanDEM-X) have both

antennas image the surface simultaneously so that the imaged surface can be consid-

ered stationary. Alternatively, if we know the topography of the imaged area, and the

surface is imaged by the interferometer at different times, we can measure motion of

the surface between the two radar measurement times after removing phases related

to topography. Motion mapping is perhaps the most relevant to the Earth science

community, and has been extensively applied in studies as diverse as earthquake and

volcano modeling, glacier mechanics, and hydrology.

Fig. 3.3 illustrates that by removing topographic fringes from interferometric

phase measurements, we are left with deformation signals and other noise terms.

After topography correction, the interferometric phase can be represented as the sum
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of deformation and various noise terms:

φij = φdef + φε + φatm + φorb + φn. (3.13)

where φε is residual topographic phase after topography correction, φatm is atmo-

spheric phase delay, φorb is introduced by orbital errors, φn represents all other un-

correlated noise sources.

φatm and φdecor are the two main noise sources. Atmospheric noise is a result of the

spatiotemporal heterogeneity of water vapor content in the lower atmosphere, causing

variance in time delay of the radar signal as it propagates through the atmosphere

(e.g. Goldstein, 1995; Zebker et al., 1997; Emardson et al., 2003). Since the revisit

time of SAR satellites is on the order of days, atmospheric noise is essentially un-

correlated in time but correlated in space and is often modeled as a long-wavelength

artifact in individual interferograms (Hanssen, 2001; Emardson et al., 2003; Lohman

and Simons , 2005; Onn and Zebker , 2006). Decorrelation, on the other hand, can

be related to changes between radar measurements in surface scattering properties,

imaging geometries and thermal noise among others (Zebker and Villasenor , 1992;

Just and Bamler , 1994). The level of decorrelation is often quantified by the correla-

tion coefficient ρ. The mechanisms of signal deorrelation have been well studied, and

can mainly be attributed to changes of surface scattering properties during the ob-

servation time span, geometrical decorrelation, and system and other thermal noises

(Zebker and Villasenor , 1992).

φorb represents phase ramps introduced by inaccurate orbit locations and can usu-

ally be removed by fitting planar or bi-linear models. Note that for modern SAR
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satellites such as Sentinel-1, phase noise caused by orbital errors is rare. φε is an-

other common systematic noise source caused by inaccurate digital elevation models

(DEM).

3.2.2 InSAR time-series techniques

InSAR time-series techniques are a class of methods that utilize a network of inter-

ferograms other than individual interferograms to obtain information about temporal

evolution of surface deformation.

1. Stacking

Stacking is a simple yet effective method for dealing with poor quality InSAR mea-

surements. By simply summing or stacking many interferograms, the signal to noise

ratio of InSAR measurements improves because deformation signal reinforces while

other phase components typically cancel out (Simons and Rosen, 2007; Wright et al.,

2001; Zebker et al., 1994). In this thesis, we discuss the method of stacking in detail

and how error propagates through interferometric stacks.

2. Persistent Scatterer Analysis

The SAR measurement of a ground resolution element is the coherent sum of con-

tributions from all scatterers within the resolution cell. Relative movements of the

scatterers as well as changes in viewing angles of the radar platform will result in a

different summation and hence causes decorrelation in the interferograms. However,

if a resolution cell is dominated by a single scatterer, i.e., the dominant scatterer

returns significantly more energy than the other scatterers, the total returned signals

are much more stable. These pixels are called persistent scatterers (PS). In this work,

we did not adopt this method.
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3. Small baseline SAR (SBAS)

The small baseline methods minimize decorrelation by only using interferograms

formed with small spatial and temporal baseline. Spatial averaging is often used to

further decrease decorrelation. Based on prior knowledge of the deformation signal,

phase inversion methods such as least-squares (Schmidt and Bürgmann, 2003), sin-

gular value decomposition (Berardino et al., 2002), or L-1 norm minimization (Chen

et al., 2014) can be used to obtain temporal evolution of phase values, hence time

series of displacements.



Chapter 4

Efficient and User-friendly InSAR

Processing

Despite its applicability to a diverse set of problems and the promising potential of

modern SAR satellites, InSAR remains a challenging technique for non-specialists,

which significantly limits its potential for widespread use. The need for familiar-

ity with methods of radar processing, acquisition coordinate systems, and detailed

metadata describing imaging geometry, satellite orbit state vectors, and instrumen-

tal configuration often limits studies by scientists who are mainly concerned with

measurements of geophysical processes and their interpretation. Furthermore, with

modern sensors now acquiring data at weekly intervals or faster, the number of radar

interferograms available for analysis over any area of interest can be in the thousands,

so even downloading the data over electronic networks remains a bottleneck.

Here we describe a method that enables delivery of data products that can be

easily reduced to the desired observations and are less constrained by the sheer vol-

ume of data that must be transferred to an end user. Our approach addresses the

limitations of specialized knowledge and data volume, delivering products that are

30
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Figure 4.1: (a) Traditional InSAR processing workflow. (b) Proposed InSAR workflow

identical in accuracy to existing processors’ capabilities but are easy to use.

In this chapter, we first discuss the concept of topography corrected and geocoded

SAR and illustrate why it is useful. We then introduce its implementation in the

frame of motion-compensation techniques, though the concept is general and can be

easily integrated in other InSAR processing flows. Finally we present examples of

topography corrected and geocoded Sentinel-1 SAR products.
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4.1 Topography Corrected, Geocoded SAR

For many applications, we are primarily interested in mapping the surface deforma-

tion over time and therefore need to remove topography-related signals from inter-

ferograms. Fig. 4.1(a) shows a typical InSAR processing and product delivery flow.

InSAR users first acquire SAR data in the form of either raw data or a single-look

complex (SLC) image from data providers and then process the acquired data into

topography corrected and geocoded interferograms, which can then be used in various

geophysical applications. Even with sophisticated InSAR software such as ROI PAC

(the Repeat Orbit Interferometry PACkage) or ISCE (InSAR Scientific Computing

Environment), the additional InSAR processing needed to form the deformation his-

tory is not always an easy task. The complexity of InSAR processing can make a

single successful run of the processing flow unlikely. More often than not, InSAR

users have to stop the flow at various points to either modify parameters or fix errors.

Consequently, InSAR data users, most of whom are not InSAR experts, are required

to be considerably familiar with the detailed imaging geometry for each SAR acqui-

sition, and also to be experienced in InSAR processing techniques. Here we show

that an alternative InSAR processing approach moves the need for precise knowl-

edge of imaging geometry and radar techniques upstream from the end-users to the

data providers, so users need only be concerned with common GIS-style data analysis

(Fig. 4.1 (b)). We facilitate this by correcting topography-related signals from each

SLC image, and resampling the compensated SLC images into latitude-longitude co-

ordinates for easy ingestion to image processing packages. Interferograms generated

by simple cross-multiplication of pairs of these processed SLC images are thus auto-

matically topography corrected and can be readily used for subsequent geophysical

modeling. In this way, we separate InSAR processing from InSAR application, thus

making the use of InSAR data easier for non-expert InSAR users.
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The other major advantage of our alternative approach is that it greatly reduces

the computational resources needed to compute deformation time series. For N SLC

radar images, N(N − 1)/2 interferograms can be formed and hence N(N − 1)/2 to-

pography correction computations are needed in the traditional processing approach.

Common analyses widely used today for investigating temporal evolution of surface

deformation, such as the small baseline subset (SBAS) (Berardino et al., 2002) and

persistent scatterer (PS) (Ferretti et al., 2001; Hooper et al., 2007), typically use as

many SAR interferograms as possible. Each of these requires the detailed metadata

described above plus the software and computer resources to compute the correction.

In contrast, in our new approach the data provider applies the topography compen-

sation rather than the end user, and further only N topography correction steps are

needed. With more and more SAR data available nowadays and in the foreseeable fu-

ture, our approach can significantly improve the efficiency of interferogram formation.

Many technical paths to compensate radar interferograms and SLC images for

geometry and topography are possible, and we propose one such flow here. If applied

properly, all of these will produce similarly accurate data sets. Our method has the

advantage of delivering low volume and readily ingestible images, greatly increasing

the number of persons who can feasibly use the observations. Here we demonstrate

one such method and show how it can be applied to either raw radar data or to

SLC products as now produced by many of the international constellation of radar

satellites.

This is not the first time that the idea of correcting SLC images for topographic

effects has been proposed. Ferretti et al. (2001) introduced zero-baseline steering in

order to compensate slave SLC images with respect to a chosen master SLC image for
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topographic effects, however the correction is applied to interferograms rather than

the SLCs directly. (Schmitt and Stilla, 2014) used the absolute signal phase in a single

SLC image as a function of topography to infer scatterer height in SAR tomography.

We combine and extend the above ideas by first adopting motion-compensation tech-

niques to propagate actual radar echoes to a virtual ideal orbit as suggested by Zebker

et al. (2010), and then, with an external digital elevation model (DEM), compensat-

ing each SLC image for the residual topographic phase contribution. The advantage

of using a common ideal orbit rather than a master orbit is that the imaging geometry

equations are particularly simple and therefore topographic correction is efficient to

implement. The motion compensation techniques can equally well be applied either to

the generation of the SLC images, or to the zero-Doppler SLC products produced by

many sensors today (e.g., Sentinel-1A/B, Radarsat-2, COSMO-SkyMed or ALOS-II).

We present results from data acquired by the Italian COSMO-SkyMed satellites and

the Japanese ALOS satellite to demonstrate the use of our method for preprocessed

SLC images and raw data products, respectively. Since our method needs topogra-

phy information for phase correction, its performance depends on the quality of the

DEMs used. Thus the new processing method may not work well over areas where

only poor-quality DEMs are available.

Because we have the precisely coregistered DEM along with each SLC product, we

also geocode the SLCs prior to distribution. Each end-user is thus presented data in a

well-understood latitude/longitude system rather than in a radar-specific and varying

set of range/Doppler coordinates, relieving the user again of a task that requires a

metadata analysis in order to generate useful observations.
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4.2 Implementation

Our processing approach removes topography-related signals from individual SAR

scenes. This makes interferogram formation not only simpler and possible by non-

experts, but much more computationally efficient when large SLC stacks are analyzed.

4.2.1 Topographic Correction Review

Uncompensated interferograms contain topography-dependent phase terms (Rosen

et al., 1998). Fig. 4.2 shows the geometry of an InSAR system. The radar path

length difference δρ, which we observe as interferometric phase φ between the two

SAR scenes, consists of two parts: φtopo and φdisp. The first part, φtopo, is due to the

difference in geometrical path length from each of two sensor locations to the imaging

point and depends on the spatial baseline �B. The other part, φdisp, is due to any

surface displacement �D that occurs between radar observations. For a narrowband

signal in the far field of the antenna, the observed interferometric phase is (Zebker

and Goldstein, 1986; Rosen et al., 1996)

φ = φtopo + φdisp =
4π

λ
(−�u · �B + �u · �D) (4.1)

where �u is a unit vector representing the radar look direction. For displacement map-

ping, we need to remove the topographic phase term φtopo =
4π
λ
(−�u · �B).

We adopt coordinates defined by a virtual perfectly circular orbit above a non-

rotating planet (Zebker et al., 2010) for easy calculations �u and �B. This coordinate

system greatly simplifies the equations describing the imaging geometry. We then

use a motion compensation approach to translate raw radar echoes from their actual
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Figure 4.2: Radar imaging geometry and the SCH coordinate system. P1 and P2 represent
two satellite locations at distinct SAR acquisition times. T is the imaged point on the
ground, û is the unit radar LOS vector, and ρ1 ,ρ2 are the distance that radar signals
travelled in the two acquisitions. The difference δρ between the two radar path lengths is
related to 1) baseline �B between the sensor locations P1 and P2 , and 2) any surface motion
�D of the target T between radar observations. The SCH coordinates are aligned with the
reference orbit path. The curvature of the earth is considered in the study but not shown
in this figure.
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positions to what would be observed if the satellite were traveling in the ideal refer-

ence orbit (Zebker et al., 2010). We then co-register the SLC images. Since motion

compensation has already resampled all SLC images with respect to the reference

orbit geometry, the co-registration step is very efficient.

Motion compensation essentially sets the effective InSAR baselines �B to zero such

that the topographic phase term is zero for points located on the surface. However,

the topographic phase contribution is still present for any non-zero topography. It

can be evaluated from (Zebker et al., 2010)

φtopo =
4π

λ
(�uelev − �uref ) · �B (4.2)

where the multiple �u are the unit vectors representing radar look directions from the

sensor location to the pixel at actual elevation and on the zero-elevation reference

sphere, respectively. We must calculate the remaining topographic phase term and

remove it from the interferogram before interpreting the deformation signals.

4.2.2 Separation of Topographic Correction Term

We compensate the individual SLC images before interferogram formation, so that

the computed interferogram does not include the topographic phase term from each

SAR scene. To do so, we divide the baseline vector into two parts

�B = �P1 − �P2 (4.3)

where �P1,2 are the position vectors of the actual locations of the SAR sensors in the

reference coordinate system. The difference in radar LOS vectors can be expressed
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as

�uelev − �uref =
�P − �T elev

|�P − �T elev| −
�P − �T ref

|�P − �T ref | (4.4)

where �P = 1
2
(�P1 + �P2), the midpoint between the two antenna locations. Since

|�P − �T elev| ≈ |�P − �T ref | ≈ ρ, where ρ is the range from the reference sensor position

to the imaged point we can approximate the above equation as

�uelev − �uref =
1

ρ
(�T ref − �T elev) (4.5)

The approximation is valid since all InSAR measurements are made far field. Because

the target location �T depends only on the reference geometry, the term �uelev − �uref

is independent of individual sensor locations, and

φtopo = φS1
topo − φS2

topo (4.6)

where

φSi
topo =

4π

λ
(�uelev − �uref ) · �Pi, i = 1, 2 (4.7)

This yields the topography-related phase for each individual SLC image, so we

can generate topography-corrected SLC images that no longer contain a topography

dependent phase signature. Interferograms formed by simple cross-multiplication do

not require further baseline corrections.

It is worth noting that in principle we are able to separate the topographic cor-

rection phase into parts dependent only on each orbits imaging geometry as long as

a common reference coordinate system is defined. Motion compensation is not a pre-

requisite to our approach, but it makes processing easily implemented and efficient

by co-registering the SLCs to a common coordinate system.
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4.2.3 Comparison with traditional methods

The biggest difference between our proposed processing approach and the traditional

method is where we apply the topography correction in the InSAR processing flow

(Fig. 4.1). Our method separates the topography correction term into parts that

depend only on individual SLC images and hence moves topography correction step

upstream from interferogram-level to SLC-level. By doing so, InSAR data users can

avoid complicated InSAR processing and start straight from compensated SLC images

that directly produce topography corrected and geocoded interferograms. Moreover,

since topography correction steps are needed fewer times at the SLC-level than at the

interferogram-level, the overall efficiency of InSAR processing is improved.

Our approach also moves geocoding step upstream from interferogram-level to

SLC-level. Therefore we resample SLC images into latitude-longitude coordinates

before forming interferograms. Since multi-looked interferograms are used for most

geophysical applications, errors that may be introduced by the additional resampling

step before interfering are insignificant. Even if single-look interferograms are re-

quired for some special applications, SLC images that are topography corrected but

not geocoded can still be provided.

Our proposed approach in the end generates, in principle, interferograms with the

same accuracy as produced by traditional methods – we only alter the sequence of

processing steps. Therefore, interferograms generated using our approach are still

subject to InSAR phase noise such as orbital ramps, atmospheric noise and decorre-

lation. However, correction of these noise terms is often either empirical or based on

stochastic models and hence, less demanding for users knowledge of InSAR processing

techniques and detailed InSAR imaging geometry.
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The inclusion of motion compensation techniques in our approach makes InSAR

processing faster and more accurate. Most importantly, motion compensation fa-

cilitates efficient image co-registration (Zebker et al., 2010) as we seek to produce

co-registered, geocoded and topography-corrected SLC images. Motion compensa-

tion techniques are also implemented in the existing InSAR software ISCE.

4.2.4 Examples

Here we present several images using our new processing method and data from both

the Italian COSMO-SkyMed X-band satellites (Level 1 zero-Doppler SLC images)

and the Japanese ALOS-1 L-band satellite (Level 0 raw data products). The focus

of this section is to show the range of applicability of our approach for different data

formats and to demonstrate how our new approach may be used for geophysical mod-

eling by computing SBAS time-series analyses in both product format cases. We also

conducted the same analysis using the traditional method and compare the results

between our proposed processing workflow and the traditional flow.

COSMO-SkyMed dataset, Central Valley of California

We begin with data delivered in zero-Doppler SLC format. We processed 37 COSMO-

SkyMed Level 1A products acquired from June 20, 2012 until May 25, 2014 over the

city of Fresno in the Central Valley of California. Due to the ongoing drought in Cal-

ifornia, intensive pumping of groundwater has resulted in land subsidence that can

be easily detected using InSAR (Galloway and Hoffmann, 2007; Bell et al., 2008).

We formed 62 topography corrected interferograms with baseline values smaller than

100 m – Fig. 4.3 shows their average phase. Location C exhibits an exceptionally
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Figure 4.3: Interferogram stack over Fresno, California constructed from 62 topography
corrected interferograms formed by 37 COSMO-SkyMed Level 1A products from June 20,
2012 to May 25, 2014. Deformation series at locations A, B, and C are shown in Fig.
4.5. The reference phase is an average of the areas marked by white circles where little
deformation is apparent.
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Figure 4.4: Unwrapped interferograms over Fresno, showing time-progressive fringes at
location C. Interferograms show change between June 20, 2012, and (a) August 7, 2012,
spanning 47 days, (b) September 8, 2012, 78 days, (c) August 10, 2013, 415 days, (d)
September 27, 2013, 462 days, (e) November 14, 2013, 509, days, and (f) February 2, 2014,
592 days. All interferograms are corrected for orbital errors by deramping.
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Figure 4.5: Displacement time series at locations A, B, and C (see Fig. 4.3). Location
A remained stable during the observation time, while locations B and C subsided between
2013.01 and 2013.10 by ∼ 1 cm and ∼ 4 cm in radar LOS, respectively.
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high phase value, indicating that the region may be sinking relative to its surround-

ing areas. A sequence of six interferograms generated with respect to one common

SAR scene (Fig. 4.4) shows the deformation pattern grows with time. To further

investigate the temporal evolution of the detected deformation, we used an SBAS

approach (Berardino et al., 2002) to generate displacement time series. As shown in

Fig. 4.5, location A exhibits no apparent deformation during the observation time.

Location C, in contrast, sinks almost 3 cm (in radar LOS direction) during the time

period between January 2013 and October 2013. Location B also has subsided in the

same time period of about 1 cm in radar LOS direction. We speculate that perhaps

a well started to pump water near location C around January 2013 and caused the

subsidence seen in this area.

ALOS dataset, Kilauea, Hawaii

Next, we compute a time series using raw radar data products. Dense spatial and

temporal sampling has made InSAR an incredibly useful tool for volcano studies.

We generated 66 topography-corrected interferograms from an ALOS Level 0 dataset

comprising 25 acquisitions from May 28, 2006 to March 11, 2011, over the Kilauea

region, Hawaii. The interferograms generated have a maximum baseline of 500 m and

their average phase (Fig. 4.6) shows significant deformation in three areas: Kilauea

caldera, Makaopuhi crater and Pu‘u‘ Ō‘ō. We used the SBAS approach to compute

the temporal evolution of deformation in these regions (Fig. 4.7). We find that the

Makaopuhi crater region uplifted significantly between 15 March 2007 and 8 August

2007. Around the same time, Kilauea caldera and Pu‘u‘ Ō‘ō started to subside.

Temporally the observed deformation is associated with the 17 June 2007 Fathers

Day intrusion/eruption at Kilauea. The summit caldera likely deflated as magma

was transported from Kilauea caldera to the Makaopuhi crater region. It is posited
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Figure 4.6: Interferogram stack of Kilauea, Hawaii, constructed by averaging 66 topogra-
phy corrected interferograms created from 25 ALOS Level 0 products acquired from May
28, 2006 to March 11, 2011. Details of the deformation in Kilauea Caledera, Makaopuhi
Crater and Pu‘u‘ Ō‘ō region are shown in Fig. 4.7
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Figure 4.7: Displacement time series at Kilauea caldera, Makaopuhi Crater and Pu‘u‘ Ō‘ō.
All three regions show active deformation from mid-2007 to early 2009 and have remained
relatively stable afterwards. The June 2007 Father’s Day event can be clearly identified as
the abrupt rapid uplift in the Makaopuhi crater region with corresponding subsidence in
both Kilauea caldera and Pu‘u‘ Ō‘ō region between observations points at March 2007 and
July 2007.
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Figure 4.8: Difference in estimated displacement time series using the traditional workflow
and the proposed workflow with (a) COSMO-SkyMed dataset and (b) ALOS dataset. The
root-mean-square of differences in both cases are around 2 mm.

(Poland et al., 2008) that Pu‘u‘ Ō‘ō’s magma supply was disrupted, causing that

region to subside as well. The displacement time-series readily shows uplift in the

Makaopuhi crater region (Fig.4.7 b). The similarity in deformation patterns between

the Kilauea caldera and Pu‘u‘ Ō‘ō suggests a strong link between the summit magma

system and volcanic activities near the Pu‘u‘ Ō‘ō region. Starting 21 July 2007, the

lava eruption on the east flank of Pu‘u‘ Ō‘ō resulted in eastward deformation of the

region. Kilauea caldera continued to deflate after July 2007 as well, most likely due

to supplying magma to the fissure eruption site on the east flank of Pu‘u‘ Ō‘ō (Poland

et al., 2008). These events are observed as an approximately 50 cm LOS deformation

in both Kilauea caldera and Pu‘u‘ Ō‘ō from July 2007 to January 2009, after which

volcanic activity was less frequent and all three regions remained relatively stable.
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Figure 4.9: Effects of DEM error on estimation of surface displacement in LOS direction
calculated using COSMO-SkyMed imaging geometry. The uncertainty in LOS deformation
estimation grows linearly with both baseline and DEM errors. For example, if the DEM
has a 10 m uncertainty, then the uncertainty in LOS deformation estimation will increase
by 1 cm with every 300 m increase in baseline. Or, if a pair of SLC images has a 1000 m
baseline, then the uncertainty of estimated deformation increases by 1 cm with every 3 m
increase in DEM error.
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Comparison with traditional flow

We conducted the same SBAS time-series analysis in both product format cases us-

ing the traditional method in order to assess the influence of reversing the order of

resampling and interferometry. We find that there is no significant difference between

these as the root-mean-square difference of deformation time-series between the two

workflows is around 2 mm, as shown in Fig. 4.8.

4.3 Effects of an Imperfect DEM

Our approach relies on the availability of digital topography data, thus any errors in

the DEM used will generate imperfections in the derived products. In this section,

we quantify the relationship between DEM errors and interferometric phase. DEMs

always contain errors and in most cases the resolution of the DEM does not match the

resolution of radar images, requiring interpolation. Interpolating a DEM to match

the fine resolution of radar images often works well, but this step may also introduce

noise into the DEM. As a result, errors are introduced in the estimated topographic

phase, and hence the interferograms. Starting with Eqn.[4.2] and Eqn. [4.5], and

taking �T ref = 0

λ

4π
φtopo ≈

�T elev − �T ref

ρ
· �B ≈

�T elev
h Bh +

∑
i=s,c(

�T elev − �T ref )Bi

ρ
(4.8)

where subscripts s, c, h stand for the SCH coordinate system axes used here. The

SCH coordinate system is a special coordinate system that aligns with the radar ge-

ometry (Zebker et al., 2010). The s and c coordinates are along-track and across-track

ground coordinates respectively and the h coordinate measures the height of the point

above the surface. Since the SCH coordinate system is not an orthogonal coordinate

system, the vector subtraction in Eqn. [4.8] is not exact. However, since �T elev and
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�T ref are very similar, a direct-subtraction approximation works reasonably well and

is sufficient for the present analysis.

The noise in the DEM enters though the term �T elev, the target position on the

surface, which depends on both the imaging geometry and topography. Letting Δz

be the error in the DEM, and Δ�T elev the error in the position vector, then the corre-

sponding error in the computed phase is:

λ

4π
Δφtopo =

1

ρ

∑
i=s,c,h

Δ�T elev
i Bi (4.9)

where

Δ�T elev
s = 0

Δ�T elev
c = Δz/tan(θ) (4.10)

Δ�T elev
h = Δz;

and θ is the incidence angle of the radar wave. Combining Eqn. [4.9] and Eqn. [4.10],

we can write Δφtopo in terms of Δz

λ

4π
Δφtopo =

Δz

ρ
(

Bc

tan(θ)
+Bh) (4.11)

The baseline B =
√
B2

s +B2
c +B2

h. Since Bs is typically much smaller than Bc and

Bh, we can approximate B as

B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
2Bc ≈

√
2Bh Bc ≈ Bh

Bc Bc >> Bh

Bh Bc << Bh

(4.12)
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Combining Eqn. [4.11] and Eqn. [4.12], Δφtopo as a function of DEM error Δz and

the baseline B becomes

λ

4π
Δφtopo =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1√
2ρ
( 1
tan(θ)

+ 1)BΔz Bc ≈ Bh

1
ρ

1
tan(θ)

BΔz Bc >> Bh

1
ρ
BΔz Bc << Bh

(4.13)

For spaceborne satellite geometries, the three conditions in eqn.(4.13) are all possi-

ble. Since the first, BcBh, typically yields the largest estimation errors, we use the

following
λ

4π
Δφtopo =

1√
2ρ

(
1

tan(θ)
+ 1)BΔz) (4.14)

to bound the uncertainty in interferometric phase introduced by DEM error.

Note that the right hand side of Eqn. [4.14] does not depend on wavelength, and

the left hand side of Eqn. [4.14] is the uncertainty in estimated LOS surface defor-

mation caused by DEM error. The deformation uncertainty is proportional to DEM

error with a scale solely determined by imaging geometry – the larger the baseline B,

the more sensitive the system is to DEM error. Fig. 4.9 illustrates the dependence

of deformation uncertainty on both DEM error and baseline in the COSMO-SkyMed

case. For our application to the Central Valley of California, we used SLC pairs with

baseline smaller than 100 m. Since DEM error Δz is typically smaller than 3 m for

flat areas like the Central Valley, the error introduced by DEM error in our derived

surface deformation is less than 0.1 cm. As shown in Fig. 4.9, for SLC pairs with

baselines smaller than 1000 m we obtain cm-level accurate surface displacement given

no other significant error sources are present. In the Hawaii case, the DEM error is

about 7 – 10 m and we used SLC pairs with baseline smaller than 500m. The ALOS

satellite has a greater range and slightly larger look angle than COSMO-SkyMed
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satellite, and as a result, a smaller multiplier on DEM error. In this case, the uncer-

tainty level in our final estimation is about 1 cm. Since the observed deformation is

about 50 – 70 cm, the effects of DEM error can be safely ignored. Both cases have

shown that with some knowledge of the DEM error level in the study region, we can

use Fig. 4.9 or Eqn. [4.14] to find an upper bound for baseline in order to choose SLC

pair selections. For example, for the COSMO-SkyMed case, the maximum baseline

we can use is about 600 m if the uncertainty caused by DEM error need be under 0.5

cm.

4.4 Implementation with Sentinel-1 Data

In this section, we show an example of how we implemented the idea of topography

corrected and geocoded SAR on Sentinel-1 data over the Cascadia region. Because

Sentinel-1 operates on the TOPSAR imaging mode, which requires extra precision

on image co-registration, and because orbit data of Sentinel-1 is highly accurate,

we choose to not implement motion compensation techniques but rather resample

Sentinel-1 SLC images directly onto a latitude-longitude grid of a desired resolution

and correct topography-related phase with an external DEM at the same time. This

again shows that motion-compensation is not a prerequisite for the proposed workflow.

Fig. 4.10 illustrates an example of one such processed Sentinel-1 SAR amplitude

image of the Cascadia region using the proposed workflow. To form the presented

topography corrected and geocoded SAR image, we combined five consecutive frames.

The combining process is easy because each frame has already been resampled onto

the common latitude-longitude grid. With topography-corrected and geocoded SAR
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Figure 4.10: Example of processing Sentinel-1 data with the proposed workflow. We pro-
cess five consecutive frames of Sentinel-1 scenes (rectangles) into one topography-corrected
and geocoded SAR image, shown as a gray-scale amplitude image.
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images in well defined latitude-longitude grid ready for use, further processing be-

comes much more efficient and friendlier than it would have been with thousands of

interferograms in need of topography correction and geocoding.

4.5 Conclusions

In this chapter we have described a new InSAR processing approaches that generate

products meeting the needs of a wider than traditional InSAR user community, are

both efficient and robust, and are especially useful for time-series analysis that re-

quires a large number of SAR acquisitions. These goals are reached by altering the

data flow such that detailed and needed phase corrections are done by experts at the

data provider level, relieving users of the need to attain a high degree level of special-

ization in InSAR proficiency and of the need for vast amounts of compute resources.

We further quantify a major error source, phase errors due to imperfections in the

digital elevation model of an area, showing that deformation artifacts grow linearly

with DEM errors and InSAR baseline. For regions with poor DEMs, sufficiently ac-

curate estimation of LOS deformation can yet be achieved with SLC pairs that have

small baselines.

Current imaging radar satellites acquire SAR data for almost every point on Earth

at least once every six days (Hooper et al., 2012). Currently planned radar satellites,

including the SAOCOM L-band system, Radarsat constellation, and the upcoming

NASA-ISRO SAR mission will provide additional rich sources of high quality inter-

ferometric data. While the wide coverage of current and future SAR missions in

both space and time will open up the possibility of using InSAR for near real-time

monitoring, the high rates and large volumes of data still pose challenges to existing
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InSAR processing algorithms. The work presented here will significantly improve the

efficiency of interferogram formation when analyzing a large stack of SAR acquisitions.

In addition to separating InSAR product processing from many InSAR applica-

tions – the former requires knowledge of detailed SAR acquisition geometries and

complicated InSAR processing techniques, and the latter is mostly about geophys-

ical modeling – enhanced computational efficiency results from our new processing

approach. The separated InSAR processing approach delivers compensated SLC im-

ages that simply need to be cross-multiplied to yield products that can be readily used

in the geophysical modeling. If InSAR data users can acquire these compensated SLC

products from data providers, the use of InSAR data for geophysical applications can

become much simpler and easier than it is today.



Chapter 5

Noise Reduction in Interferogram

Stacks

The ability of InSAR to observe small signals is often limited by atmospheric noise and

decorrelation. With the quantity and quality of data modern InSAR networks offer,

it is now possible to reduce noise sufficiently to observe very small (∼ mm) signals in

noisy environments. In order to quantify uncertainties associated with the retrieved

signals, a temporal noise covariance model must keep track of both atmospheric noise

propagation and decorrelation noise propagation in time-series techniques such as

stacking or Small BAseline Subset (SBAS) method (Berardino et al., 2002). Atmo-

spheric noise is correlated between interferograms with common acquisition dates

(Zebker et al., 1997) and by stacking independent interferograms (i.e., interferograms

that do not share common acquisition dates), atmospheric noise can be most ef-

fectively reduced (Emardson et al., 2003). Decorrelation noise, on the other hand,

has been largely ignored in the noise covariance models. In the simple mathematical

framework developed by Hanssen (2001) to describe common noise sources in InSAR,

decorrelation noise is modeled as an independent noise term, uncorrelated between

any interferograms. Agram and Simons (2015) show that decorrelation noise can be

55
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temporally correlated and propose a covariance model to account for the contribu-

tion of decorrelation noise to overall noise covariance. However, to the best of our

knowledge, neither of these decorrelation covariance models has been tested against

real data.

In this chapter, we discuss how stochastic noise such as atmospheric noise and

decorrelation noise propagate through interferogram stacks. We first briefly introduce

different stacking strategies. We then introduce the covariance model for atmospheric

noise. The form of atmospheric noise covariance model is relatively well understood

(Zebker et al., 1997; Emardson et al., 2003). Here we present a practical way to

estimate the atmospheric noise covariance matrix for interferogram stacks. We then

present a new covariance model for decorrelation noise based on surface scattering

properties and validate our model against real data collected in both low coherence

and mid-to-high coherence areas. Our proposed decorrelation covariance model sug-

gests that decorrelation noise is indeed correlated between interferograms, but the

degree of correlation is overestimated by the model developed in Agram and Simons

(2015) for rapidly decorrelating surfaces. We show that while independent interfer-

ogram stacking is effective in terms of atmospheric noise mitigation, a significant

reduction in decorrelation noise can be achieved by including redundant interfero-

grams in a stack. Finally, We discuss how different stacking strategies impact noise

reduction. In particular, we show that for rapidly decorrelating surfaces such as the

Cascadia region, including redundant interferograms in stacks reduces phase variance

by more than 80%.
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5.1 Stacking: Different Strategies

Stacking refers to the process whereby multiple interferograms are averaged to mit-

igate temporally uncorrelated or weakly-correlated noise. To achieve different goals,

there are different stacking strategies. For example, to solve for a constant deforma-

tion rate, such as inter-SSE velocity, weighted stacking is often adopted to account for

varying signal strength in different interferograms. On the other hand, if a constant

signal strength is expected in every interferogram, then an equal weight should be

applied to all interferograms.

In this chapter, we discuss both independent interferogram stacking and redundant

interferogram stacking (referred to as independent and redundant stacking in the rest

of the chapter) as they prove to make a difference in terms of decorrelation noise

reduction. Fig. 5.1 illustrates these two stacking strategies. Assume that we have

four consecutive radar measurements s1, s2, s3, and s4 over the same target x and

between the measurement times of s2 and s3, the target x went through deformation.

An independent stack over the deformation period yields

φind =
1

2
(φ13 + φ24) (5.1)

where φij represents the unwrapped phase of the interferometric measurement sis
∗
j .

By convention, we have i < j in this thesis. φ14 and φ23 are not used in Eqn. [5.1]

as they are “redundant interferograms” formed using the same set of radar measure-

ments. A redundant stack, as we define here, includes all available interferograms

where each radar measurement is used the same number of times:

φred =
1

4
(φ13 + φ24 + φ14 + φ23) (5.2)
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Figure 5.1: Independent and redundant interferogram stacking. Each number represents
one image acquisition, and these acquisitions are arranged left and right in each panel
according to acquisition time. Left, an independent stack consists of interferograms that do
not share any common acquisition dates. Right, a redundant stack consists of all available
interferograms where each acquisition date appears the same number of times.

5.2 Atmospheric Noise Reduction by Stacking

Atmospheric noise is a result of the spatiotemporal heterogeneity of water vapor con-

tent in the lower atmosphere causing variance in time delays of the radar signal as it

propagates through the atmosphere (Goldstein, 1995; Zebker et al., 1997; Emardson

et al., 2003).

Assuming that the average variance of atmospheric delay at acquisition time i

with respect to a reference point is σ2
i , which depends on the distance and height

difference between the target x and some reference point, the covariance of φatm
ij and

φatm
kl is (Emardson et al., 2003; Onn and Zebker , 2006)

cov(φatm
ij , φatm

kl ) = σ2
i (δik + δil) + σj

2(δjk + δjl) (5.3)

where δij = 1, if i = j, and δij = 0 if otherwise.
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5.2.1 Atmospheric Noise Covariance Matrix Estimation

In order to estimate the covariance matrix, we need to first estimate the atmospheric

variance σ2
i associated with radar measurements at time ti. In practice, direct estima-

tion of σi from radar measurements is not straightforward without other facilitating

data sources (e.g., GPS data, meteorologic data). On the other hand, statistical

properties of atmospheric noise in the interferometric measurements φatm
ij have been

studied extensively (e.g. Emardson et al., 2003; Onn and Zebker , 2006; Treuhaft and

Lanyi , 1987). Emardson et al. (2003) shows that the standard deviation of interfero-

metric atmospheric noise exhibits a power-law relation with length:

σatm
ij = σ(φatm,x

ij − φatm,y
ij ) = cijL

αij (5.4)

Here we use σatm
ij to denote interferometric atmospheric noise as apposed to atmo-

spheric noise at acquisition time i σi. Typically in Eqn. [5.4], σij is in mm and L is

the distance between pixel x and pixel y and is in km. The value of α determines the

power-law behavior and is expected to be largely site-invariant. We expect Eqn. 5.4

to be valid for distances between 10 km and 800 km. Emardson et al. (2003) reports

a value of α to be around 0.5 based on GPS data collected in Southern California.

The value of c, on the other hand, is expected to vary site to site because it describes

the variability of water vapor content in the lower troposphere.

We can estimate the parameters αij and cij for every interferogram in the stack.

Fig. 5.2 demonstrates an example of such power-law behavior exhibited by atmo-

spheric noise in interferometric measurements collected between Oct 7, 2016 and Oct
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Figure 5.2: Atmospheric standard deviation σ as a function of distance estimated from
the interferometric measurements between Oct 7, 2016 and Oct 8, 2017. Both blue and
red circles represent estimated atmospheric standard deviation in mm extracted from the
interferometric measurements. The red circles are selected data points used for parameter
estimation. The black circles show the fit to the data. The final estimated function is
σ = 1.5 ∗ L0.5.

8, 2017 over Cascadia. We extracted the atmospheric variance from interferomet-

ric measurements by computing the square of phase differences at different length

scales. To minimize the impact of decorrelation, only pixels with correlation above

0.3 were used in the computation. Because there are many fewer data points with

long distance separation than short distance separation, we only use data points that

are separated by a distance less than roughly half the image size to solve for the

desired parameters. We find α = 0.5 and c = 1.5 for this interferogram. In general,

we find α ranging from 0.39 to 0.69 in Cascadia, consistent with the value of 0.5

reported by Emardson et al. (2003). We find c mostly varies from 0.51 to 1.85, as

opposed to the value of 2.5 reported in Emardson et al. (2003) for Southern California.

With cij and αij estimated for every interferogram, we can calculate, for every

pixel, an interferometric atmospheric standard deviation with respect to a reference
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pixel: σ(i,j) = σ(φatm
ij −φatm,r

ij ) = cijL
αij . Interferometric atmospheric variances σatm

ij
2

are the sum of atmospheric variances at acquisition times i and j:

σatm
ij

2
= σ2

i + σ2
j . (5.5)

We can rewrite the relation in the following matrix representation:

Bσ2 = σ2
I (5.6)

where σ2
I represents a list of interferometric variance at pixel x in different interfer-

ograms, σ2 represents the list of atmospheric noise variance associated with radar

measurements at different acquisition times. B is an incidence matrix that links the

atmospheric noise variance in different acquisitions to the interferometric measure-

ments. For example, with σ2 = [σ2
1, σ

2
2, σ

2
3], σ

2
I = [σatm

12
2
, σatm

13
2
],

B =

⎡⎣1 1 0

1 0 1

⎤⎦ . (5.7)

After obtaining an estimate of σ2 by inverting Eqn. [5.6] with non-negativity con-

straints, we can form the covariance matrix of atmospheric noise using Eqn. [5.4].

Note this method is only valid when the power-law behavior of interferometric atmo-

spheric noise is valid, namely, the maximum distance of the analyzed datasets is 800

km.

5.2.2 Independent vs Redundant Stacking

Assume that we have four interferometric measurements as illustrated in Fig. 5.1.

The covariance matrices for Φatm
ind = [φatm

13 , φatm
24 ] and Φatm

red = [φatm
13 , φatm

24 , φatm
14 , φatm

23 ]
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can be constructed as follows:

COVΦatm
ind

=

⎡⎣σ2
1 + σ2

3 0

0 σ2
2 + σ2

4

⎤⎦ (5.8)

COVΦatm
red

=

⎡⎢⎢⎢⎢⎢⎢⎣
σ2
1 + σ2

3 0 σ2
1 σ2

3

0 σ2
2 + σ2

4 σ2
4 σ2

2

σ2
1 σ2

4 σ2
1 + σ2

4 0

σ2
3 σ2

2 0 σ2
2 + σ2

3

⎤⎥⎥⎥⎥⎥⎥⎦ (5.9)

It can be easily shown that σ2(φatm
ind ) = σ2(φatm

red ) = (σ2
1 + σ2

2 + σ2
3 + σ2

4)/4. Therefore,

both independent and redundant stacking statistically reduce the variance associated

with atmospheric noise by a factor equal to the number of radar measurements.

5.2.3 Weighted vs Non-Weighted Stacking

Weighted stacking effectively changes each element of the covariance matrix from

cov(φatm
ij , φatm

kl )

to

wijwkl cov(φ
atm
ij , φatm

kl ).

Therefore, when reducing atmospheric noise, or in fact, any stochastic noise compo-

nent that can be described with a covariance matrix, it is important to keep in mind

that data with higher weights will have greater variance and covariance in the noise

covariance matrix as well. Sometimes, it may be strategic to discard these data even

though this may mean losing independent measurements.
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5.3 Decorrelation Noise Reduction by Stacking

Decorrelation is one of the main limiting factors for InSAR observations. The mech-

anisms of signal deorrelation have been well studied, and can mainly be attributed to

changes of surface scattering properties during the observation time span, geometri-

cal decorrelation, and system and other thermal noises (Zebker and Villasenor , 1992).

A covariance model for decorrelation noise is often ignored because (1) conven-

tional InSAR time-series techniques such as Persistent Scattering (Ferretti et al., 2001;

Hooper et al., 2004) and Small BAseline Subset (Berardino et al., 2002) techniques

typically only deal with observations with relatively high coherence and (2) exten-

sive spatial filtering before analysis often permits sufficient reduction of decorrelation

noise for mid-to-high coherence areas. However, with modern large InSAR datasets

and the desire to resolve small amplitude signals in low coherence areas, a covari-

ance model for decorrelation noise is needed to account for associated uncertainties

in time-series analyses. A covariance model for decorrelation noise can also help us

determine best time-series practice to reduce decorrelation noise.

As stated above, Hanssen (2001) models decorrelation as a fully independent noise

term in each interferogram in a network. Letting σ2
ij denote the variance associated

with φdecor
ij , the covariance of φdecor

ij and φdecor
kl given by Hanssen (2001) is

cov(φdecor
ij , φdecor

kl ) = σ2
ijδikδjl (5.10)

where δij = 1, if i = j, and δij = 0 if otherwise. Therefore, the covariance matrix

given by Hanssen (2001) only has diagonal components, which are simply the vari-

ance associated with φdecor
ij .
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In contrast, Agram and Simons (2015) argue that decorrelation noise is corre-

lated in time. Therefore, interferograms that share a common time interval can have

nonzero correlations between their respective decorrelation noise terms. Their pro-

posed method to obtain the covariance matrix starts with a pseudocovariance matrix

Ω̃ifg that is derived from a SAR coherence matrix Ωsar and the InSAR incidence ma-

trix A (Definition of A can be found in Berardino et al. (2002)): Ω̃ifg = 1
2
AΩsarA

T .

The pseudocovariance of φdecor
ij and φdecor

kl is then expressed as

c̃ov(φdecor
ij , φdecor

kl ) =
ρik + ρjl − ρil − ρjk

2
(5.11)

where ρij is the correlation coefficient between radar measurements si and sj. The

pseudocovariance is then used to approximate the true covariance of of φdecor
ij and

φdecor
kl :

cov(φdecor
ij , φdecor

kl ) =
σij√
1− ρij

· c̃ov(φdecor
ij , φdecor

kl ) · σkl√
1− ρkl

(5.12)

where the scaling factor σij/
√

1− ρij implies that cov(φdecor
ij , φdecor

ij ) = var(φdecor
ij ) =

σ2
ij. Therefore, the covariance matrix given by Agram and Simons (2015) not only

has diagonal components, but also has nonzero off-diagonal components. We note

that this scaling is not quite right, see section 5.3.1 below.

The models of Hanssen (2001) and Agram and Simons (2015) differ in whether

or not decorrelation noise is itself correlated between interferograms. Hence, the two

models give different predictions for the reduction of decorrelation noise by redundant

and independent interferogram stacking. For example, suppose we have an interfer-

ogram network consisting of interferograms with similar correlation and noise level.

Hanssen (2001) predicts that redundant interferogram stacking reduces decorrelation

more effectively than independent interferogram stacking; Agram and Simons (2015),

on the other hand, predict the same performance from either of the two stacking
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strategies. For ease of discussion, hereinafter we refer to the covariance model sug-

gested by Hanssen (2001) as the “Hanssen model” and the covariance model suggested

by Agram and Simons (2015) as the “Agram-Simons model”.

As we will demonstrate in the following section, neither of these models fit actual

data well. We propose a decorrelation noise covariance model based on scattering

properties of the surface. We argue that while decorrelation noise is correlated be-

tween interferograms rather than being independent as proposed by Hanssen (2001),

the extent of the correlation is not precisely captured by Agram and Simons (2015).

We show that redundant stacking reduces decorrelation noise more effectively than

independent stacking, especially in low coherence areas such as the Cascadia region.

5.3.1 A New Decorrelation Covariance Model

In this section, we present a covariance model for decorrelation phase noise. Let us

first take a look at how the correlation coefficient ρ varies with time t. We can write

ρ(t) as the sum of two parts:

ρ(t) = ρ∞ + (1− ρ∞)e−
t
τ (5.13)

The second term of Eqn. [5.13] represents the classic exponential decay model assum-

ing random Gaussian motion among scatterers (Zebker and Villasenor , 1992). The

first term of Eqn. [5.13] acknowledges the contribution from persistent scatterers.

When t → 0, ρ → 1, and when t → ∞, ρ → ρ∞. τ represents the characteristic

decorrelation time and varies with wavelength and surface scattering properties. Fig.

5.3 plots of observed correlation of pixels for different interferogram time spans, shows

how ρ, at C band as observed by Sentinel-1, decreases with time in two areas – the



CHAPTER 5. NOISE REDUCTION IN INTERFEROGRAM STACKS 66

0 200 400 600 800

0.2

0.4

0.6

0.8

1
0 200 400 600 800

0.2

0.4

0.6

0.8

1

0 500 1000 1500

0.2

0.4

0.6

0.8

1

0 500 1000 1500

0.2

0.4

0.6

0.8

1

D 
CD 

A 

A

B 

C 

B 

(1) (2) (3) 

Time span, days  

C
oh

er
en

ce
  ρ

Figure 5.3: Examples of temporal variations of correlation in the Cascadia and the Death
Valley regions. (1) Scatter plots of correlation vs time in locations A, B, C and D. (2) A
and B are located in heavily vegetated Cascadia region, (3) C and D are located in the
desert of Death Valley. A and B both exhibit a characteristic decorrelation time of roughly
30 days and an asymptotic coherence ρ∞ of 0.1. C and D, on the other hand, show much
longer decorrelation time of approximately 400 days and 200 days and higher asymptotic
coherence ρ∞ of 0.2 and 0.6, respectively.

heavily vegetated Cascadia region, and the desert Death Valley area. It is apparent

that for heavily vegetated areas, the characteristic decorrelation time τ is about 30

to 40 days, much shorter than the desert areas, for which τ can be as long as a few

years. The Death Valley data also exhibit larger contributions from persistent scat-

terers: ρ∞ in the two locations shown in the death valley are 0.2 and 0.6, respectively,

much higher than ρ∞ ≈ 0.1 in the two locations shown in the Cascadia region.

Next, consider a series of radar signals s1, s2, ...sn acquired at different time ob-

serving the same target. We adopt the style of analysis presented in Zebker and

Villasenor (1992):

si = (
√
ρ∞C +

√
1− ρ∞Di)e

iψi (5.14)

where ψi represents propagation phases (e.g., deformation signal, atmospheric delay)

at time ti, C represents a persistent scatterer that remains coherent, and Di represents
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distributed scatterers at time ti that decorrelate gradually over time. For the sake of

simplicity and without loss of generality, we make C = 1, E[Di] = 0 and E[|Di|2] = 1,

so that the expected intensity of si is unity. We model the distributed scatterers Di

as complex Gaussian random variables. Di’s can be represented as

Di = ρdi−1,iDi−1 +
√
1− ρdi−1,i

2
ni (5.15)

where ni is a complex Gaussian random variable with an expected intensity of unity,

and that is uncorrelated with D’s and nj as long as i �= j.

With Eqn. [5.15], we can derive that

DiDj
∗ = ρdij +Rij (5.16)

E[DiDj
∗] = ρdij (5.17)

ρdijρ
d
jk = ρdik (5.18)

E(|Di|2|Dj|2) = 1 + ρdij
2

(5.19)

where ρdij describes the correlation between distributed scatterers D at times ti and

tj and is often modeled as a decaying exponential function of time. Rij describes the

remaining part of DiDj
∗ and has an expected value of zero. Let zij represent the

interferometric measurement between signals si and sj:

zij = sisj
∗ =

(
ρ∞ + (1− ρ∞)DiDj

∗ +
√

ρ∞(1− ρ∞)(Di +Dj
∗)
)
ei(ψi−ψj). (5.20)

The correlation ρij between signals si and sj is

ρij =

∣∣E[zij]
∣∣√

E[|si|2]E[|sj|2]
= ρ∞ + (1− ρ∞)ρdij. (5.21)
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With an exponential decay model ρdij = exp
(−|ti − tj|/τ

)
, Eqn. [5.21] is consistent

with Eqn. [5.13]. Substituting Eqn.[5.16] and [5.21] into [5.20],

zij =

(
ρij + (1− ρ∞)Rij +

√
ρ∞(1− ρ∞)(Di +Dj

∗)
)
ei(ψi−ψj) (5.22)

The first term of Eqn. [5.22] represents coherent signals between time ti and tj,

which is the expected value of zij, the second and third terms are associated with

decorrelation noise during this time period:

zij − E[zij] =

(
(1− ρ∞)Rij +

√
ρ∞(1− ρ∞)(Di +Dj

∗)
)
ei(ψi−ψj) (5.23)

where zij − E[zij] represents the zero-mean decorrelation noise component in the

interferometric measurement zij. Making use of Eqn. [5.16] to Eqn. [5.19], the

covariance of the decorrelation noise components in zij and zkl is then

cov (zij − E[zij], zkl − E[zkl]) (5.24)

= E
[
(zij − E[zij])(zkl − E[zkl])

∗]
= E

{
(1− ρ∞)2RijR

∗
kl + ρ∞(1− ρ∞)(DiD

∗
k +DiDl +D∗

jD
∗
k +D∗

jDl)+

(1− ρ∞)
√

ρ∞(1− ρ∞)
(
Rij(D

∗
k +Dl) +R∗

kl(Di +D∗
j )
)}

ei(ψi−ψj−ψk+ψl)

=

(
(1− ρ∞)2E(RijR

∗
kl) + ρ∞(1− ρ∞)(ρdik + ρdjl)

)
ei(ψi−ψj−ψk+ψl)

=

(
(1− ρ∞)2ρdikρ

d
jl + ρ∞(1− ρ∞)(ρdik + ρdjl)

)
ei(ψi−ψj−ψk+ψl)

= (ρikρjl − ρ2∞)ei(ψi−ψj−ψk+ψl)
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Similar to the definition of the correlation coefficient ρ between radar measure-

ments, we define γ as the correlation coefficient between interferometric measure-

ments:

γ(zij, zkl) =

∣∣cov (zij, zkl)
∣∣√

E
[|zij − E[zij]|2

]
E
[|zkl − E[zkl]|2

] (5.25)

=
ρikρjl − ρ∞2

1− ρ∞2
(5.26)

γ ranges from 0 to 1.

To obtain the covariance between decorrelation phase φdecor
ij , φdecor

kl , we need

γ(φdecor
ij , φdecor

kl )

γ(φdecor
ij , φdecor

kl ) =
cov (φdecor

ij , φdecor
kl )√

E|φdecor
ij |2|E|φdecor

kl |2
(5.27)

=
cov (φdecor

ij , φdecor
kl )

σijσkl

(5.28)

where σij is the standard deviation of decorrelation phase noise φdecor
ij . We find via

numerical simulation that the relation between γ(φdecor
ij , φdecor

kl ) and γ(zij, zkl) exhibits

a power-law behavior

1− γ(φdecor
ij , φdecor

kl ) ≈ [
1− γ(zij, zkl)

] 1
2 (5.29)

Note the difference here with the assumption in the Agram-Simons model that cor-

relations between phases are equal to correlations between their respective complex
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signals. Combining Eqn. [5.26], [5.28] and [5.29], we have

cov (φdecor
ij , φdecor

kl ) = σij ·
[
1− (1− γ(zij, zkl))

1
2
] · σkl (5.30)

=
(
1−

√
1− ρikρjl
1− ρ2∞

)
σijσkl (5.31)

Note that since we need ρij in the proposed covariance model (Eqn.[5.31]), this model

is only practically applicable to multi-looked interferograms of which good estimates

of correlation coefficients can be obtained. Since returns from different pixels are

generally uncorrelated or only weakly correlated, the decorrelation covariance matrix

shown in Eqn. [5.31] holds for multi-looked interferograms.

5.3.2 Comparison Between Existing and the Proposed Decor-

relation Covariance Models

So far we have described both the existing (Eqn. [5.10] and [5.12]) and the pro-

posed (Eqn. [5.31]) decorrelation covariance models. In this section, we illustrate

their differences by testing these models on surfaces with varying decorrelation rates.

Specifically, we compare their respective performance prediction in terms of decorre-

lation noise reduction after both independent and redundant stacking. For ease of

discussion, hereinafter we refer to the covariance model suggested by Hanssen (2001)

as the “Hanssen model” and the covariance model suggested by Agram and Simons

(2015) as the “Agram-Simons model”.

Assume that we have 2M consecutive radar measurements acquired over the same

target x. M measurements were acquired before the target x went through deforma-

tion, and M measurements were acquired afterwards. Using the independent and
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redundant stacking strategies illustrated in Fig. 5.1, we can form an independent

stack consisting of M interferometric measurements and a redundant stack consisting

of M2 interferometric measurements. For every interferometric measurement in the

stack, there is an associated correlation coefficient ρij and an associated phase noise

σ2(φij). ρij is computed using Eqn. [5.13] with the asymptotic correlation ρ∞ set

to 0.1. The phase variance σ2(φij) is computed using the Cramer-Rao bound rela-

tion σ2(φij) =
1−ρ2ij
2ρ2ij

(Rodriguez and Martin, 1992). Assuming no atmospheric noise

is present, σ2(φij) is hence equivalent to uncertainties associated with decorrelation

noise σ2(φdecor
ij ).

Next we examine the associated uncertainties with φdecor
ind and φdecor

red with co-

variance models given in Eqn. [5.10], [5.12] and [5.31]. Consider two end-member

cases: (1) τ → 0, so that every interferogram has a correlation coefficient ρij → ρ∞,

and (2) τ → ∞, so that every interferogram has a correlation coefficient ρij → 1.

We use σ̄2
1 and σ̄2

2 to represent the average phase noise in the stack for each case:

σ̄2
1 ≈ 1−ρ2∞

2ρ2∞
> σ̄2

2 ≈ 0. The results are listed in Table. 5.1.

Table 5.1: Predicted Uncertainties After Stacking

Models Stacking Strategy Case 1: τ → 0 Case 2: τ → ∞
Hanssen

Independent σ̄2
1/M σ̄2

2/M
Redundant σ̄2

1/M
2 σ̄2

2/M
2

Agram-
Simons

Independent σ̄2
1/M (2

3
+ 1

3M2 )σ̄
2
2

Redundant σ̄2
1/M (2

3
+ 1

3M2 )σ̄
2
2

Proposed
Independent σ̄2

1/M σ̄2
2

Redundant ( 1
M

− M−1
M2 ( 2√

1+ρ∞
− 1))σ̄2

1 σ̄2
2

In both cases, the Hanssen Model predicts that redundant stacking produces

smaller variance than independent stacking while the Agram-Simons model suggests
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that redundant stacking yields the same results with independent stacking. In addi-

tion, the Agram-Simons model predicts higher phase variances than those predicted

from the Hanssen model. This is because that the Agram-Simons model takes into ac-

count correlation between decorrelation components in interferometric measurements.

In the first case where the surface rapidly decorrelates, the proposed model pre-

dicts that redundant stacking yields smaller noise – with ρ∞ = 0.1, redundant stack-

ing reduces noise by about 90% over independent stacking. In the second case where

almost no decorrelation takes place, the proposed model suggests that there is no

reduction in noise by either stacking strategy, as all measurements are perfectly cor-

related. Therefore, with a long enough characteristic decorrelation time τ , we can

infer that the proposed model suggests little to no difference between redundant stack-

ing and independent stacking.

Fig. 5.4 depicts the predictions of σ2(φdecor
ind ) and σ2(φdecor

red ) from both the existing

and the proposed models for surfaces with varying decorrelation rates (τ ranges from

1 to 500 days). M is set to 45, with each radar measurement taken 12 days apart. ρ∞

is set to 0.1. As expected, the Hanssen model (green lines) predicts larger phase noise

by independent stacking regardless of surface decorrelation rates; the Agram-Simons

model (blue lines) predicts zero or small differences between the independent stack

and the redundant stack with either rapidly or very slowly decorrelating surfaces;

and the proposed model (red lines) predicts significant higher noise reduction from

redundant stacking with rapidly decorrelating surfaces and similar noise reduction

performances from either stacking strategy with slowly decorrelating surfaces. Addi-

tionally, we observe that:
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Figure 5.4: Predicted uncertainty associated with decorrelation noise after indepen-
dent stacking and redundant stacking from decorrelation covariance models suggested by
Hanssen (2001), Agram and Simons (2015) and the proposed model.

1. The Agram-Simons model predicts the highest phase noise (i.e., the least re-

duction in decorrelation noise) for both independent and redundant stacking. This

means that the Agram-Simons model suggests high correlation between decorrelation

noise components. In contrast, the Hanssen model, which assumes independence be-

tween decorrelation noise components, predicts the lowest uncertainty. Predictions

from the proposed model fall between predictions from the other two models, sug-

gesting that the proposed model assumes a weak correlation between decorrelation

noise components (within the range of τ plotted in Fig.5.4).

2. Predictions from the proposed model and the Agram-Simons model show a

peak around τ ≈ 120 days while predictions from the Hanssen model shows a steady

decrease with increasing τ . Two factors influence the predicted phase variance: a) the

average phase noise level in interferograms and b) the degree of correlation between
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decorrelation noise components. The higher the average phase noise, the higher the

predicted phase variance; the higher the degree of correlation between decorrelation

noise terms, the higher the predicted phase variance. When τ is small, correlation

between decorrelation noise terms is negligible in all three models, and when τ is

large, the average phase noise level is low. Therefore the predicted phase variances

from the proposed model and the Agram-Simons model are low at both ends of τ but

high in the middle. Since there is no correlation in the Hanssen model, the predicted

phase variance decreases monotonically with τ .

5.3.3 Validation With Real Data

In this section, we compare and assess all three decorrelation covariance models – the

Hanssen model, the Agram-Simons model, and the proposed model – with Sentinel-1

data collected in both the Cascadia region and the Death Valley region.

The Cascadia region is heavily vegetated and hence shows fast decorrelation. The

Death Valley region, on the other hand, is a desert and hence shows slow decorrela-

tion (Fig. 5.3). For each region, we formed an independent interferogram stack and

a redundant interferogram stack. The Cascadia region has an independent stack con-

sisting of 40 interferograms and a redundant stack consisting of 1600 interferograms.

The Death Valley region has an independent stack consisting of 28 interferograms

and a redundant stack consisting of 784 interferograms. By averaging the respective

stacks, we obtained φind and φred for both regions.

Comparisons between phase variances associated with φind and φred are shown in

Fig. 5.5. We obtained σ2(φdecor
ind ) and σ2(φdecor

red ) at evenly distributed grid points by
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Figure 5.5: Phase variance after independent stacking vs phase variance after redundant
stacking in (left) the Cascadia region and (right) the Death Valley region. Data (circles)
show that for the Cascadia region, redundant stacking produces smaller phase variances
and for the Death Valley region, similar phase variances compared to the independent
stack. Predictions from the proposed model (stars) match the data best in both cases while
the Hanssen model (squares) underestimates and the Agram-Simons model (diamonds)
overestimates phase variance in both cases.
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Table 5.2: Average Prediction Error. We define prediction errors as the distances (unit:
[rad]2) from the average position of data points (beige circles) and the average positions of
their corresponding prediction points (purple stars, orange squares or cyan diamonds) in
Fig. 5.5.

Models Cascadia Death Valley
Hanssen 0.030 0.108
Agram-Simons 0.274 0.365
Proposed 0.017 0.066

calculating phase variances inside 50 pixel by 50 pixel boxes (1500 meter by 1500 me-

ter in area) centered at each location, assuming atmospheric noise is negligible inside

the box. For the Cascadia region, the redundant stack yields smaller uncertainties

than the independent stack (Fig. 5.5, left, beige circles), confirming predictions from

the proposed model and suggesting that for rapidly decorrelating areas, redundant

interferograms should be used in addition to independent interferograms to best re-

duce decorrelation. For the Death Valley region where the characteristic decorrelation

time τ is on the order of years, independent and redundant stacking produce similar

results (Fig. 5.5, right, beige circles), consistent with predictions from the proposed

model.

With ρij and the associated phase noise σ2
ij for each grid point in every inter-

ferogram in the stack, we can predict phase variances associated with φind and φred

using these three decorrelation covariance models. The predictions are shown in Fig.

5.5 and Table. 5.2. Predictions from the proposed model (purple stars) match best

with actual observations (beige circles) while predictions from the Hanssen model (or-

ange squares) mostly underestimates, and the Agram-Simons model (cyan diamonds)

mostly overestimates phase variances of the stacks. The Hanssen model shows com-

parable average errors with the proposed model but it fails to capture the difference

between the Cascadia region (rapidly decorrelating surfaces) and the Death Valley
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region (slowly decorrelating surfaces), as it predicts that redundant stacking always

produces smaller phase noise. The Agram-Simons model also fails to capture the

difference between the Cascadia region and the Death Valley region, because it pre-

dicts the same phase noise after redundant stacking and independent stacking in both

regions.

Finally, we use an example to illustrate the significant reduction in decorrelation

noise by including redundant interferograms in the stack for rapidly decorrelating

areas . Fig. 5.6 depicts stacking results over a slow slip event that occurred in Febru-

ary 2016 in the Cascadia region. Slow slip events are usually hard to capture in the

Cascadia region with InSAR due to extremely low signal to noise ratios. Atmospheric

noise and decorrelation are the two main limitation factors. With 10 Sentinel-1 SAR

acquisitions before the slow slip event and 10 Sentinel-1 SAR acquisitions after, we

formed an independent interferogram stack consisting of 10 interferograms and a re-

dundant stack consisting of 100 interferograms. It is apparent that the result from

using redundant stacking yields a much cleaner deformation pattern. Fig. 5.7 com-

pares phase measurements along four profile lines between independent stacking and

redundant stacking. Again, it is clear that while both stacking strategies produce

measurements of the same expected signal, redundant stacking produces measure-

ments with much smaller phase variance (about 80% less). With the same number of

independent acquisitions, atmospheric noise is reduced to the same extent after either

independent stacking or redundant stacking. Therefore, the significant reduction in

phase noise reflects reduced decorrelation noise in the redundant stack.
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Figure 5.6: Results from (left) independent and (right) redundant stacking over the Febru-
ary 2016 slow slip event in the Cascadia region. The result from redundant stacking suffers
from less decorrelation noise than the result from independent stacking. Areas with less
coverage than 20 acquisitions are masked. Phase measurements are converted to radar
line-of-sight (LOS) measurements.
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Figure 5.7: Comparisons between independent and redundant stacking results over profile
lines A-A’, B-B’, C-C’ and D-D’. Redundant stacking (red dots) produces similar mean
measurements as with independent stacking (blue dots), but with much smaller phase vari-
ances.

5.4 Discussions and Conclusions

In this chapter we have described the atmospheric noise covariance model and showed

how to estimate the atmospheric noise covariance matrix in practice. We have de-

scribed our proposed decorrelation covariance model and compared the proposed

model with two existing models – the Hanssen model and the Agram-Simons model.

We have also validated our proposed decorrelation covariance model using real data

in two regions with different scattering properties.

In this section, we have shown that different stacking strategies can have signifi-

cant impact on noise reduction. Specifically, we compared independent stacking and

redundant stacking, as well as weighted and non-weighted stacking.

We have shown that, for weighted stacking, interferograms with more weight con-

tribute more to the overall residual noise in the stack. We have also shown that,
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contrary to some conventional assumptions, “redundant” interferograms are not “re-

dundant”. For rapidly decorrelating surfaces, decorrelation noise components are

either not at all, or only weakly correlated between interferograms, with or without

common acquisitions. Therefore, incorporating redundant interferograms into InSAR

time-series analyses can help further reduce decorrelation noise.

With the atmospheric noise covariance model as well as the proposed decorrelation

covariance model, we can better quantify uncertainties in InSAR time-series analy-

ses. As we head into an era with an ever-growing SAR archive, understanding and

quantifying uncertainties associated with atmospheric noise and decorrelation noise

is an important step towards building a rigorous and comprehensive noise covariance

model, which is of critical importance for the InSAR community to better assessed

uncertainties with the InSAR measurements, and extended the InSAR application

from mid-to-high correlation areas to low-correlation areas.



Chapter 6

Imaging Cascadia slow slip using

InSAR

In this chapter, we present our use of InSAR to observe Cascadia slow slip events.

In particular, we show an example where we retrieve SSE-related deformation from a

2015-2016 winter Oregon slow slip event.

6.1 Data

We found 303 Sentinel-1A and B scenes acquired over the Cascadia region between

June 2015 and May 2018 (Copernicus Sentinel data 2015-2018, retrieved from ASF

DAAC 7 May 2018, processed by ESA, https://www.asf.alaska.edu). Adopting

the method described in Chapter 4, we processed and combined these scenes into 96

geocoded and topography-corrected scenes. Fig. 6.1 shows the spatial coverage of

these combined SAR scenes – the area between 43◦N and 46◦N (Central Cascadia)

enjoys the most coverage and only a small area around the Columbia river is covered

by every scene (96 scenes in total). Since copious data coverage is essential in reduc-

ing interferometric measurements errors, we limit our study area to Central Cascadia

81
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Figure 6.1: Sentinel data coverage map overlaid on the amplitude image of the study area.
Only a small area around the Columbia River is covered by every SAR scene (96 in total).
Central Cascadia enjoys the more coverage than Southern and Northern Cascadia. A total
of 45 GPS stations are used in this study and their locations are marked as triangles. The
reference point chosen is marked as a star.
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where at least 70 scenes were acquired. We then proceeded to form interferograms

using these topography corrected and geocoded SLCs and unwrap interferograms us-

ing a statistical minimum cost-flow phase unwrapping algorithm (Chen and Zebker ,

2001).

Table 6.1: Slow Slip Events in Cascadia between 2015 and 2018

Slow Slip Events Starting time Ending time Location
2015-2016 winter Jan-20-2016 Mar-01-2016 Central Cascadia
2016-2017 winter Feb-18-2017 Apr-06-2017 Northern Cascadia
2017-2018 winter Dec-05-2018 Jan-07-2018 Central Cascadia

We use the Pacific Northwest Seismic Network (PNSN) tremor catalogue (http:

//pnsn.org/tremor) to identify start and end dates for slow slip events during the

study period. We find that three SSEs took place between June 2015 and May 2018

(See Table 6.1), with the first and the third occurring mainly in Oregon, and the

second in Washington. Considering data coverage in space and time, we focus on the

first SSE, which occurred in winter 2015-2016 in Central Cascadia. This event has

also been identified by Michel et al. (2018) as Event 54 in their SSE catalog. Fig. 6.2

shows the respective time spans of the two Oregon SSEs as well as Sentinel-1 scene

acquisition dates. Since the 2016-2017 winter Washington SSE is not well covered by

our data, we choose to omit this event.

We also use daily sampled GPS position time series provided by the Pacific North-

west Geodetic Array, Central Washington University (http://geodesy.cwu.edu, last

access August 2019), to compare with InSAR measurements. The locations of GPS

stations used in this thesis are shown in Fig.6.1.

Fig. 6.3 presents two unwrapped interferograms that span the 2016 winter Oregon
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Figure 6.2: Acquisition times and relative positions of the Sentinel-1A and 1B orbits
between June 2015 and May 2018. The gray areas indicate the time spans of two Oregon
SSEs that took place during this period. We omit the Washington event as it is not covered
well by our data.
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Figure 6.3: (Left) A sample interferogram formed with scenes acquired on 29 Jan 2016 and
22 February 2016. (Right) A sample interferogram formed with scenes acquired on 5 Jan
2016 and 17 March 2016. Both interferometric measurements are dominated by atmospheric
signals rather than actual SSE deformation.
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slow slip event. Even though these two samples have relatively short temporal time

span (24 days and 72 days) and hence enjoy relatively high correlation, we note

that both interferometric measurements are dominated by atmospheric signals rather

than the actual SSE deformation. In the next few sections, we discuss in detail how

stacking can be applied to retrieve surface deformation signals related to the slow slip

event. We also present uncertainties associated with measurements using temporal

noise covariance matrices presented in Chapter 5.

6.2 Method: Stacking

Stacking is a simple yet effective method that reinforces temporally coherent signals

such as deformation while mitigating temporally uncorrelated or weakly-correlated

signals such as atmospheric and decorrelation noise.

The unwrapped interferometric phase uij between the ith and the jth SAR mea-

surement that spans the slow slip event can be decomposed as the sum of various

terms:

uij = d+ vTij + pij + εatmij + εdecorij + εnij + cij (6.1)

where d is deformation associated with the slow slip event, and v represents inter-

SSE velocity. Note that v here is different than interseismic velocity as the latter is

defined over a much longer timescale. In a short timescale such as the three year

window of this study, signals other than tectonic loading (for example, hydrological)

can complicate estimation of interseismic velocities. Therefore, the inter-SSE velocity

v should be interpreted as an assumed linear line-of-sight inter-SSE velocity that

best describes the general deformation trend of the study area between June 2015

and May 2018. Tij represents the time interval between acquisition of the ith and

jth SAR scene, pij represents the elastic response of the Earth’s crust to seasonal
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hydrological loading effect (Farrell , 1972; Fu et al., 2015), εatmij is atmospheric noise,

εdecorij is decorrelation noise, and εnij represents all other noise sources such as residual

DEM error and thermal noise, cij is a constant that results from the relative nature

of InSAR measurements and is generally different in every interferogram. Due to

the presence of cij and non-uniform spatial coverage of the SAR scenes (Fig. 6.1),

and hence non-uniform spatial coverage of interferometric measurements, we use a

reference pixel ur
ij to re-calibrate the zero-phase reference of every interferogram:

uij − ur
ij =d− dr + (v − vr)Tij + pij − prij+

εatmij − εatm,r
ij + εdecorij − εdecor,rij + εnij − εn,rij (6.2)

Similarly, for an interferometric measurement that does not span any slow slip events,

we have

uij − ur
ij =(v − vr)Tij + pij − prij+

εatmij − εatm,r
ij + εdecorij − εdecor,rij + εnij − εn,rij (6.3)

The location of the reference point we chose is marked in Fig. 6.1.

Averaging interferometric measurements that span the SSE yields:

1

N

∑(
uij − ur

ij

)
=d− dr +

∑
Tij

N
(v − vr) +

1

N

∑(
pij − prij

)
1

N

[∑(
εatmij − εatm,r

ij

)
+
∑(

εdecorij − εdecor,rij

)
+
∑(

εnij − εn,rij

)]
(6.4)

where N is the number of interferograms that covers a given pixel in the stack.

We show in the following sections that by stacking, we can reduce InSAR noise
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uncertainties to sub-cm level. Similarly, averaging interferograms that do not span

any SSEs can lead to an estimation of the inter-SSE velocity v:∑(
uij − ur

ij

)∑
Tij

=v − vr +

∑(
pij − prij

)∑
Tij

1∑
Tij

[∑(
εatmij − εatm,r

ij

)
+
∑(

εdecorij − εdecor,rij

)
+
∑(

εnij − εn,rij

)]
(6.5)

6.2.1 Choosing the Best Stacking Strategies

There are 580 interferograms that span the SSE and 1888 interferograms that do

not span any SSEs. However, including every possible interferogram in the stack is

not necessarily the optimal stacking strategy in terms of noise reduction, as we have

discussed in Chapter 5. It is necessary to first analyze the strength and the statistics

of various noise sources that are present in our measurements.

Apart from the desired slow slip deformation d and inter-SSE velocity v, Eqns.

[6.4] and [6.5] also contain contributions from seasonal signals caused primarily by

hydrological loading, atmospheric noise, decorrelation noise, and other noise sources

such as DEM error and thermal noise.

Seasonal Signals

Fu et al. (2015) report an average seasonal range of about 1 cm vertical displacement

in mountainous areas such as the Cascadia range and Olympic mountains. To assess

the strength of seasonal signals that may be present in our measurements, we analyzed

GPS vertical measurements in the study area. Fig. 6.4 presents raw GPS vertical

measurements and modeled vertical displacements. We model the time-series as the
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sum of linear, annual, and semi-annual components:

f(t) =vt+ d ·H(t− tsse)+

a1 + a2sin(2πt) + a3cos(2πt) + a4sin(4πt) + a5cos(4πt) (6.6)

where H(t) represents the Heaviside function and ai are coefficients for the periodic

terms. From Fig. 6.4 we can see that all stations exhibit seasonal oscillations. In

addition, we observe that: (1) peaks and troughs of the seasonal signal are gener-

ally aligned at every GPS station (with the exception of station WDBN), with the

peak occurring around October (the end of summer) and the trough occurring around

April (the end of winter); (2) different stations exhibit different seasonal range in de-

formation – seasonal range is defined as the difference in position between peak and

trough displacements; and (3) most stations exhibit a long-term (relatively speaking)

trend of subsidence that could possibly be related to the long-lasting drought Ore-

gon endured between 2011 and 2017 (https://www.drought.gov/drought/states/

oregon). Given that InSAR measurements are mostly sensitive to vertical deforma-

tion, this observed subsidence is likely reflected in the inter-SSE velocity v derived

from InSAR measurements along with tectonic loading from the subducting Juan de

Fuca plate.

Next we examine the difference in seasonal range in deformation among GPS sta-

tions. Similar to the findings in Fu et al. (2015), we find that mountainous regions

exhibit higher seasonal ranges – up to 1.2 cm when projected to LOS direction than

the 0.75 cm seasonal range in LOS deformation found in stations located in valley

and basin areas (Fig. 6.5). Because the stations exhibit general alignments of peaks

and troughs of seasonal signals and that InSAR measurements are inherently relative,

only spatial variation of seasonal ranges will be present in the final InSAR stack. This
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means that there is at most 1-2 mm change across the image in the averaged SSE

stacks and up to 5 mm between the valleys and mountainous areas (Eqn. [6.4]). How-

ever, since the inter-SSE velocity stack (Eqn. [6.5]) is weighted inversely by time span,

seasonal signals in these short time-span interferometric measurements are amplified

compared to the longer temporal baseline pairs. Therefore, for the inter-SSE velocity

stack, we choose to only include pairs that are acquired at similar times of the year,

which decreases the number of interferograms in the inter-SSE stack from 1888 to 241.

Atmospheric noise

Atmospheric noise consists of two main parts: (1) phase delays due to pressure change

with time, and (2) phase delays due to variability of water vapor content in the tro-

posphere (Zebker et al., 1997). The former correlates with elevation and the latter

is commonly modeled as a stochastic variable with assumed zero mean. We find a

correlation between phase measurements and elevation of about 10−4 rad/m, which

is equivalent to 5 mm line-of-sight distance change for every 1000 m change in eleva-

tion. We can compute and remove these elevation-related phase noises from the stack.

The second part of the atmospheric noise cannot be corrected in a deterministic way.

Instead, we adopt the stochastic model described in Chapter 5 to estimate the atmo-

spheric noise covariance matrix and to keep track of atmospheric noise propagation.

With the covariance matrix, we can compute the residual atmospheric variance in

any given interferometric stack.

For a non-weighted stack such as the SSE stack described in Eqn. [6.4], atmo-

spheric noise variance reduction is readily determined by the structure of the covari-

ance matrix. Generally, a trade-off between the number of independent radar mea-

surements and an uniform use of radar measurements is needed in order to achieve
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Figure 6.4: GPS vertical measurements(unit: mm). Raw data are shown as grey dots. Red
lines are modeled vertical displacements with linear, annual and semi-annual components.
The SSE period is marked by a dark gray column.
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Figure 6.5: GPS measurements seasonal range in LOS deformation. Seasonal range is
defined as the total variation in deformation annually. Most stations exhibit around 0.75
to 1 cm seasonal range. A few stations in the mountainous regions show higher seasonal
range.

best reduction of atmospheric noise: (1) the more independent number of radar mea-

surements, the better reduction in atmospheric noise and (2) the more uniform use of

radar measurements, the better reduction in atmospheric noise. In our case, we have

10 acquisitions before the SSE and 58 after. If we use only the first 20 acquisitions,

we can guarantee a uniform use of the acquisitions – each acquisition is used 10 times

when redundant interferogram stacking is applied, at a cost of not making use of the

other 48 independent measurements. On the other hand, if we make use of all 58

interferograms, each of the first 10 acquisitions is used 58 times whilst each of the

other 58 acquisitions is only used 10 times. Taking into account the spatial coverage

of the SAR scenes, we choose to use 31 acquisitions (10 acquisitions before the SSE

and the first 21 acquisitions after the SSE). For acquisitions after the SSE, we choose

the first 21 rather than the last 21 because they have shorter temporal spans. Shorter

temporal spans interferograms (1) have a smaller contribution from inter-SSE velocity
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and (2) usually have better correlation.

For a weighted stack such as the inter-SSE stack described in Eqn. [6.5], the

weights applied make a great impact on the residual noise in the stack. Since atmo-

spheric noises in short temporal span interferometric pairs are weighted much more

heavily than long temporal pairs, we choose to use pairs that have at least 300 day

temporal span. This further decreases the number of interferograms in the inter-SSE

stack from 241 to 87.

Decorrelation noise

As previously discussed in Chapter 5, we find that redundant stacking reduces decor-

relation noise more efficiently than independent stacking in rapidly decorrelating sur-

faces such as Cascadia (e.g. Fig. 5.6 and 5.7). Therefore, for both stacks, once we

selected the SAR acquisitions to be used, we make use of all possible pairs that meet

our requirement.

Other noise terms

Other noise terms include DEM error, orbital ramps, co-registration errors and ther-

mal noise. All these errors sources are negligible with modern SAR satellites such as

Sentinel-1 except for potential DEM error. In Section 4, we estimate DEM error in a

single interferometric measurement (Eqn. [4.14]). With range ρ ≈ 750 km, incidence

angle θ ≈ 30◦, and spatial baseline B ≈ 100 m, we find that every 10 meters of

DEM error results in 2 mm error in a single pair of interferometric measurements.

Given that DEM errors are typically under 5 meter for flat areas and under 10 meters

for mountain regions, residual noise in the stack caused by DEM error is negligible
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compared to atmospheric and decorrelation noise, and hence does not influence our

choice of stacking strategies.

6.2.2 Extracting SSE Deformation and Associated Uncer-

tainties

In summary, to best reduce noise, we form the SSE stack with 210 interferograms that

span the SSE and the inter-SSE stack with 87 interferograms that do not span the

SSE and have temporal baselines of 365± 20 days. Fig. 6.6 presents results of both

stacks. The expected seasonal deformation signal is minimum in both stacks, therefore

omitting the seasonal deformation term p(t) in Eqn.[6.4] and Eqn. [6.5], we now have

two stacks that contain primarily the desired deformation signals. Combining Eqns.

[6.4] and [6.5], we can remove inter-SSE deformation from the SSE stack and extract

deformation associated with the SSE.

Fig. 6.7 presents the extracted SSE line-of-sight deformation map and its as-

sociated uncertainty (standard deviation). We find that atmospheric noise is the

dominant residual error source, accounting for on average 90% of the total uncer-

tainty. The lowest uncertainties are around areas where the reference pixel is located.

This is because that atmospheric noise variance is lower closer to the reference pixel

than from farther away (see Eqn. [5.4]). Since the maximum distance from the ref-

erence point, 300 km, is much smaller than the critical value of 800 km, above which

the power-law behavior of atmospheric noise is no longer observed, our estimation

of atmospheric noise uncertainties based on the power-law behavior of atmospheric

noise (previously presented in Chapter 5) is valid.
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Figure 6.6: Left: SSE stack results from averaging 210 interferograms that span the 2015-
2017 winter Oregon slow slip event. Right: Inter-SSE velocity stack results from averaging
87 interferograms with a temporal span of one year. Both measurements reflect projected
deformation onto the line-of-sight (LOS) direction (unit vector pointing from the ground to
the satellite: �v = (vE , vN , vU ) = (0.59,−0.11, 0.79))
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Figure 6.7: (Left) Extracted line-of-sight (LOS) deformation of the slow slip event and
(Right) associated uncertainties. The range of extracted SSE LOS deformation is about
1 cm. The uncertainties are dominated by atmospheric noise, which accounts for 90% of
total uncertainty and decorrelation noise accounts for the rest 10%. Uncertainties are lowest
around the region where the reference point locates and increase with increasing distance
from the reference point.
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We note that choosing multiple reference points that are relatively far from each

other can usually further reduce atmospheric noise and results in a more uniformly

distributed uncertainty map. However, our choice of the reference point is restricted

to the Columbia river area – the only area that is covered by every SAR scene.

Nonetheless, almost the entire area achieves sub-cm level accuracy, with roughly half

of the areas achieving less than 5 mm uncertainty.

6.3 Comparison With GPS Measurements

In this section we compare our extracted SSE deformation map (Fig. 6.7) with GPS

measurements. By fitting GPS position time-series to a model that is composed of

linear, transient, and periodic components (Eqn. [6.6]), we can extract both SSE de-

formation and inter-SSE velocities. Fig. 6.8 shows such an example. Note that GPS

vertical measurements are much noisier than GPS horizontal measurements. Fig. 6.9

presents the extracted SSE displacements from GPS measurements. We observe that:

(1) Extracted GPS horizontal displacements have smaller uncertainties than ver-

tical displacements. This is because GPS vertical measurements are usually much

more noisy than horizontal measurements.

(2) A significant portion of horizontal motion is in the North-South direction.

However, radar measurements are insensitive to motion in the North-South direction.

This means that InSAR measurements of the SSE event are dominated by projections

of the vertical deformation.

(3) Though projected GPS line-of-sight measurements mostly reflect the extracted

vertical displacements, and hence carry a lot of uncertainty, both the range of signals
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Figure 6.8: An example of three component GPS data processing at Station CATH. Gray
dots are raw GPS measurements. Red dots represent modeled linear and transient signals.
Blue dots are modeled annual and semi-annual components.

(≈ 1 cm) and the pattern of the deformation agrees well with the extracted SSE

deformation from InSAR measurements.

Fig. 6.10 shows comparisons between InSAR derived SSE deformation and GPS

derived SSE deformation projected to line-of-sight direction. InSAR measurements

in general agree with GPS measurements and their differences are within one stan-

dard deviation of their respective measurements. The profile lines demonstrate the

superiority of InSAR measurement spatial sampling rate, as it is obvious that GPS

measurements are too sparse to sample SSE deformation transition from peak uplift

to peak subsidence.
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Figure 6.9: GPS measurements of the 2015-2016 winter Oregon slow slip event. (Left)
Extracted GPS horizontal displacements and uncertainties. (Middle) Extracted GPS verti-
cal displacements and uncertainties. (Right) Projected GPS measurements of the SSE onto
line-of-sight direction.
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Figure 6.10: Comparison between InSAR derived slow slip event deformation and GPS
derived three component SSE deformation projected onto radar line-of-sight direction. Both
measurements exhibit a similar range of deformation of ∼ 1 cm. The blue lines are profiles
of InSAR measurements shifted to zero-means. The gray lines show the standard deviation
of the InSAR derived SSE deformation. GPS measurements are shown as red dots with
error bars.
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6.4 Conclusions

In this chapter we provided InSAR measurements of surface deformation related to

the winter 2015-2016 Central Cascadia slow slip event and uncertainties in InSAR

measurements after stacking.

We created two stacks, one composed of 210 interferograms that span the winter

2015-2016 slow slip event and the other composed of 87 interferograms that do not

span any slow slip events. From the latter stack, we derived the inter-SSE velocity

of the region and subtracted the inter-SSE velocity contribution from the SSE stack

in order to retrieve surface deformation caused by the slow slip event. We find that

the winter 2015-2016 slow slip event gives rises to about 1cm surface deformation

in radar line-of-sight direction, consistent with preliminary GPS observations of the

same slow slip event. Error analysis showed that atmospheric noise is the dominant

noise source as decorrelation noise has been effectively reduced by redundant stacking.

In the next chapter, we will show how the dense spatial sampling and the verti-

cal sensitivity of InSAR measurements lead to more accurate locations of slow slip

patches on the plate boundary.



Chapter 7

Modeling Slow Slip Events in

Cascadia

In this chapter, we demonstrate what new information InSAR data can contribute to

SSE modeling. We first present a two-dimensional model to demonstrate what factors

of slip distribution control the pattern of surface deformation projected to radar line-

of-sight direction. We then present results using the extracted SSE deformation from

InSAR measurements and a three-dimensional fault geometry model as determined

by McCrory et al. (2012).

7.1 Modeling: Two-Dimensional

Fig. 7.1 presents a simplified 2D geometric model of the Central Cascadia region.

We prescribe 2 cm up-dip slip between depths of 30 km and 40 km and use 2D edge

dislocation models (Segall , 2010) to map slip at depth to displacements on the surface.

Fig. 7.2 illustrates horizontal and vertical surface displacements generated by 2

101
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Figure 7.1: 2D geometry of the Cascadia subduction zone plate boundary. A uniform 2
cm up-dip slip is assumed between 30 km to 40 km depth.
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Figure 7.2: Simulated surface vertical (black) and horizontal (blue) displacements caused
by a uniform 2 cm slow slip between depth 30 km and 40 km using a 2D edge-dislocation
model.
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cm uniform up-dip slip between 30 km and 40 km depth. We note that:

(1) Up-dip slip at depth generates more vertical deformation on the surface than

horizontal deformation. While the maximum horizontal and vertical displacements

are of comparable magnitude (in this example, ∼ 0.5 cm for vertical displacements

and ∼ 0.4 cm for horizontal displacements), the range of vertical displacements (∼ 1

cm) is three times as big as the range of horizontal displacements (∼ 0.3 cm). Pro-

jecting onto radar line-of-sight direction, contributions from horizontal displacements

account for 20% of the InSAR observations of the SSE, while vertical displacements

account for 80% of observed InSAR measurements.

(2) The locations of the peak and the trough of vertical displacements correlate

well with the locations of the up-dip and down-dip limit of the SSE zone. In partic-

ular, the peak of vertical displacements locates almost directly on top of the up-dip

limit of the SSE zone. Therefore, InSAR measurements are very sensitive to the lo-

cations of the SSE zones at depth.

(3) The range of vertical displacements correlates linearly with slip. More slip at

the depth means larger displacements range on the surface.

Therefore, given the correlation between the up-dip and down-dip limits of the

SSE and the peak and trough of vertical measurements, as well as the linear relation

between the magnitude of slip and the range of surface deformation, we can locate

SSE zones at depth and estimate the amount of slip with 2D profiles of InSAR mea-

surements using a simple uniform slip 2D model (Fig. 7.1). Fig. 7.3 shows that at

latitude 45◦N , InSAR measurements suggest a SSE zone between 35.9 km and 52.6

km depth and a slip magnitude of 3.5 cm.
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Figure 7.3: An example of locating SSE slip at depth using a 2D InSAR profile. (Left)
InSAR derived surface deformation associated with the slow slip event. (Right, top) Ob-
served (black) and predicted (red) SSE deformation along the dashed line marked on the
(Left). Gray dashed lines are the 1-σ uncertainty bounds of the measurements. (Right,
bottom) Plate boundary profile with the solved SSE slip zone marked as thick red lines.
The up-dip and down-dip limit of the SSE slip zone is between 35.9 km and 52.6 km depth.

By analyzing profile lines at different latitude, we can acquire variations in SSE

zone locations latitudinally. Fig. 7.4 demonstrate that for the 2015-2016 winter Cen-

tral Cascadia slow slip event, the up-dip limit of the SSE zone migrates to shallower

depth with decreasing latitude.

7.2 Modeling: Three-Dimensional

In this section, we compute a static solution for the derived SSE deformation from

InSAR measurements. We adopt the fault geometry determined by McCrory et al.

(2012) with a total number of 718 triangular sub-faults between latitude 43.5◦ and

46.5◦. The sub-faults have a characteristic length of 12 km. We computed Green

functions that map slip on these sub-faults to the surface using the dislocation model
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Figure 7.4: Locations of SSE slip zones vary latitudinally. (Left) Locations of the three
profiles analyzed are marked as thick dashed lines. (Right) InSAR measurements derived
SSE slip zone locations (thick red lines) at latitude 44◦N , 45◦N and 46◦N . The uppermost
limit of the SSE slip zone becomes shallower with decreasing latitude.

described in Maerten et al. (2005). To avoid over-fitting, we minimize the second-

derivative of the fault slip (Laplacian smoothing).

To make our data size more manageable, we first down-sample the derived SSE

deformation map (Fig. 6.7) by averaging adjacent measurements. In this way, we

decreased our data samples from to 697,150 to 1,561. Fig. 7.5 shows the reduced

data and their uncertainties.

Though GPS data (see Fig. 6.9) suggest a strong presence of north-south strike-

slip, we choose to only include dip-slip in the SSE model. We use this approach

because north-south strike-slip generates primarily north-south surface deformation,

which radar measurements are insensitive to. Fig. 7.6 and Fig. 7.7 present slip distri-

bution derived from unweighted and weighted InSAR data, respectively. The weights

applied for the latter are computed using the standard deviation of InSAR data (Fig.
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Figure 7.5: Reduced InSAR data for SSE modeling. We decreased the number of data
samples from 697,150 to 1,561 by spatial averaging. (Left) InSAR derived SSE deformation
map after data reduction. (Right) Standard deviation of InSAR observations.

7.5, right). Both inversion results show two major slipping patches of the fault: one

mainly between 45◦N and 46◦N and one mainly between 45◦N and 46◦N . Inversion

results using the weighted InSAR measurements (Fig. 7.7) show more concentrated

slip areas with larger slip amplitudes. We estimate that slip on the northern patch is

equivalent to a Mw 6.6 earthquake and slip on the southern patch is equivalent to a

Mw 6.7 earthquake.

The implied deformation pattern of the solved slip distribution at depth resembles

the observed deformation pattern on the surface. As we have shown in the 2D model,

the up-dip and down-dip limit of the SSE zone correlate well with the locations of the

peak uplift and peak subsidence of the surface. Since InSAR measurements of the

SSE deformation are dominated by vertical deformation signals, it is not surprising

to observe a similar pattern in both the modeled surface expression of solved slip

distribution at depth and surface deformation.
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Figure 7.6: Inversion results with no weights applied. (Left) Slip distribution derived from
InSAR data. (Right, top) Predicted LOS surface deformation. (Right, bottom) Residual
InSAR observations. Two distinct slip patches can be identified: one above 45◦ and one
below. Slip on the northern patch is equivalent to a Mw 6.6 earthquake. Slip on the
southern patch is equivalent to a Mw 6.7 earthquake.



CHAPTER 7. MODELING SLOW SLIP EVENTS IN CASCADIA 108

-124.5 -124 -123.5 -123 -122.5 -122 -121.5
43.5

44

44.5

45

45.5

46

46.5

0

1

2

3

4

cm
 

cm
 

cm
 

Slip distribution derived from 
InSAR data (weighted) 

La
tit

ud
e 

Longitude 
-124 -123.5 -123 -122.5 -122

Longitude

44

44.5

45

45.5

46

La
tit
ud
e

Residual Measurements

-0.6

-0.4

-0.2

0

0.2

0.4

-124 -123.5 -123 -122.5 -122

Longitude

44

44.5

45

45.5

46

La
tit
ud
e

Predicted Deformation

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 7.7: Inversion results accounting for data uncertainty. (Left) Slip distribution
derived from InSAR data. (Right, top) Predicted LOS surface deformation. (Right, bottom)
Residual InSAR observations. The same two slip patches can be identified, but are better
resolved than those in Fig. 7.6. The same moment magnitudes of Mw 6.6 and Mw 6.7 are
found for the two slip patches.
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Figure 7.8: (Left) Dip slip distribution from GPS horizontal data. Only the northern slip
patch (north of 45◦N) can be identified. Though the maximum slip is much smaller than
in Fig. 7.7, the slip area is much more spread out than in Fig. 7.7, resulting in the same
moment magnitude of Mw 6.6. (Right) Strike slip (southwards) distribution from GPS
horizontal data.

As a further comparison, we use horizontal GPS data (See Fig. 6.9) to solve for

slip distributions at depth. We invert for both dip slip component and strike slip

component using only GPS horizontal measurements. Fig. 7.8 presents the resolved

slip distributions. For the purpose of comparison, we focus only on the dip slip. Only

a single slip patch that is north of 45◦N can be identified from Fig. 7.8, left. The

maximum slip is 1.6 cm, which is only about one third of the maximum slip estimated

using weighted InSAR data (Fig. 7.7), but the slip area is roughly three times bigger.

As a result, we estimate a similar moment magnitude of Mw 6.6.

Fig. 7.9 illustrates how predicted surface distributions compare with observed
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displacements. Relatively good agreement between predictions can be found in the

horizontal data, but poor matches for the area between 43.5◦N and 45◦N and west of

123◦W in the vertical measurements can be clearly identified. The lack of east-west

motion south of 45◦N explains the absence of dip slip from GPS inversion results

(Fig. 7.8), but it contradicts the uplift motion observed near the coast (the region

around longitude 124◦W ) in both GPS vertical and InSAR measurements. A possible

explanation for the discrepancy is that slip occurs in much shallower patches (and

closer to the coast) as compared to the slip patch north of 45◦ and hence results in

very small horizontal displacements.

In conclusion, we find that InSAR measurements can resolve slip at depth much

better than GPS measurements alone. Instead of ∼ 2 cm slip over a large slipping

area as many previous GPS data based SSE studies have reported (e.g. Szeliga et al.

(2008), Michel et al. (2018)), InSAR data suggests that slip is distributed in a much

narrower zone with a higher slip magnitude.

Finally, we compare slip distributions resolved from weighted InSAR measure-

ments with tremor locations. Fig. 7.10 shows that tremors correlate well spatially

with slip distributions. Specifically, north of 45◦N , tremors concentrate between

35km and 45 km depth contours, which is also where most slip concentrates north of

latitude 45◦N . South of 45◦N , tremors concentrate between 30 km and 35 km depth

contours, which again correlates with slip distribution south of 45◦N . In addition,

We find that the density of tremors correlate with the magnitude of slip – the larger

slip magnitude, the denser the tremors.
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Figure 7.9: Comparisons between predicted GPS measurements with slip distribution in
Fig. 7.8 and observed GPS measurements. (Left) Predicted and observed GPS horizontal
measurements. (Right) Predicted and observed GPS vertical measurements.
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Figure 7.10: Good correlation between tremor locations and slip distributions inferred
from weighted InSAR measurements. The white lines are depth contour lines. Tremor
locations are plotted as black dots.



Chapter 8

Findings and Conclusions

The ability of Interferometric Synthetic Aperture Radar (InSAR) to observe small

signals is often limited by decorrelation noise and atmospheric noise. Modern SAR

satellites such as Sentinel-1 provide a large quantity of high-quality data thanks to

its dense temporal sampling and superior orbital control. Given the stochastic nature

of both atmospheric and decorrelation noise, modern InSAR datasets hence show

promise in enabling sufficient noise reduction to observe very small signals.

Slow slip events (SSEs) are an integral part of the subduction zone seismic cycle.

Current geodetic methods (e.g., GPS) to observe slow slip events lack the spatial den-

sity to resolve slip at depth. However, imaging surface deformation due to slow slip

events (SSE) in Cascadia with InSAR is a challenging task due to (1) the small mag-

nitude of the signal and (2) large measurement uncertainties caused by decorrelation

and atmospheric noise. In this thesis, we describe how to best make use of mod-

ern InSAR datasets to reduce noise and retrieve slow slip event surface deformation.

Specifically, we show that by incorporating redundant interferograms in the stack,

we can significantly reduce decorrelation noise for rapidly decorrelating areas such as

Cascadia. We also show that for a weighted stack, both the weights and the structure
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of the atmospheric noise covariance matrix determines the residual atmospheric noise

in the stack.

We show that InSAR measurements are most sensitive to up dip slip at depth

and that InSAR observed deformation patterns correlate strongly with locations of

slow sip zones at depth. Comparing with inversion results using only GPS horizontal

data, slip distribution inverted from InSAR measurements show comparable moment

magnitude, but with one third the dislocation area and three times as much slip mag-

nitude.

Finally, modern large InSAR datasets also bring challenges in efficient processing.

We have shown an algorithm that removes topography-related phase from SAR im-

ages and resamples SAR images from radar coordinates to the latitude-longitude grid.

Our algorithm moves the need to be familiar with radar processing upstream from the

end-user to the data-provider, hence making InSAR processing more friendly. Our

algorithm also reduces the need to perform topography correction and geocoding on

N(N −1)/2 interferograms to N SAR scenes. Given N is easily in the hundreds with

modern InSAR datasets, the improvement in data processing efficiency is significant.
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