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Abstract

We map the planet Mercury and Jupiter’s moons Ganymede and Callisto using Earth-based

radar telescopes and find that all bodies have regions exhibiting high, depolarized radar

backscatter and polarization inversion (µc > 1). Both characteristics suggest volume scat-

tering from water ice or similar cold-trapped volatiles. Synthetic aperture radar mapping

of Mercury’s north and south polar regions at fine (6 km) resolution at 3.5 cm wavelength

corroborates the results of previous 13 cm investigations of enhanced backscatter and po-

larization inversion (0.9 ≤ µc ≤ 1.3) from areas on the floors of craters at high latitudes,

where Mercury’s near-zero obliquity results in permanent Sun shadows. Co-registration

with Mariner 10 optical images demonstrates that this enhanced scattering cannot be caused

by simple double-bounce geometries, since the bright, reflective regions do not appear on

the radar-facing wall but, instead, in shadowed regions not directly aligned with the radar

look direction. A simple scattering model accounts for exponential, wavelength-dependent

attenuation through a protective regolith layer. Thermal models require the existence of

this layer to protect ice deposits in craters at other than high polar latitudes. The additional

attenuation (factor 1.64 ± 15%) of the 3.5 cm wavelength data from these experiments

over previous 13 cm radar observations supports multiple interpretations of layer thickness,

ranging from 0±11 to 35±15 cm, depending on the assumed scattering law exponent n.

Our 3.5 cm wavelength bistatic aperture synthesis observations of the two outermost

Galilean satellites of Jupiter, Ganymede and Callisto, resolve the previous north-south am-

biguity, and confirm the disk-integrated enhanced backscatter and polarization inversion

noted in prior investigations. The direct imaging technique more clearly shows that higher

backscatter areas are associated with the terrain that has undergone recent resurfacing, such

as the sulci and the impact crater basins. The leading hemispheres of both moons have
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somewhat higher (20%±5%) depolarized echoes than their trailing hemispheres, suggest-

ing additional wavelength-scale structure in the regolith. This may indicate gardening of

material by micrometeoroid impacts.

Two improvements to existing delay-Doppler techniques enhance data reduction. First,

correlating with subsets of the standard, repetitive pseudo-noise code alleviates Doppler

dimension aliasing by satisfying the Nyquist criterion for sampling the output of the range

compression stage. Application of the same algorithm to long-code data leads to a factor of

five improvement in processing time for mildly overspread targets through the application

of Fourier convolution. Second, a spectral weighting technique reduces clutter in long-code

processing by equalizing clutter in the delay and Doppler dimensions.
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Chapter 1

Introduction

Earth-based radar studies of the planets commenced at the end of World War II, enabled by

the general availability of radar equipment that had been developed for the war effort. In

January 1946, John DeWitt, Jr. led the first successful radar detection of the Moon using

the Army Signal Corps facility at Fort Monmouth, New Jersey (DeWitt and Stodola, 1949).

In February of that same year, Zoltan Bay, working at a United Incandescent Lamps and

Electric Company facility in Budapest, Hungary, also detected lunar echoes (Bay, 1947).

The ensuing fifty years of radar-astronomical research have been documented in detail in

review articles by Pettengill (1978) and Ostro (1993), and the NASA History Series book

by Butrica (1996). For the past two decades, most Earth-based radar studies have used

either the Goldstone Solar System Radar near Barstow, California, or the Arecibo Observa-

tory near Arecibo, Puerto Rico for both transmission and reception. For interferometric or

bistatic geometry studies, radio telescopes of the National Radio Astronomy Observatories

have been employed as receiving antennas, though these systems were designed primarily

for passive observation and do not contain transmitters.

There are many applications of Earth-based radar astronomy to the study of solar sys-

tem bodies, but two dominate the literature: i) measurement of astrometric and planeto-

graphic quantities, and ii) mapping of surface features. The former studies serve to update

and maintain the orbital ephimerides of the planets, asteroids, and comets and support stud-

ies of the dynamical evolution of these bodies. The latter studies probe the properties of

1
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surfaces and subsurfaces, leading to a better understanding of their geology and composi-

tion. Modern radar astronomy grew out of military technology which was developed for

the detection and tracking of aircraft and missiles, and by design can measure accurately

the range and velocity of distant objects. In fact, the etymology of the term radar is well

known—it is an acronym for “RAdio Detection And Ranging.” “Ranging” in this context

denotes the measurement of the distance to, or range of, an object. In radar astronomy,

measured astrometric quantities include distances to planets, orbit parameters, sidereal ro-

tation rates, pole positions on the celestial sphere, and surface topography and scattering

parameters.

In the 1950’s, military technologists experimented with airborne radar systems to de-

termine precisely the range and velocity of individual points on the ground below and to

one side of the aircraft, and thus map the surface (Sherwin et al., 1962). This technique,

known as side-looking or strip-map synthetic aperture radar (SAR), produces images at

resolutions comparable to those of optical cameras. Radar imaging provides several ad-

vantages over optical methods. The long wavelength of the radar penetrates cloud layers

which often obscure optical observations of targets. Moreover, since the radar provides its

own illumination source, this type of imaging works equally well at daytime or nighttime.

The resolution of the instrument in the cross-track, or range, dimension is set by the

bandwidth of the modulating waveform, while the resolution in the velocity or Doppler di-

mension is set by the bandwidth of echoes captured by the radar antenna and the coherent

observing time. In radar astronomy, the motion of the Earth through the solar system and

the rotation of the target body on its spin axis provide the necessary velocity. When the ma-

jority of the motion is provided by the rotation of the object under observation rather than

platform motion, the mapping process is usually referred to as inverse synthetic aperture

radar (ISAR). Price and Green (1960) proposed using unfocused ISAR to map planetary

surfaces. In unfocused ISAR imaging, sometimes called delay-Doppler imaging, the radar

cross-section of the target is computed for uniform spacings of resolution elements in both

the delay and Doppler dimensions, producing a 2-D raster image of the rotating target.

Radar astronomy has evolved steadily over the past four decades. The small aper-

tures, low transmitter powers, and high receiver noise temperatures characteristic of early

planetary radars limited the utility of the technique from the mid-1940’s through the late
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1950’s. During the 1960’s, with the development of large-aperture antennas for both the

military and civilian space programs, radar astronomy flourished. Significant results of the

period included refinement of the astronomical unit (Victor and Stevens, 1961), determi-

nation of the retrograde rotation and spin rate of Venus (Goldstein, 1964), discovery of

the 3:2 resonance between the spin rate of Mercury and its orbital period (Pettengill and

Dyce, 1965), and a fourth confirmation of general relativity (Shapiro et al., 1968). As

radar equipment developed during the Cold War became available to radar astronomers,

spatially resolved maps of the Moon and Venus were formed using the MIT Haystack,

JPL/Caltech Goldstone, and NAIC/Cornell Arecibo systems (Thompson and Dyce, 1966;

Pettengill and Thompson, 1968; Goldstein, 1969; Jurgens, 1970). The lunar studies sup-

ported the Apollo manned missions to the Moon, while the imaging of Venus provided the

first detections of significant features on a surface shrouded from optical observations by

the planet’s thick clouds. Continual upgrading of antenna reflecting surfaces, microwave

transmitters, and low noise receivers during the 1970’s put outer solar system objects such

as the Galilean satellites of Jupiter (Goldstein and Morris, 1975; Campbell et al., 1977) and

the rings of Saturn (Goldstein and Morris, 1973) within the reach of Earth-based instru-

ments. In the 1980’s, completion of the Very Large Array led to the adoption of aperture

synthesis techniques developed for radio astronomy (Thompson et al., 1986) at the re-

ceiving site of bistatic Earth-based radar experiments. Significant results using synthesis

imaging included detection of outer solar system objects such as Titan (Muhleman et al.,

1990) and mapping of inner solar system planets such as Mars and Mercury (Muhleman

et al., 1991; Butler et al., 1993). In the 1990’s the increasing computing power available for

post-processing of radar data led to the collection, archiving, and processing of immense

data sets to achieve fine resolution imaging (Stacy, 1993; Harmon et al., 1994) and detailed

topographic measurements using interferometric techniques (Margot, 1999). Our work

builds on these by applying 21st century computational capability, waveform flexibility,

and aperture synthesis to the study of solar system bodies.
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1.1 Motivation

This dissertation addresses radar imaging of solar system objects that are thought to be

composed of ice. The presence of water is a requisite to biological life as we know it, and

the positive detection of water in liquid or solid form on other solar system bodies supports

theories that life may exist or may have existed there, or that water may be available for

future human explorers.

Though liquid water has not been detected directly on any extraterrestrial planetary

body, ice exists in many places in the solar system. The three outer Galilean satellites

of Jupiter, Europa, Ganymede, and Callisto, are known to have icy outer coverings since

the Voyager interplanetary mission in the late 1970’s. Recent observations of the Jovian

system by the Galileo spacecraft support the theory that Jovian tidal forces acting on Europa

dissipate sufficient energy in the interior to create an ocean several tens of kilometers deep

between a surface ice crust shell and the solid bedrock beneath (Cassen et al., 1979; Carr

et al., 1998). This hypothesis is consistent with magnetic field measurements from the

Galileo magnetometer, which are best explained as the result of conducting layers at depth

in the form of a salty ocean (Khurana et al., 1998). Closer to home, the laser altimeter

on the Mars Global surveyor spacecraft confirmed that the north polar cap consists of up

to 3 km of water ice (Zuber et al., 1998). More recently, the thermal emission imaging

system on Mars Odyssey found direct evidence that the permanent south polar cap of Mars

contains exposed water ice (Titus et al., 2003), while Mars Express found evidence for

perennial ice at the south pole (Bibring et al., 2004).

It is interesting to note that Earth-based radar observations of both the Galilean satel-

lites (Campbell et al., 1977) and Mars’ residual south polar ice cap (RSPIC) (Muhleman

et al., 1991) revealed the particular anomalous backscatter properties of these surfaces years

before more definitive evidence about the presence of ice was obtained from spacecraft mis-

sions. The specific phenomena present are relatively high normalized backscatter, greater

than ≈ 0.5 over a wide range of incidence angles, and “polarization inversion,” which is

the detection of greater power in the same circular polarization as transmitted, as compared

with the opposite sense.

Radar reflections from rocky planetary regoliths, such as those of the Moon, Mercury,
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Venus, and Mars, are characterized by specular or mirror-like reflections, which reverse

the polarization of an incident circularly polarized plane wave. Thus, most reflected power

appears with the sense of circular polarization opposite (OC) to that transmitted. Silicate

regoliths have dielectric constants ≈ 3 and the reflection is dominated by glints from the

region around the sub-radar point on the surface. The normalized radar cross section (RCS)

is typically less than ≈ 0.2 in the polarized component, and is much less in the depolarized

or same sense circular (SC) polarization as transmitted. The depolarized return is attributed

to multiple specular scattering from surface features such as cracks, edges, and roughness

on the scale of the wavelength of observation. The ratio of the depolarized to polarized

reflected power, called the polarization ratio, is typically on the order of µc ≈ 0.1 for these

surfaces.

On the other hand, the three icy Galilean satellites and the RSPIC of Mars have high

total-planet-equivalent, normalized RCS approaching or exceeding ≈ 1, and polarization

ratios µc > 1. These large, contiguous icy surfaces exhibit volume scattering and are not as

lossy to penetrating waves as are rocky planetary regoliths. These particular icy surfaces

do not produce strong specular reflections in the exact backscatter direction, and return an

enhanced depolarized echo, leading to polarization ratios ≈ 1 or greater for Earth-based,

monostatic observations. Polarization inversion is indicative of multiple or volume scatter-

ing. A combination of: i) a search for high specific RCS for initial identification, followed

by ii) estimation of the polarization ratio for confirmation, has been the primary method for

finding regions of planetary surfaces that may contain water ice.

In the early 1990’s, dual-polarization measurements of reflectivity from the planet Mer-

cury (Harmon and Slade, 1992; Slade et al., 1992) showed both enhanced backscatter and

polarization inversion from the floors of craters at the north and south pole. Results from

thermal models led to suggestions that, since Mercury’s obliquity is near zero, cold traps

can form in the permanently shadowed floors of polar craters (Paige et al., 1992; Vasavada

et al., 1999). Curiously, though the Moon is a close analogy to Mercury in many ways,

Earth-based radar observations have not detected similar reflections from the permanently

shadowed lunar poles (Stacy et al., 1997; Margot et al., 1999; Campbell et al., 2003a). A

tentative ice detection by spacecraft-Earth bistatic radar (Nozette et al., 1996, 2001) has

been challenged (Simpson and Tyler, 1999), but neutron spectrometer data are consistent
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with the presence of water molecules (Feldman et al., 2001), though not necessarily in the

form of large ice blocks required to produce volume scattering effects at radar wavelengths.

Sources for water at Mercury include cometary bombardment and out-gassing from volcan-

ism, though the prevalence of deposits in newer Class 3–4 impact craters and dearth in older

Class 1–2 craters favors the exogenic source hypothesis.1 One conclusion of the thermal

modeling of cold traps on Mercury is that, for long term stability of ice deposits at latitudes

less than 80 degrees, an insulating layer of dust or regolith material covering the deposit

is necessary (Vasavada et al., 1999). Though volume scattering from icy bodies is fairly

insensitive to wavelength throughout the centimeter-wavelength band (Ostro et al., 1992),

an attenuating regolith layer could cause measurable wavelength dependent attenuation of

the microwave radar signal (Butler, 1994; Harmon et al., 2001), depending on the material

properties and the physical configuration of the blanketing layer and the ice.

In the first part of this study, we set out to form high-resolution maps of the polar regions

of Mercury at 3.5 cm wavelength, which had not been accomplished previously due to a

clutter problem which increases with decreasing wavelength. Detailed 15 km and 1.5 km

resolution mapping at 13 cm wavelength has been previously reported by Harmon et al.

(1994, 2001), while 3.5 cm mapping with the Goldstone/Very Large Array bistatic system

by Butler et al. (1993) was limited to greater than 150 km resolution. At these wavelengths,

the rotation of Mercury on its axis produces Doppler aliasing ambiguities in the resultant

ISAR imaging maps. In order to mitigate such aliasing, we employ the pseudo-noise long-

code SAR technique of Sulzer (1986), first implemented for planetary radar by Harmon and

Slade (1992), to map the polar regions of Mercury at 6 km resolution using the Goldstone

Solar System Radar. We examine the wavelength dependent nature of the backscatter, in

order to examine the protective dust layer hypothesis. Subsequent analysis of these data

show that the “unusual” radar echoes are located in areas of permanent shadow, and that a

1Mercury’s craters were classified c5–c1, newest–oldest, by N.J. Trask and reported in McCauley et al.
(1981) and the U.S.G.S. geologic maps of the polar regions by Grolier and Boyce (1984) and Strom et al.
(1990). The classification scheme is: “Class 5—Craters characterized by sharp rims, crisp interior forms
(for large craters), rays, and very few superposed craters. Class 4—Distinct but visibly modified rims and
interior features; well-preserved radial faces around larger craters. Class 3—Relatively low, semirounded
but continuous rims and subdued interior landforms. Class 2—Low rims and shallow interior relief. Interior
forms scarce; secondary crater fields absent. Class 1—Low, partial rims. Some craters barely distinguishable
from surrounding plains materials; interior features rare. Secondary crater fields absent.”
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blanketing regolith layer, if extant, ranges from 0±11 to 35±15 cm thick.

In the second part of this study, we employ the bistatic aperture synthesis technique

of Muhleman et al. (1990, 1991) to map the surfaces of the Jovian satellites Ganymede

and Callisto with the Goldstone/Very Large Array instrument without spatial ambiguity.

Mapping of specific RCS variations on the surfaces of the icy Galilean satellites allows

identification of terrains which cause the enhanced scatter. It is important to note that such

an observation was first attempted in 1990 by Muhleman, Butler, and Slade, but without

success due to atmospheric phase noise from the humid summer atmosphere over the Very

Large Array. Previous mapping of Ganymede and Callisto by Ostro et al. (1992) used

inversion of the Doppler spectrum (Hudson and Ostro, 1990), which is subject to a fold-

over ambiguity of the northern and southern hemispheres. Standard delay-Doppler imaging

also suffers from this fold-over ambiguity. Analysis of our unambiguous images shows that

radar-bright features are associated with recently re-surfaced terrain in the sulci and impact

craters.

1.2 Synopsis

This dissertation is structured as follows. Chapter 2 describes delay-Doppler or unfocused

ISAR imaging as applied to planetary radar investigations. We first outline the achiev-

able resolution and signal-to-noise ratio constraints; then we describe the translation of the

processed data from radar coordinate systems to planetary coordinates. Next, we discuss

the fold-over ambiguities inherent in conventional delay-Doppler methods of processing.

We examine the long-code method for overcoming some of these ambiguities. Finally, we

analyze clutter performance.

In Chapter 3 we present an overview of the standard aperture synthesis imaging tech-

nique as normally employed in radio-astronomical imaging, beginning with a derivation

of the basic technique for a two element interferometer. We next discuss extending the

one-dimensional array to two dimensions and examine the Fourier relationship between

the imaging plane and the interferometer correlation measurements. We discuss briefly

deconvolution of the array response or point spread function from the image output.
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Chapter 4 contains a summary of models and measurements for interpreting dual-

polarization backscatter from planetary surfaces. We describe the simple cosine law model

for Minnaert scattering from a sphere as a useful model for interpreting typical visible-

hemisphere backscatter from the icy Galilean satellites. We summarize previous scattering

parameter measurements obtained by other experimenters for Europa, Ganymede, Callisto,

and Mercury. We then develop an additional simple model for the wavelength depen-

dence of scattering from a vacuum-regolith-ice interface, which we then apply in Chapter 5

to place boundaries on possible insulating dust layers blanketing anomalous scatterers on

Mercury.

In Chapter 5 we describe our experiment and results for high-resolution imaging of

Mercury’s polar regions using the Goldstone Solar System Radar in monostatic mode and

the techniques of Chapter 2. We present radar data co-registered with optical data from the

Mariner 10 mission to highlight areas of enhanced backscatter with polarization inversion.

We fit the dust-layer thickness model developed in Chapter 4 and derive an estimate of

thickness for the blanketed crater model ranging from 0±11 to 35±15 cm, depending on

the scattering law exponent n.

In Chapter 6 we describe the experiment and present results for low-resolution imaging

of Ganymede and Callisto using the Goldstone and Very Large Array facilities in a bistatic

configuration. We fit hemispherical backscatter models from Chapter 4 to the data. The

radar data are co-registered with optical images from the Galileo mission to identify terrains

exhibiting backscatter brighter than that of surrounding terrains.

Finally, in Chapter 7 we summarize our main conclusions.

In two appendices we give details of the radar coding and signal processing employed to

image Mercury, and we present a combined radar/optical atlas of the Borealis and Australis

quadrangles of the planet.

1.3 Contributions

The principal contributions of this work are:

• New 3.5 cm wavelength, dual-polarization specific RCS maps of the north and south

polar regions of Mercury at 6 km resolution. We co-register these data with optical
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images from the Mariner 10 mission. The co-registered observations corroborate ear-

lier 13 cm observations (Harmon et al., 1994, 2001) which show the bright material

exists in permanently shadowed areas of large craters.

• New 3.5 cm wavelength, dual-polarization RCS maps of the leading and trailing

hemispheres of Ganymede and Callisto at 350 km resolution. These images are of

comparable resolution to previous results but are free of north-south fold-over. Co-

registration of the data with Galileo spacecraft optical imagery shows that bright

albedo features are associated with recently re-surfaced terrain such as sulci and im-

pact craters.
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Chapter 2

Planetary Delay-Doppler Imaging

Delay-Doppler imaging of planets was first proposed by Price and Green (1960) for the

purpose of creating maps of planetary surfaces by use of large ground-based radars. The

technique resolves the planetary surface by transforming the radar echoes to surface loca-

tions from a grid of time-delay and Doppler frequency resolution elements. In traditional

delay-Doppler imaging, standard pulse compression methods are used to achieve fine res-

olution in the range dimension. Fourier analysis of successive segments of data after the

pulse compression stage yields resolution in the cross-range, or Doppler, dimension. In

modern terminology, this type of imaging corresponds to “unfocused” synthetic aperture

radar (SAR) processing. As the synthesized aperture is formed primarily by the rotation of

the target object rather than the motion of the radar, in current times the technique is often

referred to as inverse synthetic aperture radar (ISAR). We use this latter terminology here.

2.1 Standard technique

Schematic ISAR imaging geometry is shown in Figure 2.1. For a point at position ~P on the

surface of a rigid, rotating object, the radar measures the range and line-of-sight velocity of

the point. Define the unit vector pointing from the radar to the target center of mass to be

~uR =
~R

|~R|
. (2.1)

11
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~ωs~P

~R

Figure 2.1 ISAR geometry for a spinning target. Surface locations are defined by vectors~P from
the center of mass of a rigid, rotating body. The center of mass of the body is at position ~R from the
radar antenna. The body spins about an axis through the center of mass with angular velocity ~ωs.
This spin causes a position-dependent Doppler shift for the radar echo from point P.

For solar system geometries when the range to the target is much greater than the diameter

of the target, or |~R| � |~P|, the scalar range r to the point is

r = |~R|+~P ·~uR. (2.2)

The instantaneous radial velocity of the point is equal to the vector cross product of the

angular velocity of the body with the vector to the point, dotted into the line of sight to the

radar

v = (~ωs ×~P) ·~uR. (2.3)

These two properties can be estimated by the radar which measures the instantaneous

delay,

τ = 2r/c (2.4)

and the instantaneous Doppler shift,

fd = −2 f0v/c (2.5)

of a transmitted and reflected waveform, where f0 is the carrier frequency in Hertz.

In ISAR imaging, unless the radar and target are at rest, the relative motion between
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the target’s center of mass and the radar modifies the apparent rotation of the object. The

instantaneous cross-range velocity of the target, as seen in the radar frame of reference,

changes the spin axis of the object ~ωs to form an effective total angular spin vector ~ωt.

This composite rotation can be substituted into (2.3) to determine the apparent velocity of

a point on the surface of the object.

Denoting the instantaneous velocity of the target’s center of mass as ~̇R, the cross-range

component of the velocity is

~vcr = ~̇R− (~uR · ~̇R)~uR. (2.6)

The total cross-range rotation ~ωcr is the sum of i) the the apparent rotation caused by the

cross-range velocity, and ii) the target’s true spin ~ωs crossed into the line of sight ~uR, or

~ωcr =
~vcr

|~R|
+~uR ×~ωs. (2.7)

The total spin vector ~ωt is this cross-range rotation vector crossed into the line of sight ~uR

~ωt = ~ωcr ×~uR

=
~vcr

|~R|
×~uR +(~uR ×~ωs)×~uR

=
~vcr

|~R|
×~uR −~uR × (~uR ×~ωs)

~ωt =
~vcr

|~R|
×~uR − (~uR ·~ωs)~uR +(~uR ·~uR)~ωs. (2.8)

A version of this expression was first derived by Goldstein (1964), for Venusian spin vector

estimation. The middle term in (2.8) is not in his paper, but contributes significantly when

the rotation axis of the planet and the line of sight to the radar are not perpendicular.

The output of the mapping radar is a two-dimensional grid of reflectivity measurements,

with delay along one axis and Doppler shift along the second axis. The mapping of delay

and Doppler coordinates to planetary latitude and longitude coordinates follows a simple

procedure. The latitude and longitude are first translated to rectangular coordinates, ~P.

Delay is typically measured with respect to the planet’s front edge or subradar point. For a
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spherical target of radius a, this relative delay is then

τP =
2
c

(

a+~P ·~uR

)

. (2.9)

The Doppler coordinate is

fP = −2
f0

c

(

~ωt ×~P
)

·~uR. (2.10)

2.1.1 Delay resolution

Waveform design plays an important role in determining the mapping resolution and cross-

talk or clutter and, hence, the quality of radar images. Imaging radars usually employ

transmitted signals consisting of a sequence of pulses of time duration T . The sensitivity

of a radar instrument is directly proportional to the transmitted power (see Section 2.1.4).

The available peak power from microwave radar telescopes is limited; therefore, pulse

compression techniques are employed to achieve high effective pulse power. The attainable

range resolution of a pulse compression system is given by

∆R ∼= c/2B (2.11)

where B is the modulated pulse bandwidth. The achieved resolution is independent of the

pulse length.

The pulse compression waveform most often used in planetary radar ISAR imaging is

the maximal length pseudo-noise (PN) sequence (Elspas, 1955), implemented as binary

phase shift modulation of the carrier. Pseudo-noise sequences have well-known aperiodic

and periodic correlation properties. Furthermore, they are readily generated by simple shift

registers. The aperiodic correlation of a discrete PN sequence xn of length N is defined as

rk =
N−1

∑
n=0

xnxn+k , −(N −1) < k < N −1 (2.12)
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Figure 2.2 Aperiodic and periodic autocorrelation functions of a length 15 PN sequence. For a
maximal length shift register sequence, the autocorrelation peak has a width of one baud.

while the periodic correlation is given by

rk =
N−1

∑
n=0

xnx(n+k) mod N , ∀k. (2.13)

Figure 2.2 displays aperiodic and periodic correlations of the standard maximal length shift

register sequence.

The bandwidth of the PN signal, and hence the delay resolution, depends on the rate

at which the bits in the PN sequence are clocked out of the shift register. The bit time

is known as the baud, b, in seconds. The baud rate, or 1/b, is the standard terminology

used in communication theory to denote the rate at which symbols are transmitted over a

communications channel. The bandwidth of the PN modulated signal is B ∼= 1/b, which

results in a range resolution of ∆R = cb/2.

In planetary imaging, the true range to the planet is often known to a small fraction of

the planet’s radius—to better than 1–10 km—from an ephemeris. Aliasing of the true range

to the leading edge of the planet, also called range ambiguity, can therefore be tolerated.

The pulse repetition interval can be selected solely on the criterion that individual range

gates on the planet should not alias the furthest delay bins containing the planet echo onto

the delay bins containing echo from the sub-radar point or leading edge of the planet. This

is accomplished by setting the pulse repetition interval equal to or longer than the delay
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depth of the planet ∆τ given by

∆τ ≥ 2a/c (2.14)

where a is the planet radius in meters (see Figure 2.3). Dividing by the desired baud length

b for a given range resolution and rounding up to the nearest quantity 2M−1 yields the size

of the shift register M required to drive the modulator. The transmitted pulse sequence is

a continuous stream, modulated binary phase-shift keyed (BPSK) waveform, with the PN

sequence repeated at the pulse repetition interval set by b · 2M−1. Note that for this type

of continuous wave (CW) waveform, the effective interpulse interval is equal to the length

of the pulse sequence. This contrasts with the system design of pulse compression radars

used in SAR mapping from aircraft or satellites, where the interpulse interval is typically

several times longer than the pulse length. The round-trip light-time to the target is much

shorter for ground-imaging radars than for planetary imaging. For the monostatic systems

flown, the receiving periods must be interleaved with transmitted pulses.

The design of most monostatic radars does not provide for transmitting and receiving

simultaneously, hence the radar is switched repeatedly between these two modes. In plan-

etary imaging, the pulse stream is radiated continuously by the antenna until the time that

the first portion of the echo is expected to return from the planet, at which point the system

switches to receive mode and data are recorded for one round-trip light time. The matched

filter impulse response of the range compression filter is the PN sequence. For standard,

repetitive PN code delay-Doppler mapping, the periodic correlation function defined above

adequately describes the output of the range compression stage after matched filtering. A

total of 2M−1 unique delay bins are realized by the range compression process. On the

surface of the planet, these delay bins correspond to a series of adjacent, concentric annuli

expanding outward from the subradar point, as shown in Figure 2.3. The output of each

of these range bins is complex sampled once per pulse, and subsequently match filtered in

frequency in order to achieve resolution in the Doppler dimension.

Relative motion of the radar and planet within the solar system causes changes in the

round-trip travel time, so that the stream of pulses received from the planet arrive at a

variable rate. Modeling a unit amplitude transmitted signal s(t) as,

s(t) = u(t)e j2π f0t = e j{2π f0t+φ(t)} (2.15)
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Figure 2.3 Illustration of Delay Doppler cells on planet (after Evans and Hagfors, 1968). The
ground range-resolution is dependent on the angle of incidence θi on the approximately spherical
planetary surface. The cross-range resolution ∆Rcross is defined in (2.20).
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with carrier frequency f0, phase modulation u(t) = e jφ(t), range r(t), and delay 2r(t)/c, we

have the received signal x(t) from a point target as

x(t) = s(t −2r(t)/c)

= e
j
{

2π f0
(

t− 2r(t)
c

)

+φ
(

t− 2r(t)
c

)}

(2.16)

neglecting amplitude effects. By approximating the changing range to the target as r(t) ≈
r0 + ṙ0t, we have

x(t) = e
j
{

2π f0
(

1− 2 ṙ0
c

)

t− 4π f0r0
c +φ

[

(1− 2 ṙ0
c )t− 2r0

c

]}

. (2.17)

After removing the effect of the carrier signal, we see that the received modulation starts

with delay 2r0/c; but an additional time-varying delay term remains, so that the time history

of the received phase modulation becomes

φ [(1−2ṙ0/c)t]. (2.18)

This drift can be compensated at the transmitter exciter by appropriately changing the clock

of the shift register, or similarly at the receiver by continuously varying the timebase of the

A/D converter.

2.1.2 Doppler resolution

In order to realize resolution in the cross range or “Doppler” dimension, it is sufficient

to Fourier analyze the output samples from each delay bin, and hence construct a two-

dimensional output array of delay-Doppler resolution cells. The Fourier computations are

most commonly implemented as a fast Fourier transform (FFT). The resolution of the

FFT on the output of the range compression filter sampled every Nb seconds is 1/KNb Hz,

where K is the FFT transform length. Thus, the Doppler resolution is set by the combination

of the transform length and the the range compression filter length or, equivalently, the

length of the combined matched filter, KNb.
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The limb-to-limb planet bandwidth is the difference between the maximum and mini-

mum Doppler shifts of the approaching and receding limbs of the planet. It can be calcu-

lated from

∆ f = 8πΩ f0a/c (2.19)

where Ω is the planetary rotation rate (rev/sec), f0 is the radar carrier frequency, and a is

the planet radius. The cross-range sample spacing can be obtained by dividing the planet

diameter by the number of bins across the projected disk of the planet,

∆Rcross =
2a

KNb∆ f
=

c
4πΩ f0KNb

. (2.20)

Note that the cross-range resolution is defined in a plane tangent to the sub-radar point “A”

(Figure 2.3) and perpendicular to the unit vector from the radar to the target~uR. The cross-

range resolution is also independent of the target radius a and the range to the target R. The

Doppler frequency of each resolution cell is assumed constant in this analysis; processing

by a bank of Doppler matched filters to form the cross range resolution generally is referred

to as unfocused processing in the SAR literature. The bank of Doppler matched filters

divides the echo spectrum of the planet into slices parallel to the total spin axis of the

planet, as shown by the vertical band of width ∆Rcross in the upper half of Figure 2.3.

The relative motion of the radar and planet also affects the Doppler spectrum of the

planet. From (2.17), the center frequency of the echo spectrum is Doppler shifted to

f0

(

1− 2ṙ0

c

)

. (2.21)

The shift may be removed either at the transmitter or at the receiver by varying the reference

oscillator.

2.1.3 Resolution cell migration

In the discussions above, there is an implicit assumption that the planet does not rotate

significantly on its axis during the period of coherent integration—over the period of time

during which the motion-induced phase changes can be accurately modeled or applied. The
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time delay and Doppler shift are taken to be essentially constant during the coherent inte-

gration period. In practice this assumption may be violated, in which case the movement

of a point on the surface through the delay-Doppler grid must be accounted for to form a

proper coherent matched filter. In the Doppler dimension, this migration is most significant

for points near the Doppler equator, as these are the points of greatest instantaneous linear

velocity in the plane of the sky. In the delay dimension, this migration is most significant

near the radar terminator or limb, where the projection of the range bins onto the planet’s

surface results in the finest resolution cells.

The resolution cell size is a related consideration. Delay and Doppler migration become

more problematic at higher resolutions, as longer coherent integration times are required

to achieve fine resolution (2.20). In order to obtain high imaging resolutions, methods for

following the exact phase history of a scattering center (Stacy, 1993) or for transforming

the problem into a tomographic SAR geometry (Webb et al., 1998) can be employed.

In the observations of Mercury described in Chapter 5, we are primarily concerned

with the polar regions of the planet. For the slow rotation of Mercury, the relatively coarse

imaging resolutions considered in this study, and the limited area around the polar regions,

delay-Doppler cell migration during primary, coherent imaging may be neglected. The

effect of migration of surface points through delay-Doppler cells from one round-trip ob-

servation period to the next can be significant, however. As the planet rotates from one ob-

serving run to the next, migration of a particular resolution element on the surface through

the delay Doppler array becomes an important factor. Migration of scatterers requires that

incoherent averaging across multiple runs be implemented in a planetary coordinate system

by first mapping delay-Doppler arrays from each run to a planetary grid (Evans and Hag-

fors, 1968; Harmon, 2002), if the intrinsic resolution of the radar data set is to be preserved.

2.1.4 Signal-to-noise ratio

Signal to noise ratio of a point target in one cell of an imaging radar can be obtained from

the radar equation (Skolnik, 2002). A useful form of the monostatic radar equation is

SNR = PtGt ·
1

4πR2 ·σ · 1
4πR2 ·Ar ·

1
kTsysB

(2.22)
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where Pt is the transmit power, Gt is the transmit antenna gain, R is the range to the tar-

get, σ is the target radar cross section (RCS), Ar is the receive antenna area, Tsys is the

system temperature, B = 1/KNb is the analysis bandwidth, or the inverse of the coherent

integration time, and k is Boltzmann’s constant.

In Chapter 5, we will be concerned with ISAR imaging of the polar regions of Mercury

at high incidence angles θi to the surface normal. For ISAR imaging of an inclined surface

element, the cross section σ(θi) may be expressed as

σ(θi) = σ0(θi)Ares (2.23)

where σ0(θi) is the specific radar cross section of the reflecting surface (m2 of RCS per m2

of surface area), Ares is the area on the surface which projects into the resolution element,

and θi is the angle of incidence on the mean spherical surface at the center of Ares. For

delay-Doppler planetary mapping this becomes, upon expressing Ares in terms of the radar

parameters,

σ = σ0(θi)

(

cb
2

)(

c
4πΩ f0KNb

)

cscθi (2.24)

where other constants were defined in the previous section. The analysis bandwidth is

represented by the total coherent integration time B = 1/KNb yielding the modified radar

equation for a single resolution element as

SNR = PtGt
1

4πR2 σ0(θi)

(

cb
2

)(

c
4πΩ f0

)

cscθi
1

4πR2 Ar
1

kTsys
(2.25)

which we leave in semi-reduced form for clarity. As the coherent integration time KNb

also sets the Doppler resolution of the imaging radar, it drops out of this equation. For a

given radar system operating at frequency f0, the SNR per resolution element is primarily

set by the chosen baud length b.

As the total coherent integration time is generally much shorter than the typical round-

trip light time observing run, multiple coherent images can be averaged incoherently to

improve SNR and to decrease the “speckle” noise inherent in monochromatic imaging

systems. The increase in SNR follows the well-known result that the improvement is pro-

portional to the square root of the number of pulses averaged incoherently to form the final
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image. In a typical observing run, there may be many coherent intervals which can be av-

eraged incoherently. Several runs may also be averaged incoherently in order to improve

image quality further.

2.2 Ambiguities

Interpretation of delay-Doppler imaging of solar system bodies suffers from several in-

strument and processing effects. These deficiencies are collectively labeled “ambiguities,”

but it is important to distinguish among the types of ambiguities. The two main types of

degradation are the “north-south” fold-over ambiguity, and delay-Doppler aliasing which

occurs when attempting simultaneously to extract the delay and Doppler information from

a signal. Mitigation of these effects is a major issue in the observations described in this

work.

2.2.1 North-south ambiguity

The north-south ambiguity is a consequence of the radar antenna’s illuminating two hemi-

spheres on the surface of the planet with identical trajectories through delay-Doppler space.

For a radar lying in the plane of the target equator, the surface of a target planet is divided

into delay-Doppler resolution elements, as shown in Figure 2.3. Every resolution element

at a given value of time-delay and Doppler-shift in the northern hemisphere will have a

conjugate cell with the same delay-Doppler position in the southern hemisphere. Since

these two resolution cells map into the same delay-Doppler element, there is an ambiguity

as to the associated location of the echo. An echo observed in an output delay-Doppler cell

can be attributed to the corresponding point in either the northern or southern hemisphere

or, more generally, to a combination of the two.

Several techniques exist for mitigating the effects of the north-south ambiguity. If the

angular resolution of the antenna is sufficient, the telescope can be pointed so as to illumi-

nate only one hemisphere. As the conjugate points in the opposite hemisphere appear in

the sidelobe response of the telescope illumination pattern, they can often be discounted.

The angular resolution of the single dish Goldstone and Arecibo radars is ≈ 0.1 deg for
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the wavelengths used here, so this technique is limited to close targets with relatively large

angular diameters, such as the Moon and Venus. Two or more antennas, each unable to

resolve the ambiguity, may sometimes be arrayed into an interferometer to achieve the

desired resolution (Rogers and Ingalls, 1970; Jurgens et al., 1980).

Another technique for resolving the two-hemisphere ambiguity stems from the low

probability that the planet’s spin axis is perpendicular to the line of sight of the radar tele-

scope; in other words, the radar is not usually in the plane of the target’s equator. As the

planet rotates, a particular location on the surface of the planet migrates through a series

of delay-Doppler resolution elements. As a result of polar tilt, the trajectory of a point

in the northern hemisphere through the delay-Doppler array differs significantly from the

trajectory taken by the conjugate point in the southern hemisphere (Green, 1962). If delay-

Doppler arrays formed by coherent integration of the received data are first translated to

planetary coordinates of one hemisphere and then incoherently averaged, the echo from

points in the opposite hemisphere do not map consistently through the coordinate transla-

tion. Instead, with sufficient averaging, they appear as unresolved, additive clutter.

Hudson and Ostro (1990) developed a related imaging technique based on use of least

squares inversion of a series of Doppler only projections, predicated on significant and

variable polar tilt over the course of observations.

All of these techniques become more difficult as the areas of interest on the target

approach the Doppler equator.

2.2.2 Overspread ambiguity

The second major ambiguity, which arises from delay and Doppler aliasing, is called the

“overspread” planet ambiguity. This ambiguity is inherent in imaging large, rotating targets

with standard pulse-compression delay-Doppler mapping. The planet’s radius dictates the

maximum pulse repetition rate as discussed in Section 2.1.1 above. If the pulse repetition

rate required for Doppler sampling exceeds this criterion, then multiple pulses impinge on

the planet at the same time and an ambiguity in range or Doppler or, more generally, both,

results.
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The output of the range compression filter for each range bin is sampled at the funda-

mental pulse period. To prevent range aliasing, we require that Nb ≥ 2a/c (2.14). The

total echo received from the planet has a limb-to-limb bandwidth ∆ f = 8πΩ f0a/c (2.19).

In order to avoid aliasing in the Doppler dimension of the output delay-Doppler array, we

require that 1/Nb > ∆ f . When the product of a planet’s delay depth and its limb-to-limb

bandwidth exceeds unity, it becomes impossible to avoid both range and Doppler aliasing.

The planet is said to be overspread at the imaging frequency of interest. The overspread

factor can be calculated from the product of (2.14) and (2.19)

(

2a
c

)(

8πΩ f0a
c

)

. (2.26)

2.2.3 Ambiguity function

Analysis of the resolution capabilities of a particular delay-Doppler waveform is aided

by an understanding of the ambiguity function of the waveform. The ambiguity function

shows the response of a matched-filter receiver to delayed and/or Doppler-shifted versions

of the baseband modulation signal u(t) where the transmitted signal is

s(t) = u(t)e j2π f0t . (2.27)

The ambiguity function |χ(τ, f )|2 is defined as

|χ(τ, f )|2 =

∣

∣

∣

∣

∫ ∞

−∞
u(t)u∗(t + τ)e j2π f t dt

∣

∣

∣

∣

2

. (2.28)

The function is often plotted on either a magnitude scale |χ(τ, f )| or a decibel scale

20log10 |χ(τ, f )|. The classic reference on the ambiguity function is Woodward (1953).

There are two mathematically provable results from Woodward’s analysis, i) that the vol-

ume under the ambiguity function, when normalized by the transmitted energy, is invariant,

and ii) that the peak of the ambiguity function occurs at the point τ = 0, f = 0. For a repet-

itive pulsed waveform with a fundamental pulse length T received by a sampled system,

the central peak of the ambiguity function is periodic in both the delay dimension and the

Doppler dimension. Typically, only the central instance of the function is plotted.
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The imaging radar processor produces a delay-Doppler map of the target. The out-

put map is the convolution of the true target distribution in delay-Doppler space with the

ambiguity function of the transmitted waveform. Thus, the ambiguity function is the point-

spread function1 of the radar imaging process, and the estimated cross section σ̂(τ, f ) at

the output of the processor is given by

σ̂(τ, f ) =
∫ ∞

−∞

∫ ∞

−∞
σ(τ ′, f ′)

∣

∣χ(τ − τ ′, f − f ′)
∣

∣

2
dτ ′d f ′. (2.29)

Imaging without aliasing is possible if a waveform can be designed such that the pe-

riodic nature of its ambiguity function in the delay dimension is greater than the target

delay extent Tt and the periodic nature of its Doppler dimension is greater than the target

bandwidth Bt. The design and processing of such waveforms is discussed in Section 2.3.

2.3 Imaging overspread targets

Imaging an overspread target with the repetitive-pulse delay-Doppler methods of Sec-

tion 2.1 causes aliasing in the delay dimension, the Doppler dimension, or both dimen-

sions. One choice is to violate the bound on pulse repetition rate set by the planet delay

depth and use shorter pulse lengths. This results in aliasing in the delay dimension in the

output delay-Doppler array. An alternative choice is to choose the pulse repetition rate to

satisfy the delay aliasing criterion, and instead violate the Nyquist criterion for sampling

the bandwidth of the planet, resulting in aliasing in the Doppler dimension of the output

delay-Doppler array. For some mapping geometries, slight aliasing in either the delay or

Doppler dimension can be tolerated for a moderately overspread target. For highly over-

spread targets, though, compromise solutions must be employed.

One technique is to accept aliasing in the delay dimension and constrain the area of

interest to the Doppler equator, where the projection of the range ring pattern will cause the

leading edge to dominate the return (Zohar and Goldstein, 1974).

1The point-spread function is the impulse response of a 2-D imaging system. The ideal point-spread
function is the 2-D delta function, δ 2(τ , f ), since convolution with δ 2(τ , f ) is the identity operation.
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A second approach is to accept the aliasing if it is slight and does not affect the par-

ticular region of interest. Harmon et al. (2001) have employed this compromise to image

Mercury’s north pole at 13 cm wavelength utilizing the Arecibo telescope.

The overspread problem (2.26) can also be mitigated by lowering the carrier frequency

of the radar system. As shown in (2.19), the extent of the target Doppler spreading ∆ f

is directly proportional to the carrier frequency. There is not a wide selection of avail-

able wavelengths for planetary imaging, though. NASA funds two high-power microwave

klystrons for planetary radar experiments, the 13 cm 1 MW transmitter at Arecibo, and the

3.5 cm 500 kW transmitter at Goldstone. A 70 cm instrument usually used for pulsed radar

studies of the ionosphere is also available at Arecibo. Its low average power output, ≈10 db

less than the 13 cm system, and the reduced gain of the Arecibo reflector at the long wave-

length, are deterrents to most sensitive measurements or high-resolution mapping. Despite

these shortcomings, the 70 cm system has been used recently to image Mercury (Black

et al., 2002) and the Moon (Campbell et al., 2003a).

Each of these techniques is useful to some degree in imaging overspread objects in

the solar system. There is yet another approach available for imaging these objects and

maximizing the signal to clutter ratio, at the expense of more sophisticated signal process-

ing. Application of this method, called “long-code” modulation, to the observation of solar

system objects forms much of the work in this dissertation.

2.3.1 Long-code modulation

Long-code modulation is a technique which eliminates the delay aliasing inherent in stan-

dard delay-Doppler mapping. Each pulse is coded with a unique, random binary phase

waveform. This coding produces low cross correlation between different pulses, in ex-

change for raising the background clutter level. Standard PN sequences achieve a 1/N2

range sidelobe level, where N is the length of the PN sequence. Random coding achieves

only a 1/N range sidelobe level for an equivalent sequence length, but without range am-

biguities.

Figure 2.4 shows the aperiodic cross correlation function of 100 bits of a random BPSK

waveform with 1000 bits of data, which contains the 100 bit sequence embedded at an offset
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Figure 2.4 Cross correlation of a length 100 random binary sequence with a length 1000 binary se-
quence, which contains the length 100 sequence embedded at lag offset 0. The peak shows detection
of the embedded sequence, but with correspondingly high sidelobes.

of 0. Note the single correlation peak, as well as the non-uniform and high delay sidelobes.

This degradation is quantified in Section A.2.1.

The long-code method was pioneered for ionospheric observations by Sulzer (1986) at

Arecibo, and adopted for planetary imaging by Harmon et al. (1992) after a suggestion by

Hagfors and Kofman (1991). Hagfors and Kofman’s proposal differed in one aspect from

Harmon’s implementation. They proposed using continuous analog noise as the waveform,

rather than binary phase coded sequences. The use of random binary sequences to form

the unique code for each pulse has become known as long-code in the radar astronomy

community (Harmon, 2002).

A search of the historical literature shows that, though noise waveforms have been used

only recently for astronomical imaging, the technique has been proposed and implemented

in other arenas. A review of the field from the end of World War II through the mid-

1950’s is provided by Siebert (1956). Use of noise radar for ranging is reported by Horton

(1959). The performance of pseudonoise BPSK signals in high Doppler environments was

characterized by Lerner (1960). Work by Cooper and Purdy (1968) at Purdue University
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on random noise radar measurements of natural processes led to experiments by Chadwick

and Cooper (1972), primarily for measurement of ocean wave heights. A recent review of

the field is given by Liu et al. (1999).

In the idealized long-code experiment, a truly random continuous BPSK waveform is

transmitted at the target with a baud length chosen to produce the desired delay resolution.

In practice, long shift register sequences are used as pseudo-random generators. The period

of these shift register sequences is such that the period of repetition is on the order of

hundreds of days, many times the length of the typical one to two hour duration of an

observing run.

The transmitted sequence can be recorded for later cross correlation in one of two ways.

Samples of every bit in the random waveform can be recorded during the transmitting

portion of a cycle; or, more simply, the starting state of the shift register can be noted and

the sequence regenerated from this starting state during the data processing stage.

The receiver for the long-code waveform consists of a simple matched filter. For each

delay bin in the output delay Doppler array, the transmitted code is delayed according to

the light time from the computed ephemeris, and then multiplied by the received data. This

demodulates the echo in one delay bin, and is equivalent to the “despreading” process used

in a spread-spectrum communications system. The demodulated samples from one delay

bin form a sequence that can be Fourier analyzed to produce a Doppler spectrum for that

delay bin. Longer Fourier transforms produce finer cross-range, or Doppler resolution.

The echo power from other delay bins remains spread by the random sequence, and be-

haves as additive “white” noise clutter. A comparison can be made to multipath signals

in radio telecommunications systems. Multipath signals, though initially modulated with

the same spreading sequence as the desired, primary signal, arrive at different times. The

time delay of the multipath signal does not match the time delay for the primary signal.

Instead of demodulating properly, the multipath signals are again randomly modulated by

the despreading process which is only matched to the primary signal. This results in an

increase in the noise floor, but strong multipath interference experienced in non-spread-

spectrum systems is mitigated. Returning to the radar imaging problem, the process of

delay, multiply, and Fourier analyze is repeated for each delay bin on the planet, forming a

complete delay-Doppler output array. The long-code technique for planetary imaging has
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Figure 2.5 Continuous-time ambiguity function of the repetitive PN waveform of time extent T .
The central peak of the ambiguity function is periodic with period T in the delay dimension, and
period 1/T in the Doppler dimension. The waveform exhibits low range sidelobe level ≈ 1/N 2

where N is the PN sequence length and T = Nb. The large periodic peaks in the delay dimension
will result in range ambiguity if T < 2a/c.

been described extensively by Harmon (2002).

Figures 2.5 and 2.6 compare the continuous-time ambiguity functions for the repeti-

tive PN code waveform and the random long-code waveform. Signal processing for the

two waveforms is very similar. The waveforms are shown in Figure 2.7. In traditional

repetitive code delay-Doppler imaging, the received signal is first range compressed to

form a sequence of time histories for each range bin and then Fourier analyzed to produce

cross-range or Doppler resolution, resulting in the ambiguity function shown in Figure 2.5.

Processing of long-code data is identical, with the single exception that the range pulse

compression waveform changes from pulse to pulse. The additional step required in the

processing algorithm is to load new range compression filter coefficients for each pulse
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Figure 2.6 Continuous-time ambiguity function of an extended random PN waveform. The central
peak of the ambiguity function is periodic with period 1/T in the Doppler dimension, but does not
exhibit periodicity in the delay dimension. Use of this type of waveform avoids periodicity in the
delay dimension, but has correspondingly higher sidelobe structure ≈ 1/N where N is the random
sequence length, and T = Nb.
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Figure 2.7 Repetitive and random coded pulse trains. In a repetitive pulse train, one length-N PN
sequence, designated A, is used to encode each pulse in the waveform. In a randomly encoded pulse
train, unique, non-repeating binary length-N sequences, denoted by A, B, C, are used to encode
each pulse in the waveform. Signal processing for the repetitive waveform requires only one range
compression filter matched to the sequence A. Signal processing of the random waveform requires
many range compression filters, each matched to one particular coded sequence.
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Figure 2.8 Repetitive PN waveform aliasing of an overspread target. The solid chevron represents
one delay-Doppler response of a planetary target. Aliased versions extend to infinity in both delay
and Doppler.

prior to applying pulse compression. The resulting ambiguity function is shown in Fig-

ure 2.6.

The standard, repetitive PN code waveform’s ambiguity function is periodic in both the

delay and Doppler dimensions. The random, long-code PN waveform exhibits no periodic-

ity in the delay dimension, in exchange for higher sidelobes in both dimensions. Since the

volume under the ambiguity function must remain constant (Woodward, 1951), the volume

removed from the periodic delay peaks appears as an increase in sidelobe volume.

Figures 2.8 through 2.12 show the advantage of the random, long-code waveform for

imaging overspread targets. When imaging an overspread target, the repetitive PN wave-

form suffers from aliasing (Figure 2.8). Extending the PN code length suppresses aliasing

in the delay dimension but increases aliasing in the Doppler dimension (Figure 2.9).

Shortening the PN code length resolves aliasing in the Doppler dimension but increases

aliasing in the delay dimension (Figure 2.10). When using the long-code PN waveform
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Figure 2.9 Mitigation of delay aliasing. Doubling the length of the repetitive PN code to 2T
resolves delay aliasing, but increases Doppler aliasing (compare with Figure 2.8).
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Figure 2.10 Mitigation of Doppler aliasing. Halving the length of the repetitive PN code to T/2
resolves Doppler aliasing, but increases delay aliasing (compare with Figure 2.8).

in combination with a sequence of processing filters matched to different segments of the

long code, the delay processing length of the segments can be chosen to avoid aliasing in

the Doppler dimension (Figures 2.11 and 2.12).

The trade-off in using the random, long-code waveform is that a higher overall sidelobe

level results due to lack of orthogonality between the segments and remote portions of the

code, which increases self-noise or clutter (Rihaczek, 1969).

2.3.2 Optimality of the long-code

Guey and Bell (1998) presented a method of delay-Doppler waveform design in which a

composite ambiguity function is formed by the coherent sum of the ambiguity functions of

individual pulse codes. The main theorem of the composite ambiguity function that they
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Figure 2.11 Random PN waveform aliasing of an overspread target. 2D-convolution of the ambi-
guity function with the target response results in Doppler aliasing (compare with Figure 2.8).

develop is that the merit of any particular set of waveforms, expressed as the volume under

the composite ambiguity surface, represents a measure of the resolving ability of any par-

ticular set of pulse codes. This theorem states that the volume of the composite ambiguity

function is minimized for the set of i orthogonal pulse codes si(t). Collections of pulse

codes satisfying the theorem fit one criterion of ideal delay-Doppler codes. Section A.3

shows that individual, baseband subsequences of pulses in the long-code waveform satisfy

this theorem in a statistical sense. The composite long-code waveform does not satisfy

a self-clutter canceling criterion, however, since the individual pulses that make up the

long-code are transmitted sequentially in time on a carrier. This subject is explored more

thoroughly in Section A.3.

2.3.3 Clutter performance

In traditional delay-Doppler or unfocused SAR imaging of underspread targets, the imag-

ing algorithms are designed without regard to the contribution of clutter—the integrated

sidelobes of the ambiguity function—to the estimation of reflectivity in any one resolution

element. In the mapping of high time-bandwidth product or overspread targets, however,
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Figure 2.12 Mitigation of delay and Doppler aliasing when using a random PN waveform. Halv-
ing the length of the code to T/2 resolves Doppler aliasing (compare to Figure 2.8). With the
random PN code there is no delay aliasing; but self-noise (clutter) is higher compared with the case
of a repetitive code (Figure 2.6).



36 CHAPTER 2. PLANETARY DELAY-DOPPLER IMAGING

there are limits to using delay-Doppler imaging. Self-clutter can corrupt estimation of the

RCS of a resolution element even in a high SNR environment. The description of the

problem is involved, and rests on the volume invariance property of the ambiguity func-

tion first introduced by Woodward (1953). For a complete treatment, the reader is referred

to Sections 5.3 and 9.4, and in particular pp. 137–138 and 347–348, of Rihaczek (1969).

The issue at hand, in words, is: for a uniformly bright target resolved into a number of

independent scattering delay-Doppler cells, when the sum of target energy appearing in the

sidelobes of the ambiguity function (clutter) equals the energy in the main lobe, the signal

to clutter ratio is unity, and estimation of the cross section of each independent resolution

cell is deemed to have failed. A deeper understanding of the issue comes from analyzing

the delay-Doppler extent of i) the target and ii) the high-resolution waveform’s ambiguity

function.

Figure 2.13 shows an idealized ambiguity function that could be used to image a target

of cross section σ , extent Bt in Doppler, and extent Tt in delay. If the target cross section

per unit of delay-Doppler space is approximately equal to its average value σdD, the ex-

pected cross section of a representative resolution element2 σS is equal to the product of

the average cross section, the area of the resolution element, and the height of the central

peak of the ambiguity function (≈ 1), or

σS = σdD

(

1
B

1
T

)

(1) =
σdD

BT
. (2.30)

The expected cross section of the clutter return from resolution elements not under the

primary peak of the ambiguity function is equal to the product of the average target cross

section, the area of the resolution element, and the height of the pedestal of the ambiguity

function (≈ 1/BT ), or

σC = σdD

(

1
B

1
T

)

(
1

BT
) =

σdD

(BT )2 . (2.31)

The total number of resolution elements contributing clutter to the estimation of the cross

section of the desired resolution element is Nclut, and is approximately equal to the target

2The return from one resolution element is given by the discrete version of the continuous radar imaging
equation (2.29).
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Target delay-
Doppler extent

B

1/T
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1/B
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≈ 1/BT

≈ 1

Tt

Bt

Figure 2.13 Idealized thumbtack ambiguity function of a high-resolution, large time-bandwidth
product (BT � 1) radar pulse of bandwidth B and time duration T . The resolution is 1/T in the
Doppler dimension and 1/B in the delay dimension. The target extent in delay-Doppler space is the
shape on the pedestal denoted σ , for cross section; the target’s delay depth is denoted by Tt and its
Doppler bandwidth by Bt. Almost all of the energy, or volume in the ambiguity function is confined
to the pedestal.
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extent divided by the resolution element size, or

Nclut ≈
BtTt

1/BT
= BtTtBT. (2.32)

The total clutter returned is equal to the product of the expected clutter per resolution

element and the number of resolution elements returning clutter, or

σC,tot = σCNclut

=
σdD

(BT )2 (BtTtBT )

= σdD
BtTt

BT
. (2.33)

The signal to clutter ratio (SCR) is the ratio of the expected cross section of the desired

resolution element σS divided by the total cross section of the unwanted clutter σC,tot, or

SCR ≈ σS

σC,tot

≈ σdD/BT
σdDBtTt/BT

≈ 1
BtTt

. (2.34)

Following this argument, imaging of an overspread target appears hopeless, as once the

time-bandwidth product of the target BtTt reaches unity, the signal to clutter ratio becomes

unity, and meaningful estimation of the reflectivity of any single resolution element is not

possible, even by changing the transmitted waveform time duration T or bandwidth B (Ri-

haczek, 1969, p. 348).

In the above discussion, there is an assumption that the object to be imaged has approx-

imately equal normalized cross section σdD for all delay-Doppler resolution elements. Real

surfaces exhibit great variation in scattering cross section, however, and bright areas on any

surface can return significant energy σS compared to the total clutter σC,tot. Estimation of

the cross section of such bright areas is possible, if the scattering cross section within these

certain individual resolution elements is high enough (Rihaczek, 1969, p. 138).

One technique to take advantage of heterogeneity in the distribution of cross section is
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presented in Hagfors and Kofman (1991) and Harmon (2002). The idea is to over-resolve

the imaging system in the delay and Doppler dimensions by decreasing the baud length and

increasing the FFT size. Decreasing the baud length spreads the clutter out over a larger

spectral bandwidth, at the expense of per-resolution element SNR, since the individual

resolution elements are smaller. This higher-resolution, lower per-resolution element SNR

image can then be smoothed and decimated to a lower resolution to increase per-resolution

element SNR, regaining some of the SNR lost by over-resolving the target. There are limits

to this process: first, Section 2.1.3 mentions an upper bound set by the migration of surface

points through delay-Doppler resolution elements, and second, the incoherent integration

process does not recover all of the per-resolution element SNR that a coherent integration

at the proper baud rate would provide.

Hence a trade-off exists for balancing the advantage of over resolving to spread out

the clutter return against the disadvantage of lower SNR that results from decreasing the

resolution element size and then performing spatial averaging and decimation. In practice,

this trade-off is rarely computed prior to observation, as it depends heavily on a priori in-

formation on the scattering cross section of the target. Details can be found in Section III.E

and Appendix III of Harmon (2002).

2.4 Summary

Planetary surfaces can be mapped at high resolution using a delay-Doppler matched filter

bank. Standard delay-Doppler techniques using repeated pulses coded with identical wave-

forms are not effective in imaging planets which have time-bandwidth products greater than

one, due to the delay and/or Doppler folding. The long-code imaging technique success-

fully resolves aliasing at the cost of higher self-noise or clutter.
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Chapter 3

Aperture Synthesis Imaging

The delay-Doppler technique can be quite powerful for synthesizing fine resolution images.

The north-south ambiguity, however, can impair interpretation of a full-disk hemispheri-

cal RCS map. This is the situation for delay-Doppler images of the Galilean satellites of

Jupiter, and for images of any other objects smaller than the projected single-dish antenna

pattern. When the object of interest does not exhibit a large range of polar tilt angles when

viewed from the Earth, it is difficult to map the equatorial regions due to the projection

of the equatorial regions onto a reduced number of delay cells. One solution to this prob-

lem is to use the resolving power of a radio telescope interferometer array. By isolating

the returns from the two hemispheres spatially, aperture synthesis mapping resolves the

north-south ambiguity inherent in delay-Doppler mapping.

Aperture synthesis telescopes consist of a number of smaller antennas that, when used

together, provide angular resolution equivalent to a single large aperture with a diame-

ter equal to the maximum baseline between array elements. Since most telescope arrays

useful for passive planetary astronomy observations do not contain transmitters, separate

transmitting telescopes must be used to illuminate the target in a bistatic configuration.

Such imaging for planetary radar was pioneered by Hagfors et al. (1968). Dramatic ex-

amples since have been reported by Muhleman et al. (1991) and Butler et al. (1993), who

used the Goldstone radar as a CW illumination source and the Very Large Array (VLA) as

the imaging telescope, returning the first unambiguous full-disk radar images of Mars and

Mercury.

41
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Resolution in these experiments is limited by the synthetic beam size at the receiving

site, which depends on the wavelength of the observation and the spatial distribution of the

array antennas. Operating at Goldstone’s 3.5 cm wavelength and with 36 km maximum

antenna separation, the VLA yields approximately 0.25 arcsec resolution.

3.1 One-dimensional interferometer

The basis of aperture synthesis can be understood by examining the behavior of a two el-

ement interferometer. With only two antennas and an adjustable baseline between them, it

is possible to synthesize an aperture comparable in resolution to a single dish antenna with

a diameter equal to the maximal extent of the adjustable baseline. This simple array can be

used to map the brightness distribution of an astronomical source. Each spacing of the in-

terferometer samples a different spatial frequency component of the source sky brightness

distribution in the plane containing the interferometer baseline. Fourier synthesis process-

ing of the array output produces an image (Bracewell, 1956) . A standard text for aperture

synthesis techniques is Thompson et al. (1986). The methodology outlined in the following

section is simplified greatly from that in Thompson.

3.1.1 Basic configuration

Consider the two element interferometer of spacing l pictured in Figure 3.1. For simplicity,

assume that the element radiation pattern is omnidirectional. The measurement objective is

the sky brightness distribution, or power pattern, of a radioastronomical source B(ξ ) where

ξ is a small angle on the sky with respect to the normal to the baseline between the two

antennas, exaggerated here in Figure 3.1 for clarity. The source is in the far-field of the

array so that the wavefront arriving from the source is planar. Consider the source to be

incoherent, so that any one point of the brightness distribution can be considered a point

source that radiates independently of any other point on the source. The complex voltage

received at each antenna from a point on the source is represented by the quantities v1(t)

and v2(t) where

vi(t) = a(t) e j(ωt−~k·~ri), (3.1)
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Figure 3.1 Geometry of a two element interferometer observing a point on an incoherently radi-
ating source B(ξ ) at a small angle ξ from the normal to the interferometer baseline l. The angle
ξ is exaggerated for clarity. Plane waves propagate from the point on the source toward the array
with vector wavenumber~k, and arrive at the right-hand element 2 delayed by β l sinξ relative to the
left-hand element 1.

~ri is the position of antenna i relative to the origin of the coordinate system, a(t) is the

slowly varying source amplitude, and~k is the vector wave number. The propagation con-

stant is β = |~k| = 2π/λ .

Assuming a(t) = 1 for all t and dropping the common e jωt dependence, we can simplify

the voltages to:

v1 = e+ jβ l
2 sinξ (3.2)

v2 = e− jβ l
2 sinξ . (3.3)

The incoming wave from one point on the source distribution is either delayed or advanced

from the phase center of the interferometer by the quantity β l
2 sinξ . The interferometer

may be used to form the cross correlation of the two complex voltages

v1v∗2 =
(

e+ jβ l
2 sinξ

)(

e− jβ l
2 sinξ

)∗

= e+ jβ l sinξ . (3.4)
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Using the small angle approximation sinξ = ξ , we have

v1v∗2 = e j 2π
λ l sinξ = e j2πu0ξ , (3.5)

where u0 = l/λ is the interferometer spacing in wavelengths. The quantity v1v∗2 is a mea-

sure of the response of the array to the point on the source at small angle ξ . This quantity

is the complex power pattern response of the two-element array.

We can compute the Fourier transform of the complex array power pattern to obtain the

spatial frequency content of the array pattern on the sky, W (u),

W (u) =
∫ ∞

−∞
e+ j2πu0ξ e− j2πuξ dξ (3.6)

= δ (u+u0) (3.7)

where δ (u) is the impulse distribution. W (u) is also known as the spectral sensitivity

function. So we see that the output of the complex correlator array samples one spatial

frequency component, u0 = l/λ , of the sky brightness distribution B. By changing the

spacing of the array l, we can obtain other spatial frequency components of the brightness.

The realization that a two element interferometer samples one spatial frequency of the sky

brightness distribution is due to McCready et al. (1947).

Now consider the following Fourier transform pairs,

B(ξ ) ⇀↽ V (u) (3.8)

A(ξ ) ⇀↽ W (u) (3.9)

S(ξ ) ⇀↽ V (u)W (u). (3.10)

The Fourier transform of the sky brightness, V (u), is commonly called the visibility func-

tion of the source. The array power pattern A(ξ ) is the transform of the sampling function

of the aperture distribution W (u). The sky brightness function S(ξ ) is discussed below.

It is important to note that the complex correlator array only samples one side of the

spatial frequency axis, u > 0. As the power distribution B(ξ ) on the sky is real, we can use
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Figure 3.2 Spectral sensitivity function W (u) for uniformly spaced samples of a two element
interferometer. The arrow-tipped line at u = 0 is the ordinate of the plot, and not part of the sam-
pling function. The “hole” in the spectral sensitivity function at u = 0 is a well-known property of
correlating interferometers (Thompson et al., 1986) (see text).

the Fourier transform relations for real even and real odd functions (Bracewell, 2000)

real,even ⇀↽ real,even (3.11)

real,odd ⇀↽ imaginary,odd (3.12)

to compute the missing values on the negative frequency axis. The left hand side of the

visibility axis V (u),u < 0 is simply the complex conjugate of the right hand side of the

spatial frequency distribution.

Recording data at many different spatial separations of the array l allows for arbitrarily

dense sampling of the visibility function V (u). An estimate of the sky brightness function

S(ξ ) may be obtained from the inverse Fourier transform of the sampled visibility function

in (3.10) yielding the sky brightness distribution convolved with the array power pattern

S(ξ ) = B(ξ )∗A(ξ ) (Bracewell and Roberts, 1954).

As an example of an array response pattern, let l = n∆l,n = 1, . . . ,N. where ∆l is a

fixed spacing and lmax = N∆l. The spatial frequency sampling function, W (u), of this array

is shown in Figure 3.2. We have inserted the negative frequency components by taking

the complex conjugates of the components for u > 0. The absence of a sample at u = 0,

which corresponds to a constant background in the spatial image, is a well known property

of correlator arrays (Thompson et al., 1986).

The sampling function obtained by varying the spacing of a two element interferometer
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Figure 3.3 Spectral sensitivity function W (u) for uniformly spaced linear correlating array. The
linear array overweights the close spacings as compared to the far spacings (compare with Fig-
ure 3.2). The arrow-tipped line at u = 0 is the ordinate of the plot, and not part of the sampling
function.

is not the sampling function which would result from a uniformly spaced linear array of N

elements. A uniform array of element spacing l and N elements redundantly samples the

spacing l since there are N(N −1)/2 antenna pairs with spacing l. The spectral sensitivity

function of such a linear correlator array is shown in Figure 3.3.

The power pattern response of the array A(ξ ) is given by the inverse transform of the

spectral sampling function W (u). It is usually removed from the sky brightness image by

non-linear deconvolution as explained in Section 3.4.

3.1.2 Correlation, addition, and spectral sensitivity

Most modern facilities operate as correlating interferometers, and are based on an extension

of the basic ideas introduced above (Thompson et al., 1986). For a four-element linear

array, a correlating interferometer produces the following power output at normal incidence

(ξ = 0)

vcv∗c = v1v∗2 + v1v∗3 + v1v∗4 +

v2v∗1 + v2v∗3 + v2v∗4 +

v3v∗1 + v3v∗2 + v3v∗4 +

v4v∗1 + v4v∗2 + v4v∗3. (3.13)
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An adding interferometer, on the other hand, produces

vav∗a = (v1 + v2 + v3 + v4)(v1 + v2 + v3 + v4)
∗

= v1v∗1 + v1v∗2 + v1v∗3 + v1v∗4 +

v2v∗1 + v2v∗2 + v2v∗3 + v1v∗4 +

v3v∗1 + v3v∗2 + v3v∗3 + v3v∗4 +

v4v∗1 + v4v∗2 + v4v∗3 + v4v∗4. (3.14)

The adding interferometer contains the summation of all components from all four antennas

and obeys a Fourier transform relationship with the autocorrelation function of the aperture

distribution first presented by Booker and Clemmow (1950). The correlating interferometer

does not exhibit this property, as its output is missing the cross terms viv∗i , i = 1, . . . ,4,

which are on the diagonal of (3.14). For this reason, standard antenna array theory cannot

be used to compute the power pattern A(ξ ) of a correlating array, and the correlating array

power pattern can have negative sidelobes.

Any interferometer of uniformly-sized individual apertures cannot position its elements

closer than D meters, where D is the diameter of the individual apertures. The low-pass

spatial frequency cutoff of the array is ulow = D/λ . As a result, the correlating array is

less sensitive than a single, large aperture for determining the total flux density of a source

at a known location in the sky. The low spatial frequency terms of the source distribution

are unmeasured, and must be either interpolated from higher frequency data, or acquired

from single-dish observations in order to fill in the missing data at the low end of the spatial

frequency spectrum.

In Chapter 6, we report on the use of a correlating array, the VLA, to map Ganymede

and Callisto. Though the VLA is the best instrument available for forming north-south

unambiguous maps of Ganymede and Callisto, it is not the best instrument for measuring

the total radar echo power from these bodies, since it is not sensitive to the entire spatial

frequency distribution. Large, single-dish observations, such as those of Ostro et al. (1992),

are more accurate.
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distribution B(ξ )
Source brightness

1 2

ξ
ξ0

Figure 3.4 Projected baseline effect for an off-center source at angle ξ0 from the normal to the
array. Here the angle ξ0 is not exaggerated; the interferometer is pointed off the normal to its
physical baseline by a significant angle. The source is imaged over a small angle ξ about this
off-center angle ξ0.

3.1.3 Projected baseline

Suppose we desire to image a source which is centered about some angle ξ0 which is far

off the centerline of the two element array, as suggested by Figure 3.4. For the point source

located at ξ0, the voltage v1(t) experiences a delay τ = l
c sinξ0 relative to the voltage v2(t).

By introducing this instrumental delay τ into the v2 channel, the virtual array baseline

becomes that shown in Figure 3.5, equivalent to the case from Section 3.1.1 but with u0 =
l
λ cosξ0. The measured spatial frequency of the brightness distribution is reduced by the

projection of the baseline onto the line of sight to the source.

3.1.4 Tracking interferometer

For an Earth-based, two element, east-west aligned interferometer on the equator, the angle

ξ0 to the center of a sky-fixed source at zero declination will move as the Earth rotates

on its axis. This rotation may be compensated by adjusting the instrumental delay τ to

correct for the changing angle to the source center ξ0. As the source moves across the sky,

the projected baseline changes, providing sampling of different spatial coefficients of the
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Figure 3.5 Virtual interferometer layout for an off-normal source. Delaying the voltage signal
v2(t) by an amount τ = l

c sinξ0 causes the right-hand element 2 to be virtually displaced along the
direction of propagation to effect an interferometer with the same layout as Figure 3.1, but with an
effective element spacing of l cosξ0.

source distribution without physically moving the antennas themselves.

If the antennas which are the individual elements of such a “tracking” array have finite

beamwidth, they must actively follow the source as it moves across the sky. Each antenna

measures the true sky brightness weighted by the antenna element pattern, Ae(ξ ). In this

case, we have the Fourier transform pair

B(ξ )Ae(ξ ) ⇀↽ V (u)∗We(u) (3.15)

where We(u) is the Fourier transform of the element pattern. The array of elements mea-

sures a sky brightness distribution (3.10)

S(ξ ) ⇀↽ [V (u)∗We(u)]W (u) (3.16)

where W (u) is the array pattern from (3.10).
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Figure 3.6 Two element interferometer in three dimensional space. Interferometer baseline sits at
an angle θ with respect to the x axis.

3.2 Extension to two dimensions

We now consider a two-element array resting on a plane in a three-dimensional space. The

baseline between the antennas is now rotated through an angle θ with respect to the x axis

in the plane as shown in Figure 3.6. The sky brightness B(ξ ,η) is a function of two angles.

In this situation, the complex visibility, V (u,v), is given by the two dimensional Fourier

transform of the sky brightness distribution (Bracewell, 1956, 1958)

V (u,v) =
∫ ∫

B(ξ ,η)e− j2π(ξ u+ηv) dξ dη . (3.17)

The two-element interferometer set at spacing l and angle θ can now be viewed as sam-

pling the two dimensional Fourier transform of the angular power pattern. The Fourier

relationships are:

B(ξ ,η) ⇀↽ V (u,v) (3.18)

A(ξ ,η) ⇀↽ W (u,v) (3.19)
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S(ξ ,η) ⇀↽ V (u,v)W (u,v). (3.20)

The two-dimensional Fourier transform of an object rotated through an angle θ also rotates

through the same angle θ in the (u,v) plane (Bracewell, 2003). We can view the two

element array in the two dimensional plane as sampling the visibility function at the spatial

frequency pair

(u,v) = (
l
λ

cosθ ,
l
λ

sinθ), (3.21)

where l is the array spacing given previously.

For the case of a non-zenith pointing array, an expression for the projected baseline

similar to that of Section 3.1.3 can be derived. An appropriate delay τ added to the signal

from one element transforms the geometry of the problem to a projected baseline frame of

reference. In this new reference frame, the results of this section may then be employed.

3.3 Mapping interferometer

As it can take several months using Earth-rotation to acquire enough samples of the com-

plex visibility function V (u,v) to form a two dimensional map of the source with a single

two-element interferometer, modern radio synthesis telescopes use a two-dimensional ar-

ray of antennas to speed data acquisition. Figure 3.7 shows the antenna configuration of the

Very Large Array (VLA) near Socorro, New Mexico. High-gain antennas improve signal-

to-noise ratio, and suppress undesirable signals from directions other than that of the target.

Each element of the array must be steered in azimuth and elevation to stay centered on the

source.

The (u,v) plane sampling function of the antenna at zenith is shown in Figure 3.8. This

sampling pattern undergoes projection and rotation as the array tracks a source across the

sky to yield the spectral sensitivity (u,v) plane coverage map of Figure 3.9. The Fourier

transform of this spectral sensitivity function yields the array response on the sky, or the

“dirty beam” as shown in Figure 3.10. The response of the array, S(ξ ,η), to a brightness

distribution, B(ξ ,η), is the two dimensional convolution of the array with the pattern,
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North

Figure 3.7 Very Large Array antenna configuration. The VLA has three principle arms, 21 km
long, and separated by 120◦, each containing nine 25 m diameter antenna elements (Thompson
et al., 1986). The 5◦ offset clockwise rotation of the array improves the spectral sensitivity function
for tracking sources near 0◦ declination. In the absence of this rotation, the spectral sensitivity
function degenerates into horizontal lines (see Figure 3.9).
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Figure 3.8 Spectral sensitivity function of the VLA in “A configuration” at 6 cm wavelength,
observing a source at zenith (Bridle, 1996). This Fourier space image shows the (u,v) plane cover-
age of the array at a single instant in time. The units of u and v are dimensionless (3.21), and are
commonly specified as megawavelengths, or 106 wavelengths. The 36 km maximum baseline of the
VLA “A-configuration” provides a maximum spacing of u ≈ 36× 10 3 m/6× 10−2 m/10−6 = 0.6
megawavelengths.
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Figure 3.9 Spectral sensitivity function of the VLA resulting from several hours of tracking of a
source at 3.5 cm wavelength on either side of transit. The pattern of Figure 3.8 undergoes projection
and rotation as the array tracks the source across the sky, filling out the sampling of points in the
Fourier space (u,v) plane. The 36 km maximum baseline of the VLA “A-configuration” provides a
maximum spacing of u ≈ 36×103 m/3.5×10−2 m/10−6 = 1.0 megawavelengths.
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Figure 3.10 Plane-of-sky impulse response A(ξ ,η) or “dirty beam” pattern of the VLA as formed
from the spectral sensitivity function in Figure 3.9. The output of the VLA is the convolution of this
pattern with the true sky brightness pattern B(ξ ,η).
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A(ξ ,η), or,

S(ξ ,η) = B(ξ ,η)∗∗A(ξ ,η). (3.22)

To recover B(ξ ,η), the effect of this convolution must be removed by approximate meth-

ods, since a unique inversion does not exist (Bracewell and Roberts, 1954).

3.4 Beam deconvolution

“Deconvolution” is the process used to estimate the true sky brightness distribution, B(ξ ,η),

given the observed quantity, S(ξ ,η), above. As there is no exact solution to the decon-

volution problem, approximate methods are employed. The most successful and widely

employed algorithm discovered to date is the CLEAN algorithm originally conceived by

Hogbom (1974), a non-linear, iterative approach.

The steps of CLEAN are as follows:

1. Find the brightest point (ξ0,η0) in the “dirty” image S(ξ ,η).

2. Shift the array power response A(ξ ,η) normalized to unity gain to the point (ξ0,η0)

in the image. Multiply the array response by the value S(ξ0,η0) and a “gain factor”

γ . Subtract the resulting power response γS(ξ0,η0)A(ξ − ξ0,η −η0) from the dirty

image S(ξ ,η).

3. Add the scalar quantity γS(ξ0,η0) to a “cleaned” image S′ at point (ξ0,η0).

4. Repeat steps 1, 2, and 3 until a user-defined threshold is reached (see below).

After 30 years, the radio astronomy community has developed standard practices for

employing the CLEAN algorithm. The CLEAN gain, γ , is typically chosen to be 0.1 based

on experience. It can be shown that the deconvolution is unstable if γ > 1. CLEAN itera-

tions are continued until the amount of power being removed at each iteration stage is on

the order of the off-source, background noise power level. This level can be determined by

computing the expected background noise level in the region of the sky being imaged either

in advance or once the on-source flux in the “dirty” image is on the level of the off-source

flux in the dirty image. Once this deconvolution process is complete, the “cleaned” image
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is usually convolved with a truncated Gaussian, or “clean beam” to smooth the output im-

age to the intrinsic resolution of the imaging array. The half-power point of the Gaussian

beam used for reconstruction is the quoted resolution of the imaging system (see Chapter 6,

Table 6.1).

Direct computation of the Hogbom CLEAN procedure is inefficient. For this reason,

approximations to the procedure with greatly improved computation time have been devel-

oped since the original algorithm was published. Clark (1980) improved the efficiency of

the Hogbom algorithm by computing many of the quantities using the sampled visibilities

V (u,v) ·W (u,v) in the Fourier domain, rather than carrying out all procedures in the image

(ξ ,η) domain.

Other researchers have extended the CLEAN algorithm for coherent radar imaging sys-

tems (Tsao and Steinberg, 1988; Bose et al., 2002). These extensions compensate for the

high sidelobes of the ambiguity function used in many imaging radar systems. Harmon

(2002) has used deconvolution to remove range sidelobes from the sub-radar specular point

from delay-Doppler images.

3.5 Summary

This chapter reviews the basics of aperture synthesis imaging. The two element interferom-

eter serves as an example from which two-dimensional mapping of sky brightness (power)

of radio astronomical sources was developed. Modern mapping interferometers, such as the

Very Large Array, operate on the basis of these same principles. The adding interferome-

ter preserves the standard Fourier transform relationship between the aperture illumination

function and the Fraunhofer far-field array pattern. The correlating interferometer does not

preserve this relationship. The fact that a physical array has a minimum antenna spacing

equal to the diameter of its individual elements causes either array to lack sensitivity at low

spatial wavelengths. As a result of these two effects the correlating array is less sensitive

for total flux measurements than an equivalent-aperture single-dish telescope, and can have

negative sidelobes in its array response pattern. Correlating interferometers are good for

achieving fine spatial resolution, but lack accuracy when measuring the absolute flux den-

sity, or radar cross section, of extended targets. Because the (u,v) plane coverage of an
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aperture synthesis telescope is limited, the raw output image of the array is the convolution

of the array power response with the true sky brightness distribution of the source. Iter-

ative deconvolution methods, such as the CLEAN algorithm and its derivatives, must be

employed to remove the effects of sparse sampling in the (u,v) plane and reconstruct the

true brightness distribution.



Chapter 4

Radio-Wave Scattering

Radio wave scattering properties of solar system objects have been investigated continually

for a half century (e.g., v. Evans and Hagfors (1968); Pettengill (1978); Ostro (1993);

Butrica (1996)). Originally these studies, undertaken with small radiotelecopes at a number

of institutions, were restricted to the Moon and inner planets due to power and sensitivity

constraints. Starting in the early 1970’s, new and more powerful microwave transmitters at

the Arecibo and Goldstone observatories led to discoveries regarding the global scattering

properties of moons and rings of the outer planets. The increase in instrument capability

also led to fine resolution imaging of inner solar system bodies.

The first high-power microwave observations of the icy Galilean satellites Europa,

Ganymede, and Callisto, were obtained at the Arecibo observatory in 1975–76, as reported

by Campbell et al. (1977, 1978). The high geometric albedo of these objects at optical

wavelengths had been noted previously. Radar observations found high values of radar

cross section and, surprisingly, the phenomenon of circular polarization inversion, which is

the detection of greater power in the same circular polarization as transmitted, as compared

with the opposite sense.1 Detection of polarization inversion led the radar astronomers to

conclude that a multiple scattering effect, such as volume scattering, was likely responsi-

ble for these anomalous measurements as compared to typical inner solar system terrestrial

planets (Campbell et al., 1978) where backscatter is dominated by Fresnel reflection at the

1This effect cannot be detected by optical astronomers relying on natural sources of illumination, which
are unpolarized.
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visible surface. Subsequent flybys by the twin Voyager spacecraft confirmed predictions of

an icy composition for the surfaces of these moons (Stone and Lane, 1979). Extensive, ad-

ditional radar studies by Ostro et al. (1992) further refined the measurements of the global

scattering properties of these objects at the 13 cm and 3.5 cm wavelengths.

A variety of specific physical models was put forth to explain the observed backscat-

tering phenomena. Gurrola (1995) summarizes many of these models, including surface

craters in ice (Ostro and Pettengill, 1978), the presence of random cracks (Goldstein and

Green, 1980; Ostro, 1982), the structure of refractive lenses (Hagfors et al., 1985), the

radar “glory” effect (Eshleman, 1986), and “coherent” backscatter phenomena (Hapke,

1990). Subsequent evaluation of these models has been carried out by Peters (1992), Gur-

rola (1995), and Black (1997).

In the late 1980’s and early 1990’s, the addition of 3.5 cm receivers to the Very Large

Array synthesis mapping telescope, and an increase in computational power available for

post-acquisition data processing, permitted high-resolution bistatic observations of Mars

and Mercury. Muhleman et al. (1991), using the combined Goldstone/VLA instrument,

reported the combination of high-albedo and an inverted circular polarization ratio in scat-

tering from the south polar cap of Mars, similar to that observed from the Galilean satel-

lites. Slade et al. (1992) and Harmon and Slade (1992) made use of the Goldstone/VLA

and the Arecibo radars, respectively, observing these same anomalous reflection properties

in signals from the polar regions of Mercury. The similarities in scattering to the Galilean

satellite results led to the conclusion that the anomalously high radar cross sections and

polarization inversion are due to the presence of cold-trapped volatiles—such as ice—on

these much warmer worlds.

This peculiar backscattering also has been found at several locations on Earth. Rignot

et al. (1993) and Haldemann and Muhleman (1999) employed Earth-orbiting satellite radars

to observe the glacial ice of Greenland and glacial deposits in the Kunlun Shan and central

Andes, respectively. In these cases, the “unusual” backscatter properties—the combination

of high RCS and the reversal of the incident sense of circular polarization—are attributed

to single scattering from explicit structures embedded in the ice (Rignot et al., 1993) , or

multiple scattering within the ice by inhomogeneities (Haldemann and Muhleman, 1999).
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4.1 Models for planets and geophysical surfaces

As introduced in Chapter 2, radar cross section (RCS) is a scalar quantity linearly related to

the amount of power scattered by an object in the far field of the radar. Radar cross section,

σ , is derived from the radar equation (2.22) written in the form

Pr = PtGt
1

4πR2 σ
1

4πR2 Ar + kTsysB, (4.1)

in which total received power Pr is expressed as a function of the transmitted power Pt,

the transmitting antenna gain Gt, the range to the target R, the receiving antenna area Ar,

the receiving system temperature Tsys, the effective signal bandwidth B, and Boltzmann’s

constant k.2 Given a radar measurement of received power, and knowing the system pa-

rameters, the radar cross section of the target is calculated from

σ =
16π2R4

PtGtAr
(Pr − kTsysB). (4.2)

The field of electromagnetic scattering theory is concerned with developing models

relating the observed backscatter σ to the physical properties and configuration of the tar-

get material. For most radar remote sensing experiments, the target is in the far-field of

the radar, and the emitted wave propagates through free-space for some distance before

impinging on the target. The scattering mechanisms can be broadly classified into two

categories: surface scattering from waves reflected at the free-space/target interface, and

volume scattering from waves which penetrate into the target, undergo multiple scatter-

ing from inhomogeneities within the target, and are returned to the observer through the

target/free-space boundary.

The scattering behavior from rough targets such as planetary bodies includes several

components. These are commonly denoted i) specular or mirror-like, from single-bounce

geometries, and ii) diffuse, from multiple scattering off surface features or sub-surface

structures. The power returned from specular scattering is concentrated around an angle

of reflection equal to the angle of incidence θr = θi. The power returned from diffuse

2For high-resolution, long-code imaging as employed in Chapter 5, in addition to the thermal noise con-
tribution, kTsysB, a non-thermal “clutter” noise component must also be considered. See Section 5.3, page 88.
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scattering is distributed over a wider range of reflected angles θr. Scattering models for

natural surfaces therefore employ several parameters which model both the specular and

diffuse scattering components of the radar cross section.

4.1.1 Sphere

The predicted radar cross section of many basic geometrical shapes can be calculated from

electromagnetic theory (Ruck et al., 1970). For example, the RCS of a perfectly conducting

sphere of radius a that is large compared to the radar wavelength is its projected area:

σ = πa2. (4.3)

The normalized RCS σ̄ may be defined as the measured cross section divided by a reference

cross section.3 For a general sphere, the cross section is commonly normalized by the

projected area

σ̄ =
σ

πa2 . (4.4)

The exact RCS solution was first derived rigorously by Mie (1908). A plot showing the

dependence of backscattered σ̄ on frequency is shown in Figure 4.1.4

For a perfectly conducting sphere much larger than the wavelength of observation, σ̄ ≈
1. For large dielectric spheres, the normalized RCS is typically less than one, since much

of the incident power passes into the material and is either absorbed or leaves the sphere

at an angle different from the exact backscatter direction. Counter to this intuition, the icy

Galilean moons of Jupiter have been found to have σ̄ > 1. This effect has been attributed

to volume scattering from inhomogeneities within the icy regolith covering these bodies,

which preferentially focus energy in the backscatter direction (see Section 4.1.3).

3Other investigators denote this quantity as σ̂ and term it the “total planet albedo” or just “albedo” of a
target. See Eq. (5) of Ostro (1993). We depart from the use of the caret as it is commonly used to indicate an
estimator in the electrical engineering literature.

4We thank D. Dougherty of the Naval Surface Warfare Center, Dahlgren Division (NSWC DD) for making
the Mie scattering code ���������	��
��
��� available.
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Figure 4.1 Mie backscatter from a perfectly conducting sphere. The normalized RCS, σ̄ = σ/πa2,
is plotted for a = 10 cm as a function of frequency from 100 MHz to 10 GHz.

4.1.2 Extended surface

In Chapter 5, we will be concerned with high-resolution imaging of the polar regions of

Mercury, to detect patches of radar-bright material which have similar scattering character-

istics to the icy regoliths of the three outer Galilean satellites. The imaging radar divides

the region of interest into individual resolution elements, and it is desirable to compute

the RCS of each element. The RCS per unit area σ0 and the angle of incidence θi which

the radar wave makes with respect to the mean local surface are important parameters in

models of surface scattering.

For extended surface areas resolved by an imaging radar, it is often convenient to dis-

cuss an area-normalized, or “specific,” RCS of the surface rather than the cross section

itself, as this separates the electrical properties of the surface from resolution “achieved”

or “obtained” by the radar instrument. If an imaging radar has an projected resolution el-

ement area of Ares on the ground, the specific RCS σ0(θi) of the surface can be defined

as the measured cross section in a resolution element σres divided by the projected surface
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θi

cos(θi)

cos2(θi)

Figure 4.2 Minnaert scattering from a surface. In the Minnaert model, backscattered power is
proportional to cosn θi, where θi is the incidence angle.

area

σ0(θi) =
σres(θi)

Ares
(4.5)

where θi is the angle of incidence.

For diffusely scattering surfaces, there are many applicable surface and volume scatter-

ing models (Rees, 2001). The Minnaert scattering model has been found to fit the observed

diffuse backscatter from solar system bodies in a variety of situations (Ostro, 1993). The

Minnaert model states that the backscattered power is proportional to the cosine of the

angle of incidence, θi, of the wave raised to the power n (Figure 4.2). If we define the

normal-incidence specific cross section as σ0(0) = ρ , then the specific radar cross section

as a function of incidence angle is

σ0(θi) =
dσ
dS

= ρ cosn θi. (4.6)

It is important to note that the exponent n need not be an integer; for example, n = 1.5 is a

common value for icy targets.

4.1.3 Diffusely scattering sphere

The total radar cross section of a large diffuse sphere can be computed by integrating the

specific cross section over the visible surface. Using the Minnaert scattering model (4.6),
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we find

σ =
∫

S
dσ

=
∫

S
σ0(θi) dS

=
∫

S
ρ cosn θi dS

=
2ρ

n+1
πa2, (4.7)

where S is the surface of the visible hemisphere. With this, the normalized RCS becomes

σ̄ =
σ

πa2 =
2ρ

n+1
. (4.8)

In Chapter 6, we compare our two-dimensional maps of surfaces with the total cross sec-

tions and cosine law models described in (4.6–4.8).

4.2 Dual-polarization measurements

For many radar investigations of planets and other objects in our solar system, it is possible

to transmit one polarization and receive an orthonormal pair, such as two linear polariza-

tions at right angles to one another, or oppositely rotating circular polarizations. For the

high-power microwave radars at Goldstone and Arecibo, only right-hand circular polar-

ization (RCP) is transmitted, but both RCP and left circular polarization (LCP) can be

received. The RCP echo is referred to as the same-sense circular (SC) or “depolarized”

echo, while the LCP echo is referred to as the opposite-sense circular (OC) or “polar-

ized” echo. The term “polarized” is derived from the expected polarization return from

a perfectly smooth, conducting metal plate viewed at normal incidence. In this case, the

expected echo is LCP, which is also the OC polarization. The term “depolarized” refers to

the sense of polarization not expected from specular reflection from a perfectly conducting

sphere.

The more general case—reflection at an oblique angle from a dielectric interface—is

shown in Figure 4.3. When the angle of incidence is less than the Brewster angle for
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Figure 4.3 Polarization change upon reflection from a dielectric (after Inan and Inan, 2000).
Right-hand circular polarization (RHCP) is defined in the inset, which shows the electric field E
at a given point in space tracing a clockwise circular locus when looking in the direction of travel
~k. When θi is less than the Brewster angle, the incident right-hand circular polarization is reflected
in the specular direction as left-hand elliptical polarization (LHEP). The sense of rotation of the
electric field is shown to reverse direction for the reflected wave. Right-hand elliptical polarization
(RHEP) is transmitted into the material. When the incidence angle θi is greater than the Brewster
angle θB, the sense of polarization of the reflected wave will be reversed from that shown here.
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the material, incident circular polarization will be reflected in the opposite-sense elliptical

polarization as that transmitted. The singly-reflected wave does not return to the radar

unless the angle of incidence is 0, and thus a second, favorable reflection from another

structure (not shown) is required to return energy in the exact backscatter direction. If

this second reflection is again at an angle of incidence less than the Brewster angle for

the material, the returned wave will be in the same-sense elliptical polarization as that

transmitted. Multiple scattering from surface structures is one component of the diffuse

reflection from a target object.

The wave which penetrates into the dielectric material in Figure 4.3 retains the same-

sense elliptical polarization as that transmitted, independent of the angle of incidence. This

wave may also undergo multiple scattering from structures or inhomogeneities within the

dielectric, and return through the air/dielectric boundary in the exact backscatter direction.

Volume scattering from multiple reflections within the target object is a second component

of the diffuse reflection.

For dual-polarization measurements, we need to distinguish between two distinct cross

sections: the RCS with same circular polarization (σSC) and the RCS with opposite circular

polarization opposite to that transmitted (σOC). The ratio µc of these two distinct cross

sections is known as the circular polarization ratio

µc =
σSC

σOC
. (4.9)

Though our study is concerned only with observations made with circular polarization,

similar definitions exist for linear polarization, σSL, σOL, and µL (Ostro, 1993). For a large

sphere such as a terrestrial planet, we expect specular reflection from the subradar point to

dominate the return. This results in σOC � σSC and µc � 1. Some power is returned in the

SC polarization due to multiple scattering events from the rough surfaces of these objects

or from single scattering by discrete objects such as non-spherical rocks. Total planet RCS

measurements of terrestrial planets exhibit low radar cross sections and polarization ratios

consistent with this expectation. Results are quite different for icy moons of the outer

solar system, however. For icy planets, it is not uncommon to measure σ̄OC ≈ σ̄SC ≈ 1

and µc > 1, presumably as a result of multiple or volume scattering. Table 4.1 shows the
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Body σ̄OC σ̄SC µc

Moon 0.07 0.01 0.1
Mercury 0.06 0.01 0.1
Venus 0.11 0.01 0.1
Mars 0.08 0.02 0.3
Titan 0.15 0.08 0.5
Io 0.20 0.10 0.5
Europa 1.00 1.50 1.5
Ganymede 0.60 0.84 1.4
Callisto 0.30 0.36 1.2
Mercury’s polar craters 0.71 0.89 1.3
Mars’ RSPIC 0.31 0.72 > 2.0

Table 4.1 Polarization ratios typical of planetary bodies after Ostro (1993) except Mars polar cap
datum from Butler (1994), Mercury crater data from Harmon et al. (2001), and Titan datum from
Campbell et al. (2003b).

average normalized radar cross sections and polarization ratios for several objects in the

solar system.

Ostro et al. (1992) report an extensive campaign to investigate the scattering properties

of the icy Galilean satellites. The dual-polarization measurement results are reproduced in

Table 4.2. The new column for ρ has been generated from the table values for n, σ̄ , and

ρ =
n+1

2
σ̄ , (4.10)

from (4.8).

4.3 A model for icy crater floors

For deposits of ice that may lie on the floors of craters, we can apply the extended surface

model developed in Section 4.1.2 (Figure 4.2) as have Harmon et al. (1994) and Harmon

et al. (2001).

The specific RCS of the crater floor as a function of θi is

σ0(θi) = ρ cosn θi. (4.11)
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Body λ , cm Pol. σ̄ n ρ
Europa 13 OC 1.03 1.8 1.44

13 SC 1.58 1.8 2.21
3.5 OC 0.91 1.7 1.23
3.5 SC 1.40 1.7 1.89

Ganymede 13 OC 0.57 1.5 0.71
13 SC 0.82 1.5 1.03
3.5 OC 0.65 1.3 0.75
3.5 SC 0.90 1.3 1.04

Callisto 13 OC 0.32 1.5 0.40
13 SC 0.37 1.5 0.46
3.5 OC 0.32 1.4 0.38
3.5 SC 0.40 1.4 0.48

Table 4.2 13 cm and 3.5 cm global radar backscatter results for the icy Galilean satellites. Values
for σ̄ and n are from Ostro et al. (1992). Values for ρ are computed from (4.10). Total error in σ̄ is
estimated to be ±20−50%.

For a crater of radius acr, area Acr = πa2
cr, and uniform scattering across the floor, this

model represents the RCS as

σcr = Acrρ cosn θi. (4.12)

To confirm the phenomena of “high” specific cross section and polarization inversion,

Harmon et al. (1994) solve for the equivalent total-planet normalized RCS, σ̄ , of Mercury’s

polar craters (Table 4.3) and compare this with the icy Galilean satellites normalized RCS

σ̄ , given in Ostro et al. (1992) (Table 4.2). Performing such a comparison involves the use

of a model for the angle-dependent scattering behavior of the specific RCS, σ0(θi). The

model is used to convert the measured specific RCS at a given θi to normalized total planet

RCS σ̄ as follows.

From (4.11) the reflectivity at normal incidence is

ρ =
σ0(θi)

cosn θi
. (4.13)
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The specific RCS at the angle of observation is determined from the measured RCS by

σ0(θi) =
σ(θi)

Aill
, (4.14)

where Aill is the area of the crater floor illuminated by the radar and exhibiting bright

backscatter, which may be less than the total floor area. The equivalent full-disk RCS is

obtained by substitution of (4.13) and (4.14) into (4.8),

σ̄ =
2ρ

n+1
=

2σ(θi)

(n+1)Aill cosn θi
. (4.15)

The solution for equivalent total planet normalized RCS thus depends on an assumed value

for the scattering law exponent n (Harmon et al., 2001). When applying (4.15) to crater

floors, experimenters must choose a diffuse scattering law exponent n based upon observa-

tions of other icy surfaces. For example, a choice of n = 1.5 yields model-derived ρ and σ̄
for several of Mercury’s polar craters as shown in Table 4.3.

From viewing Harmon et al.’s results (Table 4.3), it is apparent that all of the craters

containing radar bright material exhibit high normalized RCS σ̄ ≈ 1 and polarization inver-

sion µc > 1. This is consistent with the hypothesis that the material in these craters exhibits

scattering behavior nearly identical to that of the icy Galilean satellites (Table 4.2), and

therefore the investigators concluded that ice exists in shadowed cold traps on Mercury’s

polar crater floors.

4.3.1 Vacuum-to-dielectric boundaries

Thermal stability of putative ice in large diameter craters at the poles of Mercury or in

craters generally at low latitudes appears to require an insulating layer of dust or regolith

to thermally insulate and protect the ice from sublimating due to the effects of re-radiation

of absorbed solar energy from the crater walls (Butler et al., 1993; Vasavada et al., 1999).

Figure 4.4 illustrates the geometry of the situation. Below ≈ 110 K, it takes about one bil-

lion years for 1 m of ice exposed to space to sublimate. At ≈ 130 K, the time scale is about

one million years. Temperatures lower than 110 K are predicted for large craters within a

few degrees of the pole. Temperatures in excess of 145 K are predicted for some craters
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Coordinates Crater θi σSC σ̄SC µc Aill ρ
ID (deg.) (km2) (km2)

128W, 88.3N D 78.0 57 0.79 1.31 6.09e2 0.99
165W, 89.5N E 78.5 35 0.96 1.21 3.28e2 1.20
205W, 88.8N H 77.8 63 0.66 1.19 7.86e2 0.83
281W, 88.0N J 79.3 152 0.90 1.23 1.69e3 1.13
297W, 85.0N K 81.1 188 0.99 1.28 2.50e3 1.24
150W, 88.3S X 83.7 450 0.53 1.12 1.89e4 0.66
86W, 80.7S V 83.1 28 0.41 1.43 1.32e3 0.51

Table 4.3 Scattering properties of Mercury’s polar craters at 13 cm from Harmon et al. (1994) and
Harmon et al. (2001). Only one Harmon-labeled crater has a U.S.G.S. assigned name—Crater X
near the south pole corresponds to Chao Meng-Fu. The error on µc is less than 5%, while the error
on absolute cross sections σOC,SC is 15–20%. The normal incidence reflectivity ρ and effective
illuminated area Aill follow from other data given in Harmon et al. (2001). For the north polar
craters, σSC is as listed in Harmon et al. (2001). For the south polar craters, σSC is calculated based
upon the values for σ̄ reported in Harmon et al. (1994), adjusted for a calibration error of 3/2
(Harmon, 1997), and scaled by physical diameters reported in Vasavada et al. (1999). The angle
of incidence for the south craters was taken from the average subradar point for the March 1992
observations and the crater physical locations listed in Vasavada et al. (1999). Harmon et al. (1994,
2001) assume a scattering law exponent n = 1.5 based upon the icy Galilean satellite results of Ostro
et al. (1992). An error of ±0.2 in the assumed value of n will change the normalized cross section
σ̄ by 25%. See the discussion in Harmon et al. (1994, 2001).

Ice or other
volatile

Blanketing layer

Figure 4.4 Thermally insulating regolith layer protecting ice deposit in near polar crater.
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near 80 deg. latitude which exhibit enhanced reflection and polarization inversion in radar

images. Vasavada et al. (1999) show that a layer 10–50 cm in thickness can provide the

thermal stability needed to maintain ice deposits in these locations. If such a layer does

exist, it cannot be too thick, however. Otherwise the phenomena of enhanced backscatter

would not be observed, as a result of attenuation in the material at radar wavelengths. Ex-

perimental confirmation of the theoretically-derived bound on the thickness of this putative

layer is of interest.

Using the electromagnetic properties of dielectric materials, it is possible to derive a

model for wavelength-dependent attenuation through the dust. Although the radar reflec-

tion from known solar system ices is wavelength independent to within experimental error

across the microwave band (Ostro et al., 1992)5, an insulating layer of lossy regolith cover-

ing such ice could introduce frequency dependent attenuation of the radar signal since the

attenuation constant α is inversely proportional to wavelength (see Section 4.3.2). Since

the total cross section of the deposits in the polar craters can be measured as a function of

wavelength, fitting an attenuation model to these measurements can place a bound on the

thickness of such a regolith layer.

4.3.2 Absorbing regolith

We estimate the thickness of a dielectric layer by first considering an electromagnetic plane

wave propagating in ±ẑ direction, which can be written6

Ex(z, t) = C1e−αz cos(ωt −β z)+C2e+αz cos(ωt +β z) (4.16)

where the attenuation constant α is

α = ω
√

µε
2

[

√

1+ tan2 δc −1
]

1
2

(4.17)

5Contrary to microwave observations demonstrating little variation in RCS between 13 and 3.5 cm wave-
length, Black et al. (2001) have noted a decreased RCS for the icy Galilean satellites at 70 cm wavelength
(the UHF radio band).

6See any standard reference on electromagnetic waves, e.g. Inan and Inan (2000).
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and the propagation constant β is

β = ω
√

µε
2

[

√

1+ tan2 δc +1
]

1
2
. (4.18)

In these equations, µ and ε are the permeability and permittivity of the medium, and ω is

the radio carrier frequency in rad/sec.

The loss tangent tanδc is defined by

tanδc =
σeff

ωε ′
=

ε ′′

ε ′
(4.19)

where σeff is the effective conductivity of the material, and ε ′ and ε ′′ are the real and

imaginary parts of the complex permittivity ε . In microwave remote sensing of rock and

soil, the loss tangent tanδc and the relative permittivity ε ′
r do not have strong wavelength

dependence (Campbell and Ulrichs, 1969). This leads to an attenuation constant which is

inversely proportional to wavelength λ

αλ =
2π
λ

√

µrε ′r
2

[

√

1+ tan2 δc −1
]

1
2
. (4.20)

The geometry of the problem is shown in Figure 4.5. If, as above, we make the as-

sumption that the net loss in passing through a regolith layer is exponentially related to

the effective path length deff traveled, then the wavelength dependent cross section σλ is

proportional to

σλ ∝ cosn(θi,λ )e−4αλ deff . (4.21)

The factor of 4 in the attenuation exponent arises because power is proportional to the

square of the electric field and the effective path length deff is traversed twice.

Measurements of Mercury’s polar crater cross sections were obtained at 13 cm and

3.5 cm wavelength at separate inferior conjunctions on different years, when the sub-Earth

latitudes were 11.2 and 7.7 degrees, respectively. The angle of incidence of a radar wave at

the polar region is thus dependent on the date of observation. For this reason, we adopt a

somewhat non-standard convention of associating a wavelength with a particular angle of

incidence θi,λ . This indicates that for our observations, the angle of incidence at the two
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θi

deff

θt

Ice

backscatter
point

d Regolith
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ε ′r,ε ′′r

Vacuum ε0

Figure 4.5 Apropos Snell’s law for angle of incidence θi and angle of transmission θt at an vac-
uum/dielectric interface. Dominant backscatter is assumed to occur through the dust-ice interface
from the ice below. The effective path length deff that the wave traverses through the material is
greater than the physical depth of the material d.

wavelengths of interest is different.

In (4.21), the term cosn(θi,λ ) accounts for a diffuse scattering component from either

the surface of the blanketing material, or from the volume scattering material below the

material. In general, θi,λ can take on any value between 0 and 90 deg. In our analysis

for crater floors—and lacking other specific information—we assume that any vacuum/ice

interface is parallel to a spherical model of Mercury and, therefore, θi,λ is known from the

ephemeris for the date of observation at a radiotelescope using an observation wavelength

λ ∈ {3.5,13 cm}. We do not assume any particular value of scattering law exponent,

n. Previous observations of solar system ices show that n typically varies between ≈1–2

(Ostro et al., 1992), so we constrain our analysis to the interval 0 < n < 2.5.

The thickness of the layer d is related to the effective path length deff by Snell’s Law

(Figure 4.5), so

θt = sin−1

(

1
√

ε ′r
sinθi

)

(4.22)

and

d = deff cosθt. (4.23)

Here we have made an approximation that the transmitted angle into the material is insen-

sitive to the wavelength of observation. We justify this approximation as follows. For our
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Mercury polar observations, ε ′
r ≈ 2.7 is essentially constant at the two wavelengths of inter-

est (Mitchell and de Pater, 1994). For this value of ε ′
r and the angles of incidence involved,

which are θi,λ ≈ 80±3◦, Snell’s law yields θt,3.5 ≈ θt,13 ≈ 36.8±0.4 deg.

Knowing the cross section of a deposit at the two wavelengths, λ = 13 cm and 3.5 cm,

the cross section ratio is given by the ratio of the wavelength-dependent portions of the

cross sections (4.21)
σ13

σ3.5
≈
[

cos(θi,13)

cos(θi,3.5)

]n e−4α13deff

e−4α3.5deff
. (4.24)

Solving (4.24) for insulating layer thickness, we find

d ≈ deff cosθt = ln

{

σ13

σ3.5

[

cos(θi,3.5)

cos(θi,13)

]n} cosθt

4(α3.5 −α13)
. (4.25)

4.3.3 Sensitivity to error

Solution for the thickness of a lossy dielectric layer requires an estimate of the electrical

properties of the layer in addition to knowledge of the imaging geometry. In order to assess

the accuracy of our thickness estimates, it is necessary to understand the dependence of

these estimates on errors in our model inputs. The error sensitivity of the simple model in

Section 4.3 can be examined on the basis of the partial derivatives of the layer thickness

estimate d with respect to the input parameters.

The cross section ratio σ13/σ3.5, being the ratio of two quantities each distributed as a

Gaussian random variable, is a Cauchy random variable which has an unbounded second

moment. Define ξ to be the weighted cross section ratio

ξ =
σ13

σ3.5

[

cos(θi,3.5)

cos(θi,13)

]n

(4.26)

where the weighting term depends on solar system geometry and the scattering law expo-

nent n. The partial derivative of the layer thickness estimate d with respect to ξ is

∂d
∂ξ

=
cosθt

4ξ (α3.5 −α13)
, (4.27)

showing that the error in the thickness is inversely proportional to the measured ratio.
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For loss tangent (tanδc) sensitivity, we approximate the attenuation constant from (4.20)

by first approximating the term

[

√

1+ tan2 δc −1
]

1
2 ≈

[

1+
1
2

tan2 δc −1

]
1
2

(4.28)

≈ 1√
2

tanδc.

Then, setting

γ = tanδc, (4.29)

we compute the partial derivative and find

∂d
∂γ

≈− ln(ξ )
c

2γ2

cosθt
√

µrε ′r(ω3.5 −ω13)
, (4.30)

indicating that the error in the thickness estimate is inversely proportional to the square of

tanδc.

Dependence of the the thickness estimate on the real part of the relative permittivity ε ′
r

is more complex due to its appearance in Snell’s law as well as the attenuation constant

α . In order to simplify the cosθt term, we observe that for the polar regions of Mercury,

θi ≈ 80± 3◦, so we may take sinθi ≈ 1. We linearize the dependence of cosθt on the

relative permittivity ε ′
r as

cosθt = cos

[

sin−1

(

1
√

ε ′r
sinθi

)]

≈ cos

[

sin−1

(

1
√

ε ′r

)]

≈ 1− 1
2

(

1
√

ε ′r

)2

≈ 1− 1
2ε ′r

. (4.31)
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Setting other terms in (4.25) which are constant with respect to ε ′
r equal to the constant ζ

ζ =
1
c

√

µr

2

[

√

1+ tan2 δc −1
]

1
2

(4.32)

we can rewrite (4.25) as

d ≈ ln(ξ )
1

4ζ
√

ε ′r(ω3.5 −ω13)

(

1− 1
2ε ′r

)

. (4.33)

The partial derivative of d with respect to ε ′
r gives

∂d
∂ε ′r

≈ ln(ξ )

[

1
4ζ (ω3.5 −ω13)

]

1

2ε ′3/2
r

(

3
2
− 1

ε ′r

)

. (4.34)

These partial derivatives are used in Chapter 5 to examine the sensitivity of the attenuating

regolith layer thickness to the model input parameters.

4.4 Summary

In this chapter we examine some of the properties of diffusely scattering media. We derive

simple power scattering models for large spheres. The standard cosn(θi) law is sufficient

for modeling the total planet cross section. We apply this model to remove a hemispherical

backscatter term in observations of the Galilean satellites in Chapter 6. Since off-pole

craters depend on an attenuating blanket of regolith to prevent sublimation, we postulate a

second model for the frequency dependent attenuation of a regolith layer covering bright

backscattering material, and derive its thickness. We fit this model to observations of the

radar bright deposits of Mercury’s polar craters in Chapter 5.
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Chapter 5

Mercury’s Polar Regions

Mercury, the innermost planet in the solar system, challenges traditional optical astronomers

because of its proximity to the Sun. It can be seen from Earth only in the twilight of dawn

or evening, when located at or near its maximum eastward or westward elongation; glow

from sunlight scattered by Earth’s atmosphere lowers the effective sensitivity of optical

telescopes significantly. Space-based telescopes, although above the atmosphere, are lim-

ited by thermal and scattered light constraints of the instruments themselves; Hubble, for

example, cannot point within 50◦ of the Sun. For these reasons, knowledge about Mercury

is limited even though it is relatively close to the Earth. For example, for over 70 years

Mercury was thought to have a sidereal rate of rotation locked to its orbit period of 88

days so that the same side always faced the sun, as our Moon faces Earth (Schiaparelli,

1889). This fundamental fact about Mercury went unchallenged until the correct rotation

was obtained by Pettengill and Dyce (1965) using the Arecibo radar.

Radar detection of Mercury was first claimed by Kotelnikov et al. (1962) in the U.S.S.R.

and by Carpenter and Goldstein (1963), who used the 26 m Goldstone instrument. It was

not until the Arecibo observations of Pettengill and Dyce (1965) that reproducible results

were obtained, however. The Arecibo observations produced the startling discovery that

Mercury is not locked in synchronous rotation with its orbit period, but that it is in fact in a

2/3 resonance, with a sidereal period of rotation of approximately 58.65 days.

In early 1991, using the Goldstone/VLA synthesis mapping instrument at 3.5 cm wave-

length, Slade et al. (1992) detected localized regions of polarization inversion (Chapter 4),

79
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and high values of specific cross section σ0 in radar images of the northern polar region.

Previously, such polarization inversion had been seen only in radar observations of Eu-

ropa, Ganymede, and Callisto—the icy moons of Jupiter–and Mars’ residual south polar

ice cap (RSPIC). This result was immediately confirmed in delay-Doppler images from the

Arecibo 13 cm system by Harmon and Slade (1992). As the polar regions of a planet are

fortuitously located at the point of maximum resolution of the standard delay-Doppler tech-

nique (Chapter 2), additional observations from the Arecibo monostatic system and reanal-

ysis of existing data produced excellent images at 15 km resolution, four times finer than

previous imaging (Harmon et al., 1994). By comparing the radar results with Mariner 9

optical images, Paige et al. (1992) and Butler et al. (1993) concluded that the anomalous

scattering could be explained by presence of water ice deposits trapped in permanently

shadowed craters. Vasavada et al. (1999) have since expanded on the thermal modeling,

including scattered light and “dark” sky radiation.

The best conditions for imaging Mercury’s polar regions include: i) the planet at north-

ern declinations to allow maximum observing time for telescopes in Earth’s northern hemi-

sphere, ii) inferior conjunction for minimum range, and iii) high northern or southern sub-

Earth latitude for best visibility of the pole (Figure 5.1). These conditions permit viewing

the floors of craters at high latitudes as well as minimizing north-south ambiguities from

the opposite pole (Section 2.2.1). In 1998 and 1999, such favorable geometry allowed Har-

mon et al. (2001) to acquire high resolution (1.5 km) images of the north pole using a new

Arecibo 13 cm system, which had been upgraded compared to its early 1990’s capabilities.

The narrow zenith angle window of the Arecibo observatory prevented observations of the

southern hemisphere during the 1998 and 1999 inferior conjunctions.

The Goldstone radar, being fully articulated, does not have the zenith angle limitations

of Arecibo, so that data can be acquired with Goldstone at times when Arecibo is unable

to view Mercury. Hence, we decided to implement an experimental campaign to image the

northern and southern polar regions with Goldstone during the 1999-2001 period.
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Figure 5.1 Polar tilt aids imaging of one polar region over another. Here the radar illuminates the
north polar region, while the south polar region lies in radar shadow.
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Opposition Observations
Date Range Sub-Earth Dates Number of
(2001) (AU) Latitude (2001) Sessions
Feb. 13 0.65 −10.6◦ Feb. 9–20 4
Jun. 16 0.55 +7.68◦ Jun. 13–Jul. 1 3

Table 5.1 Mercury 2001 inferior conjunctions. Observations of Mercury reported here were ob-
tained during two inferior conjunctions in 2001. A 3 dB difference in range loss led to weaker
observations of the south polar region in February than were obtainable from the north polar re-
gions in June. This difference was partially mitigated by incoherently averaging twice as many
observations of the south pole.

5.1 Observations

Since Mercury is overspread by a factor of 8:1 at 3.5 cm, methods such as use of the

long-code waveforms, developed in Chapter 2, must be employed to escape the problems

of overspreading. We chose a PN code with baud b = 40 µsec in order to achieve 6 km

resolution in the polar regions, a factor of 2 better than previously obtained in the south

(Harmon et al., 2001). The only available matched filter was for 20 µsec baud, which

required us to sample at 50 kHz, twice the required 1/b rate.

Preliminary attempts at imaging of Mercury’s north pole during July 1999 verified

proper system operation, and confirmed enhanced backscatter from several of the large

north polar craters (Slade et al., 2000). During the 2001 inferior conjunctions (Table 5.1)

our experiments yielded good data from both the northern and southern polar regions. The

observing procedure on each day was as follows.

The Goldstone DSS-14 antenna was used both for transmitting and receiving. The

transmitter exciter frequency was Doppler-compensated to remove the effects of radar/Mercury

motion so that the center frequency of the received echo appeared at a fixed frequency of

8560 MHz. DSS-14 transmitted right-hand circular polarization. The transmitted PN se-

quence was recorded, together with timing data, in the record headers to facilitate synchro-

nization and cross correlation with the received data. One round-trip light time after the

beginning of the transmission sequence the antenna was switched to receive and the echo

was recorded in both right- and left-hand circular polarizations. During the experiment, the
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uplink carrier frequency was monitored by connecting the output of the programmable lo-

cal oscillator to a counter. The uplink timebase drift was observed in a similar manner. The

counter frequencies were compared to the expected Doppler frequencies calculated from

the ephemeris to verify proper Doppler compensation.

The coherent processing interval required to achieve cross-range resolution equal to

the range resolution is typically on the order of a few seconds (Table 5.2). One complete

round trip transmit/receive cycle lasted 20 to 25 minutes, depending on the range to Mer-

cury. Multiple coherent processing intervals collected during one round-trip cycle can be

incoherently averaged in delay-Doppler coordinates to improve SNR. A single round-trip

transmit/receive cycle does not have sufficient SNR to perform high-resolution imaging,

however. To further improve SNR, we recorded data from multiple cycles, so that ad-

ditional incoherent averaging across round-trip cycles could be employed later. Since a

typical observing session was six to eight hours per day, we acquired between four and

thirteen round-trip cycles of data on each date of observation as detailed in Tables 5.3–5.4.

We performed consistency checks of system operation each day to ensure accurate cal-

ibration of the recorded data. The end-to-end data system was verified at the start of each

day by recording the leakage signal of the transmitter into the receiving chain. A quick

computer analysis of these data verified the correctness of software range compression. A

slight frequency offset was added to the exciter during this testing to insure that the I/Q

channels were identified properly. We also checked the validity of the data by processing

a portion of each round-trip cycle on the Sun workstation network at Goldstone after each

observing run. Detailed post processing and analysis were implemented later at Stanford

University.

5.2 Equipment configuration

Figure 5.2 shows the experiment configuration at Goldstone. The station master frequency

reference, shown in the center of the diagram, also serves as the timing standard for both
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the transmitting and receiving systems. The lower portion of Figure 5.2 shows the transmit-

ting system consisting of the PN coder,1 timebase shifter, exciter, and klystron amplifier.

The VAX-based timebase shifter receives the station reference and an ephemeris as inputs,

and generates a Doppler-compensated clock signal for the PN generator. The PN generator

synchronizes to this clock signal, and drives the exciter. The output of the PN generator is

also passed to the A/D converters and recorded on disk storage for later cross-correlation

with the received data. The output of the exciter modulates a Doppler-compensated car-

rier supplied by a programmable oscillator. The modulated signal passes through an IF

stage (not shown) to the klystron amplifier. The output of the klystron passes through a

microwave transmit/receive switch to the antenna.

The upper portion of Figure 5.2 shows the receiving system consisting of a maser LNA,

downconverter, filters, and A/D sampling system. Both circular polarizations of the re-

ceived signal pass through the microwave transmit/receive switch to the dual-channel ruby

maser. The output of the maser is downconverted to IF and filtered (not shown), and then

quadrature mixed to baseband and filtered again by a 20 µsec rectangular pulse matched

filter. The A/D converters run at 2 samples/baud, and store 8 bit samples of the in-phase

and quadrature components for both polarizations, for a total of four channels. Data are

written to disk storage for later processing.

5.3 Data processing and mapping

The data processing system implementation is shown in Figure 5.3. We used the same long-

code data processing technique outlined by Harmon (2002). Recorded data include the

transmitted PN sequence and the received echo for each round trip cycle. In order to form

delay-Doppler images, the transmitted sequence is delayed appropriately and multiplied by

the received data to form a time series for each delay bin. This removes the high-bandwidth

range code from the signal in each delay bin, and is equivalent to the despreading process in

a direct-sequence, spread-spectrum communications system. The resultant time series for

each bin contains the narrowband echo of the planet at a much higher sampling rate than is

1We thank John Harmon of NAIC for making a spare Arecibo long-code generator available for these
experiments.



5.3. DATA PROCESSING AND MAPPING 85

Parameter Value
Receive cycle time ≈ 12 min.
Carrier frequency, fc 8560 MHz
Mercury delay depth, ∆τ 16.3 msec
Mercury bandwidth, ∆ f ≈ 370 Hz
Complex sample rate, fs 50 kHz
Bits per sample 8
PN baud (delay resolution element), b 40 µsec
Range resolution, ∆R 6 km
Range compression length, N 64 bauds
Doppler compression (FFT) length, K 1024 samples
Doppler resolution element width 0.38 Hz
Cross-range resolution, ∆Rcross ≈ 5 km
Coherent integration time, KNb 2.62 sec
System temperature, Tsys 17 K
Processed resolution 624 delay × 1024 Doppler resolution elements

Table 5.2 Data acquisition and processing parameters.

necessary to represent the planet echo. To reduce the data input to the Doppler compression

process, the time series for each bin are averaged and downsampled by a factor N = 64

bauds. The resulting signal is Fourier transformed by a length K = 1024 FFT to obtain

cross-range resolution for each delay bin. The achieved cross-range resolution was 5.6 km

for the north pole and 4.8 km for the south pole. Data processing parameters appear in

Table 5.2. As mentioned previously, the coherent processing interval is several seconds,

while the recorded data from one transmit/receive cycle span several minutes. The delay-

Doppler arrays from each transmit/receive cycle time are incoherently averaged to form an

output array for each receive cycle. Since the data are recorded and processed later in non-

real time, while the delay and Doppler matched filters or compression filters are of finite

length, the processing can proceed in a parallel manner. We implemented the matched filter

processing on a cluster of workstations.

We made one augmentation to the algorithms in Harmon (2002) for our data set. Since

the 20 µsec analog baud filter in the receive chain before the digital sampler was a factor

of two shorter than the 40 µsec baud used in the experiment, final baud filtering and
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downsampling—effectively a length-two boxcar filter—was applied in the digital process-

ing software to complete the baud matched filtering process.

At completion of the processing of one receive cycle, the final delay-Doppler array

represents 624 delay (25 msec) by 1024 frequency (390 Hz) resolution elements of data.

Mercury’s echo begins approximately 50 delay resolution elements from the start of the

array, and is centered at zero frequency.

Data from each transmit/receive cycle were calibrated according to the procedure in

Harmon (2002). The total noise plus clutter power was estimated by taking the average

value of ≈ 125 delay resolution elements outside the delay extent of the planet’s echo. This

mean noise plus clutter power was subtracted from each pixel in the array. A template

of the delay-Doppler profile of the planet was then used to mask all pixels on the planet.

These identified on-planet pixels were integrated to form a total cross section estimate in

uncalibrated units of power. In each delay bin i, the total planet clutter from other bins

j 6= i is spread over the entire Doppler spectrum by the PN code, so the clutter in each bin

is estimated as the sum of the on-planet power divided by KN. This clutter power estimate,

again in uncalibrated units, was subtracted from the mean noise plus clutter to obtain the

noise-only power. This value was equated to the expected noise power kTsys fs/KN to

transform the arbitrary units to watts. The system temperature Tsys was recorded during

each round-trip cycle, and provides the baseline value for calibration of the data. The radar

equation was then solved for total planet normalized cross section σ̄ using the calibrated Pr

in watts.

Sixty-four independent round-trip cycles were collected and calibrated according to the

above procedure (Tables 5.3–5.4). For each cycle, the normalized total planet cross section

was computed for both the OC and SC polarizations. This was accomplished by summing

the echo power from every delay-Doppler cell containing echo power from the planet to

find an estimate of the total echo power received. Our disk-integrated results of σ̄OC =

0.062 ± 0.009 and σ̄SC = 0.012 ± 0.002 agree with previous 3.5 cm total cross section

measurements at (274W, 6N) by Clark et al. (1986) and 3.8 cm cross section estimates

averaging 6% at numerous sub-Earth longitudes by Evans (1969) and Ingalls and Rainville

(1972).
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Table 5.3 Mercury north pole observations. These 21 observations are combined incoherently to

form the composite image of Figure 5.4.

Date Time Lon. Lat. Pt Tsys Ant. Elev. σ̄OC σ̄SC

2001 UTC deg. W deg. N kW K deg.

Jun 13 20:55:58 82.6 7.3 428.7 16.9 71.3 0.043 0.008

Jun 13 21:14:26 82.6 7.3 431.6 16.6 68.7 0.038 0.007

Jun 13 21:32:52 82.7 7.3 428.5 16.7 65.6 0.035 0.006

Jun 13 22:09:47 82.9 7.3 434.9 17.0 58.9 0.028 0.005

Jun 29 20:32:15 186.4 8.2 427.2 16.9 54.1 0.068 0.014

Jun 29 21:03:13 186.5 8.2 427.2 16.9 54.1 0.068 0.013

Jun 29 21:47:48 186.7 8.2 423.6 17.1 45.3 0.065 0.012

Jun 29 22:10:00 186.8 8.2 432.8 17.0 40.9 0.061 0.012

Jun 29 22:32:11 186.9 8.2 433.5 17.5 36.4 0.062 0.012

Jun 29 22:54:24 187.0 8.2 432.1 18.2 31.8 0.059 0.011

Jun 29 23:16:36 187.1 8.2 431.4 18.9 27.3 0.052 0.009

Jul 01 14:03:07 196.7 8.1 429.2 21.1 28.8 0.082 0.014

Jul 01 15:08:48 196.9 8.1 426.5 19.2 42.2 0.073 0.013

Jul 01 15:31:56 197.0 8.1 432.6 18.5 46.8 0.066 0.012

Jul 01 15:55:04 197.1 8.1 432.3 17.7 51.4 0.061 0.011

Jul 01 16:18:12 197.2 8.1 429.5 17.4 55.9 0.058 0.010

Jul 01 16:41:20 197.3 8.1 427.1 16.7 60.2 0.055 0.011

Jul 01 17:04:29 197.4 8.0 432.3 16.4 64.3 0.054 0.010

Jul 01 17:27:37 197.5 8.0 431.5 14.7 68.0 0.050 0.010

Jul 01 17:50:45 197.6 8.0 430.4 14.7 70.9 0.049 0.011

Jul 01 18:13:56 197.7 8.0 426.8 14.9 72.9 0.051 0.010
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Table 5.4 Mercury south pole observations. These 43 observations are combined incoherently to

form the composite image of Figure 5.5.

Date Time Lon. Lat. Pt Tsys Ant. Elev. σ̄OC σ̄SC

2001 UTC deg. W deg. N kW K deg.

Feb 09 16:56:48 158.8 -10.2 455.7 19.6 24.1 0.060 0.013

Feb 09 17:19:31 158.9 -10.2 455.4 19.4 27.9 0.067 0.014

Feb 09 17:42:15 159.0 -10.2 452.6 18.6 31.5 0.067 0.014

Feb 09 18:04:40 159.1 -10.2 451.1 18.7 34.8 0.069 0.013

Feb 09 18:32:49 159.2 -10.2 453.1 18.0 38.4 0.066 0.013

Feb 09 19:15:10 159.4 -10.2 448.7 17.3 42.7 0.064 0.014

Feb 09 19:37:44 159.6 -10.2 452.1 17.0 44.2 0.064 0.013

Feb 09 20:00:20 159.7 -10.2 454.2 16.6 45.1 0.062 0.013

Feb 09 20:22:56 159.8 -10.2 452.1 16.6 45.5 0.062 0.013

Feb 09 20:49:56 159.9 -10.2 456.2 16.7 45.0 0.059 0.013

Feb 09 21:12:30 160.0 -10.2 452.1 16.8 43.9 0.060 0.013

Feb 09 21:35:06 160.1 -10.2 449.7 16.6 42.3 0.061 0.013

Feb 09 21:57:42 160.3 -10.2 450.3 16.6 40.1 0.061 0.013

Feb 10 16:49:05 165.9 -10.4 452.5 23.0 23.9 0.059 0.012

Feb 10 17:11:15 166.0 -10.4 455.2 25.4 27.7 0.068 0.014

Feb 10 17:33:25 166.1 -10.4 451.8 20.6 31.2 0.062 0.013

Feb 10 17:55:35 166.2 -10.4 451.0 25.3 34.4 0.073 0.014

Feb 10 18:20:58 166.3 -10.4 442.2 27.9 37.8 0.072 0.014

Feb 10 18:43:09 166.4 -10.4 440.2 34.9 40.3 0.058 0.012

Feb 10 19:09:06 166.6 -10.4 446.6 42.7 42.6 0.053 0.011

Feb 10 19:31:16 166.7 -10.4 446.9 41.6 44.1 0.059 0.012

Feb 10 20:18:21 166.9 -10.4 441.9 28.8 45.3 0.061 0.012

Feb 10 20:40:35 167.0 -10.4 438.9 23.4 44.9 0.060 0.012

Feb 10 21:30:24 167.3 -10.4 446.4 18.6 41.8 0.063 0.013

Feb 10 21:52:35 167.4 -10.4 447.6 18.7 39.6 0.064 0.013

Feb 10 22:14:45 167.5 -10.4 449.2 18.9 37.0 0.062 0.012

continued on next page
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Date Time Lon. Lat. Pt Tsys Ant. Elev. σ̄OC σ̄SC

2001 UTC deg. W deg. N kW K deg.

Feb 17 16:56:06 216.7 -10.5 439.8 21.3 32.1 0.075 0.014

Feb 17 17:17:49 216.8 -10.5 433.1 19.9 34.9 0.070 0.014

Feb 17 17:39:34 216.9 -10.5 437.0 19.1 37.4 0.068 0.015

Feb 17 18:17:08 217.1 -10.5 445.8 19.0 40.7 0.064 0.013

Feb 17 18:38:51 217.2 -10.5 442.5 17.6 41.9 0.063 0.013

Feb 17 19:00:31 217.3 -10.5 443.2 18.4 42.7 0.066 0.013

Feb 17 19:22:14 217.4 -10.5 445.3 19.6 42.8 0.070 0.013

Feb 17 19:43:55 217.5 -10.5 444.9 19.5 42.4 0.069 0.013

Feb 20 15:42:06 237.1 -10.1 457.5 22.0 23.1 0.071 0.014

Feb 20 16:26:51 237.4 -10.1 453.0 20.6 29.9 0.073 0.015

Feb 20 16:49:18 237.5 -10.1 452.4 19.3 32.9 0.071 0.015

Feb 20 17:19:07 237.6 -10.1 451.5 15.8 36.4 0.057 0.015

Feb 20 17:41:29 237.7 -10.0 449.7 18.3 38.4 0.068 0.015

Feb 20 18:03:52 237.8 -10.0 450.2 17.8 40.1 0.067 0.015

Feb 20 18:26:16 237.9 -10.0 448.2 17.4 41.1 0.065 0.015

Feb 20 18:54:39 238.0 -10.0 451.8 17.1 41.7 0.064 0.014

Feb 20 19:17:01 238.1 -10.0 427.4 16.8 41.5 0.059 0.014
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We mapped the reduced data to planetary coordinates in a polar orthographic grid using

the transformations from planetary to delay-Doppler coordinates outlined in Section 2.1.

This grid was 2001 by 2001 pixels in size and extended to 68 deg. latitude, with a resolu-

tion of 0.91 km at the pole. The projection was formed by looping over all pixels in the

orthographic grid. For each pixel in the orthographic grid, we first calculated its plane-

tary coordinates, and then projected this value to the corresponding delay-Doppler point

(τP, fP). We then bilinearly interpolated the value of this delay-Doppler point from the 624

by 1024 resolution element output array of the data processor. The gridded data were then

averaged over all superposed round-trip observations.

A total of 21 cycles were averaged to form the north-polar map shown in Figure 5.4,

while 43 cycles were averaged to form the south-polar map of Figure 5.5. These 6 km

resolution maps are the finest resolution 3.5 cm wavelength maps of the polar regions to

date. Additionally, the south-polar map exceeds the resolution of existing 13 cm maps by

a factor of 2. The five large northern polar craters noted in Harmon et al. (1994) are clearly

visible in Figure 5.4. The large diameter impact crater Chao Meng-Fu is visible near the

south pole in Figure 5.5, along with many brighter spots in smaller craters out to 75◦ S

latitude.

5.4 Analysis

The high-resolution imaging data presented here exhibit enhanced backscatter and polar-

ization inversion from the same large features reported by Harmon et al. (1994, 2001), who

associated these features with the floors of craters. Figure 5.6 depicts the polar illumination

geometry, showing how ice-like deposits might be shielded from direct sunlight for very

long periods of time. Craters on Mercury have depth-to-diameter ratios of 1:5 for craters

less than 10 km in diameter, decreasing to 1:25 for craters greater than 100 km in diam-

eter (Pike, 1988). Though the exact obliquity of Mercury is unknown, it is nearly zero;

previous radar measurements have shown it to be 0.5±0.4◦ (De Vries and Harmon, 1994;
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Figure 5.4 Mercury’s north polar SC image. Latitude grid lines are separated by 5◦. Lighter areas
correspond to higher albedos. The five large, bright objects within ≈ 5◦ of the pole are the craters
identified by Harmon et al. (1994). The 21 data sets listed in Table 5.3 were combined incoherently
to generate this image. The image comprises data taken from three sub-Earth longitudes as shown
in the key diagram in the upper left.
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Figure 5.5 Mercury’s south polar SC image. Latitude grid lines are separated by 5◦. Lighter areas
correspond to higher albedos. The diffuse patch centered on 88.5S, 148.6W is associated with the
Chao Meng-Fu crater identified in previous 13 cm maps by Harmon et al. (1994). The 43 data sets
listed in Table 5.4 were combined incoherently to generate this image. The image comprises data
taken from several sub-Earth longitudes as shown in the key diagram in the upper left.
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Sun

Shadow

Figure 5.6 Crater illumination geometry. Since Mercury’s obliquity is near zero, Mercury has no
seasons. Craters exactly at the pole, and with sufficiently high floor-to-rim height to avoid penum-
bral effects, will have their entire floors in permanent shadow; similar craters at lower latitudes will
have only the equator-ward portions of their floors in permanent shadow (Vasavada et al., 1999).

Seidelmann et al., 2002).2 Permanently shadowed crater floors can exist near the pole if

crater rim-to-floor height, wall slope, and penumbral effects permit such shadowing. At

somewhat lower latitudes, only the equatorward wall of the crater floor will be in shadow

all the time. As noted by Harmon et al. (2001), the floor of the large crater K (85N, 297W)

has radar bright material primarily along the arc of its southern rim, as is clear in the de-

tailed view of Figure 5.7. Other craters located at more southerly latitudes also exhibit

this behavior—for example, the crater Despréz (80.9N 104.1W), which can be seen in the

atlas in Appendix B. The bright radar features, in fact, overlay shadows in existing optical

images of Mercury (see Figure 5.9).

Table 5.5 provides a comparison of the polarization ratio of the five major north-polar

craters with values from Harmon et al. (2001). High polarization ratio is observed for

all five northern craters. Comparison of our 3.5 cm results with Arecibo 13 cm results

from the south pole (Table 5.6) shows similar polarization inversion. Feature X has been

2Recent observations by Margot et al. (2003) demonstrate the potential for Earth-based radar speckle
displacement (RSD) interferometry to refine the pole location by two orders of magnitude over current un-
derstanding, when the viewing geometry is favorable. All sets of RSD observations required for precise pole
placement have not been obtained at this time.
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Figure 5.7 Detailed view of northern craters. Significant features are denoted D, E, H, J, and K,
following Harmon et al. (1994). Imaging geometry is shown in Figure 5.4.

Feature Harmon et al. (2001) This Work Resolution elements
13 cm 3.5 cm 3.5 cm

D 1.31 ±0.07 1.06±0.02 18
E 1.21 ±0.06 1.03±0.03 10
H 1.19 ±0.06 0.95±0.02 24
J 1.23 ±0.06 1.25±0.02 50
K 1.28 ±0.06 1.32±0.02 75

Table 5.5 13 and 3.5 cm polarization ratios µc = σSC/σOC of major northern features. Cross
sections are given in Table 5.8. Error in 13 cm polarization ratios is as quoted in Harmon et al.
(2001). Error in 3.5 cm polarization ratios is computed numerically as the ratio of two Gaussian
distributions, one for σOC and one for σSC. To compute the distribution for the OC and SC cross
sections, the standard deviation of a single resolution element is multiplied by the square root of the
number of resolution elements in a feature.
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Feature Harmon et al. (1994) This Work Resolution elements
13 cm 3.5 cm 3.5 cm

V 1.43±1.16 1.20±0.03 660
X 1.12±0.09 1.17±0.01 46

Table 5.6 13 and 3.5 cm polarization ratios µc = σSC/σOC of major southern features. Error in
13 cm polarization ratios is as stated in Harmon et al. (1994). Error in 3.5 cm polarization ratios is
determined as described in Table 5.5.

identified previously as corresponding to Chao Meng-Fu, a newer, c4-class crater3 (Harmon

and Slade, 1992; Harmon et al., 1994).

Not all features identified in the north polar high-SNR Arecibo images of Harmon et al.

(2001) appear in our 3.5 cm Goldstone images. As the Goldstone data are of lower SNR, it

is not possible to identify the “diffuse patch” of radar bright material surrounding the major

impact craters identified in recent 13 cm Arecibo images (Harmon et al., 2001). We do not

believe this is a wavelength effect, as Harmon et al. (1994) did not observe this patch of

material with the pre-upgrade Arecibo system at 13 cm wavelength and 15 km resolution.

Our 3.5 cm observations have revealed 35 new south pole features, previously unlabeled

by Harmon et al. (1994). These features are listed in Table 5.7 and correspond primarily

with c3 craters. U.S.G.S. named craters associated with new features include: Belinskij

(s5), Scopas (s28), Li Ch’ing Chao (s34), and a secondary crater in Bernini (s30). In a

band along the 90–270◦W meridian and bounded by lines tangent to the 85◦S parallel,

Harmon et al. (1994) identify 7 significant features, four of which have letter designations.

We find over 20 significant features in this same region. Also, outside this band along the

180◦W longitude line, we find an additional 10 bright features. There is a difference in the

radar illumination geometry for the south pole between the Arecibo 1991–1992 data and

the 2001 Goldstone data set. The illumination in the Arecibo images was generally from

3Mercury’s craters were classified c5–c1, newest–oldest, by N.J. Trask and reported in McCauley et al.
(1981) and the U.S.G.S. geologic maps of the polar regions by Grolier and Boyce (1984) and Strom et al.
(1990). The classification scheme is: “Class 5—Craters characterized by sharp rims, crisp interior forms
(for large craters), rays, and very few superposed craters. Class 4—Distinct but visibly modified rims and
interior features; well-preserved radial faces around larger craters. Class 3—Relatively low, semi-rounded
but continuous rims and subdued interior landforms. Class 2—Low rims and shallow interior relief. Interior
forms scarce; secondary crater fields absent. Class 1—Low, partial rims. Some craters barely distinguishable
from surrounding plains materials; interior features rare. Secondary crater fields absent.”
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Figure 5.8 Detail view of southern craters. Significant features are denoted G, U, V, and X,
following Harmon et al. (1994). Feature X corresponds to the impact crater Chao Meng-Fu. Imaging
geometry is shown in Figure 5.5. Several other features denoted s1, s2, and s3, are apparent in the
figure, but these lack either U.S.G.S. or Harmon et al. (1994) nomenclature. We provide a listing of
these new, previously unlabeled features in Table 5.7.

near the plane of the central meridian, or the bottom of the image. In the Goldstone images

the illumination is primarily from the 180 degrees west longitude, or the top of the image

(Figure 5.5). In the Goldstone data, the preponderance of small, bright craters exhibiting

polarization inversion is seen in the upper half of the image. This could be caused by the

illumination geometry of the 3.5 cm experiment, which favors crater floors in the upper

half of the image. Harmon et al. (1994) do not show bright features in the lower half of

their south polar image, however, even though the Arecibo geometry favored this region.

The image of the south polar region, Figure 5.5, and the listing of associated features,

Table 5.7, poses one issue for the ice hypothesis. Fourteen small, bright deposits appear in

craters at latitudes north of the 80◦S parallel where thermal modeling indicates that trapped

volatiles are unlikely (Paige et al., 1992; Vasavada et al., 1999) unless blanketed by a layer

of thermally insulating dust. As discussed in Section 5.5, the blanket hypothesis can be

consistent with our observations.



5.4. ANALYSIS 99

Table 5.7 Table of newly observed south polar features. Longitudes and latitudes are coordinates

of the center of the radar-bright feature, and do not necessarily correspond to the center of an

associated crater.

Feature Lon. Lat. µc σSC Resolution

Name deg. deg. km2 elements

s1 69W 82.5S 3.53 10.6 10

s2 94W 82.1S 1.35 24.3 15

s3 90W 84.6S 2.19 19.5 13

s4 115W 81.1S 1.03 17.5 16

s5 102W 76.5S 1.14 7.3 4

s6 295W 86.4S 1.70 18.7 10

s7 292W 84.8S 1.20 13.0 12

s8 285W 86.4S 1.36 11.6 9

s9 287W 84.4S 1.70 16.7 14

s10 279W 81.8S 1.08 19.1 14

s11 270W 85.1S 2.77 8.3 8

s12 263W 84.9S 1.04 12.7 7

s13 275W 78.9S 1.67 11.1 7

s14 269W 79.5S 4.14 9.9 6

s15 259W 80.4S 1.25 11.7 8

s16 233W 85.4S 1.18 23.3 17

s17 242W 83.1S 1.47 19.8 16

s18 244W 81.5S 0.72 13.5 13

s19 224W 82.0S 1.34 18.6 19

s20 250W 77.6S 0.96 7.9 6

s21 240W 78.8S 1.70 6.9 6

s22 236W 78.5S 1.59 17.2 9

s23 226W 78.9S 1.43 9.2 7

s24 223W 78.7S 1.57 26.5 16

s25 205W 81.6S 1.56 11.7 12

continued on next page
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Feature Lon. Lat. µc σSC Resolution

Name deg. deg. km2 elements

s26 208W 81.1S 1.07 14.0 11

s27 191W 80.3S 1.19 22.5 20

s28 180W 81.5S 1.16 23.4 13

s29 158W 85.9S 1.61 15.7 8

s30 143W 79.2S 1.40 7.6 6

s31 151W 78.7S 1.34 5.4 5

s32 95W 77.3S 1.21 4.1 4

s33 86W 78.1S 2.76 9.4 7

s34 70W 77.4S 1.48 7.2 7

s35 113W 78.9S 1.50 8.8 7

In Figure 5.9, we co-registered the radar images with visible-light images from the

Mariner 10 mission. These optical images have been gridded to a new cartographic control

network and adjusted for gain variations between still-camera frames (Robinson et al.,

1999). It can be seen that for off-pole craters, the areas of enhanced radar backscatter

are confined to the equator-ward, shadowed regions of the crater floors, which is consistent

with the accumulation of ice in areas that are in perpetual shadow. This has been remarked

upon previously by Harmon et al. (1994, 2001). Vasavada et al. (1999) predicted that

potential cold traps must be at these precise locations for long term stability of ice deposits

in off-pole craters.

Scattering effects other than ice deposits have been advanced (Stacy et al., 1997) to ex-

plain enhanced backscatter and polarization inversion from craters at the lunar poles, and

an argument could be made that such effects explain the reflections seen at the poles of

Mercury. Thus, it is important to note that our location of the radar bright material dis-

counts a glinting phenomenon observed for lunar polar craters by Stacy et al. (1997), who

attributed enhanced backscatter and polarization inversion to geometrical effects, basically

double-bounces, from crater walls farthest from the radar line of sight. Our observations

show that the enhanced reflections occur from equator-ward regions of craters, even when

the equator-ward wall is the near wall for the radar viewing geometry.
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Figure 5.9 Co-registration of the 3.5 cm radar images with optical imagery from Robinson et al.
(1999). Resolution is approximately 0.8 km for the grayscale optical data and 6 km for the colored
radar data. Scenes are from the south polar region (a) near the 70 km impact basin Belinskij and
(b) the 155 km impact crater Chao Meng-Fu. Full stereographic projections of both northern and
southern polar regions out to 70◦ latitude are displayed in Appendix B. The specific cross section
σ0 is computed as the RCS per radar resolution element (6 km by 4.8 km), projected at an average
angle of incidence of ≈ 80◦ for the south polar observations, or σ0(80◦) = σ/(6 ·4.8/sin80◦).
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5.5 Applying the dust layer model

Delivery mechanisms for polar ice at Mercury favor episodic bombardment, rather than

gradual accumulation (see the discussion in Vasavada et al. 1999). Morgan and Shemansky

(1991) argue that micrometeoroid impact vaporization and interstellar hydrogen Lyman al-

pha radiation could erode gradually accumulating deposits as quickly as they settle into

cold traps. The existence and detectability of the radar-bright polar deposits favor episodic

delivery over gradual accumulation, and indicate that ice should exist in the form of rela-

tively large, pure volumes, similar to the ice on the surface of the Galilean satellites. If the

episodically deposited ice were covered by episodically deposited blankets of dust, the ice

could be protected from further sublimation and erosion while still behaving like an anoma-

lous radar scatterer. The blanket could not be too thick, however; otherwise attenuation of

the radar signal below the threshold of detectability would result.

The fundamental input to the regolith blanket model described by (4.25) is the total

radar cross section of a crater measured at two frequencies. We perform the analysis for

SC cross sections only, since the SC component of the echo must undergo multiple scatter-

ing, while the OC component may contain single-bounce returns from favorably-oriented

facets. Since 13 cm absolute cross section measurements have been published only for five

north polar craters (Harmon et al., 2001), we restrict our modeling to these largest north po-

lar craters. Table 5.8 lists the measured depolarized cross sections at the two wavelengths.

The unweighted, average cross section ratio is

σ13

σ3.5
= 1.64±0.25. (5.1)

The observed RCS ratio is several standard deviations greater than the expected value of 1

if the scattering were wavelength independent and there were no geometrical effects, i.e.

if the scattering law exponent n = 0 in (4.25). The departure from 1 can be attributed to

either geometrical scattering effects through the cosn(θi,λ ) scattering law, or to wavelength-

dependent effects through the e−4αλ d extinction law, or a combination of these two effects.

The 3.5 cm and 13 cm observations were obtained at sub-Earth latitudes averaging 7 and 11

degrees, respectively, or equivalently, average polar incidence angles of 81 and 78 degrees.
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Feature Harmon et al. (2001) This Work Ratio
σ13 θi,13 σ3.5 θi,3.5 σ13/σ3.5

D 57±11.4 km2 78.0◦ 31.4±4.7 km2 81.1◦ 1.82±0.28
E 35±7.0 78.5 23.0±3.5 81.4 1.52±0.23
H 63±12.6 77.8 36.3±5.4 80.7 1.74±0.27
J 152±30.4 79.3 87.1±13.1 81.8 1.75±0.27
K 188±37.6 81.1 134±20.1 83.1 1.40±0.21
Avg. 1.64±0.25

Table 5.8 Comparison of 13 and 3.5 cm depolarized cross sections σSC of major northern craters.
Angles of incidence θi,13 for single-date 13 cm observations, and average angles of incidence θi,3.5

for multi-date 3.5 cm observations are listed. The differences in i) solar system geometry and
ii) characteristics of the two different radiotelescopes introduce systematic errors which are not
represented in the standard deviation of the measurement quoted with each value. Error for 13 cm
cross sections is as reported in Harmon et al. (2001). Error for 3.5 cm cross sections is estimated as
the standard deviation of a sum of independent Gaussian distributions with a second moment equal
to the variance of an individual resolution element. The number of Gaussian distributions summed
is set equal to the number of independent resolution elements making up one deposit. Error in cross-
section ratio is derived from computing—via Monte Carlo method—the standard deviation of the
ratio of two Gaussian distributions with first and second moments equal to those of the 13 cm and
3.5 cm cross sections. The reported average in the bottom line of the table is an unweighted mean.
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Figure 5.10 Regolith thickness d vs. scattering law index. For each north polar crater D, E, H,
J, and K, we let n in the specific RCS scattering law vary from 0 to 2.5, and estimate the layer
thickness supported by the residual attenuation not predicted by the scattering law. For a choice of
n > 2, a non-physical solution of d < 0 results. The error bound on the estimate of d ranges from
15 cm at n = 0 to 11 cm at n = 1.5 (see text).

An additional important input to the model is the complex dielectric constant of Mer-

cury’s regolith, for which we take an average value of ε ′
r = 2.7 with a loss tangent tanδc =

0.0026± 25%, on the basis of passive microwave radiometry as reported in Mitchell and

de Pater (1994), and with relative permeability µr = 1. Using these values, and at a grazing

incidence angles from Table 5.8, the average dust layer thickness is calculated via (4.25).

Figure 5.10 shows the estimated layer thickness as a function of assumed scattering law

exponent n. If the scattering law exponent is n = 0, then the scattering is independent of

angle-of-incidence, and a layer of ≈ 35±15 cm is implied by the observations. If the RCS

σλ follows a cos(θi,λ ) rule from projected area effects only, then n = 1, and the estimated

layer thickness is ≈ 15± 13 cm. For n = 1.5 as reported for the Galilean satellites by

Ostro et al. (1992), the estimated layer thickness is ≈ 0± 11 cm. Thus, inferences of the

layer thickness depend critically on the form of the scattering function. Yet, reasonable

bounds ranging from 0 to 35 cm result from several different values for the exponent. We

discount values of n > 2, as these lead to a negative layer thickness estimate d < 0 which

is non-physical.

Error sources are evaluated as follows according to the expressions derived in Sec-

tion 4.3.3. Assuming that the inputs to the model (4.25) are independent, we can compute
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the variance of the modeled layer thickness d, or σ 2
d from

σ2
d =

(

∂d
∂ξ

)2

σ2
ξ +

(

∂d
∂γ

)2

σ2
γ +

(

∂d
∂ε ′r

)2

σ2
ε ′r , (5.2)

and the standard deviation as σd =
√

σ2
d . In the following, we assume that the scattering

law exponent n = 0 forms the upper bound on the layer estimate, and revisit the case n 6= 0

at the end of the section.

Sensitivity to absolute cross section. In (5.1), we measure ξ = σ13/σ3.5 with an error

of 15%, yielding
(

∂d
∂ξ

)

σξ =

(

∂d
∂ξ

)

0.15ξ = ±11 cm. (5.3)

Sensitivity to loss tangent. The loss tangent γ = tanδc has an error of 25% (Mitchell

and de Pater, 1994), yielding

(

∂d
∂γ

)

σγ =

(

∂d
∂γ

)

0.25γ = ±9.0 cm. (5.4)

Sensitivity to dielectric constant. Finally, ε ′
r has an error of 20% based upon differences

between the radar and passive thermal emission estimates of this quantity (Mitchell and

de Pater, 1994), giving

(

∂d
∂ε ′r

)

σε ′r =

(

∂d
∂ε ′r

)

0.20ε ′r = ±5.1 cm. (5.5)

It follows from the above that the total cross section and loss tangent are the largest po-

tential error inputs to the model. The total error is given by substitution of these individual

errors into (5.2), giving a standard deviation of σd = 15 cm.

Note that if the scattering law exponent is non-zero, then a significant fraction of the

difference between the 13 and 3.5 cm cross sections can be explained by the geometrical

term
cos(θi,3.5)

cos(θi,13)
. (5.6)

in (4.25). From viewing the abscissa of Figure 5.10, a value of n ranging from 1.5 to 2.0,
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depending on the particular crater deposit, can fit all of the observed difference in cross

section, yielding a thickness estimate of d = 0. For n = 1.5, substituting into (5.2–5.5)

yields an error standard deviation of σd = 11 cm.

5.6 Summary

We employ the high-resolution long-code imaging technique to study putative ice deposits

in the polar regions of Mercury. North polar deposit cross-section measurements at 3.5 cm,

when compared to the 13 cm measurements of Harmon et al. (2001), are inconclusive in

supporting a proposed insulating blanket of regolith that allows deposits of ice or other

cold-trapped volatiles to be preserved in the shadowed areas of lower latitude polar craters.

Multiple interpretations of layer thickness, ranging from 0±11 to 35±15 cm are possible,

depending on an assumed scattering law exponent n. Our observations of the south polar

region are the highest resolution images to date. Co-registration of these images with op-

tical data from Mariner 10 shows that the locations of the radar bright deposits are exactly

where predicted by thermal modeling, and cannot be due to radar glints from geometrical

effects as noted in Stacy et al. (1997), since the radar-bright areas do not necessarily lie

along the crater far-wall normal to the radar line of sight. Other scattering mechanisms

could possibly be responsible for the enhanced backscatter and polarization inversion seen

from these deposits, however, the strong backscatter is associated only with the shadowed

areas of crater floors, and an alternative model which favors shadowed areas over sunlit

areas is not extant.
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Galilean Satellites of Jupiter

The four largest satellites of Jupiter have fascinated astronomers since the beginning of the

telescopic age. They are named to honor their discoverer, Galileo Galilei, who first saw

them on January 7, 1610. Telescopic observations early in the twentieth century revealed

the relatively high optical albedos of the three outer Galilean satellites, as compared to

terrestrial planetary bodies such as the Earth’s moon or Mars. These observations also

showed that the moons’ sidereal rates of rotation were synchronous with their orbits. Tidal

forces had dissipated the moons’ rotational energy to the point that the same side always

faced Jupiter, just as the same hemisphere of our moon always faces Earth.

The limited sensitivity of early radar instruments and the great distance to the Jovian

system (4–6 AU) put the Galilean satellites out of range of Earth-based radar observa-

tions until the mid-1970’s. The first reported radar detection of a Galilean satellite was by

Goldstein and Morris (1975) with the Goldstone radar. Also in the 1974–75 time frame, a

resurfacing of the Arecibo telescope allowed a change to 13 cm from 70 cm wavelength.

This upgrade included the installation of a new 500 kW 13 cm transmitter. A subsequent

favorable northerly declination of the Jovian system permitted Campbell et al. (1977) to

follow with a very successful observing run. The upgraded Arecibo instrument provided

five times higher signal-to-noise ratio than the Goldstone system. The Campbell et al.

(1977) observations exhibited the phenomenon of polarization inversion, in which the SC

echo is stronger than the OC echo, for all three outer moons. These are now known to be

icy in composition (Stone and Lane, 1979).

107
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One difficulty in observing the Galilean satellites with the Arecibo radar is that the Jo-

vian system is not always at a sufficiently northerly declination to appear in the telescope’s

viewing window. The Arecibo antenna has a ±20◦ zenith angle pointing constraint. For

the 18◦N latitude of Puerto Rico, this translates into an observing window of 2◦S–38◦N

declination. Consequently the Jovian system is observable from Arecibo for only about

half of the time during a cycle of approximately 11 years. For this reason, Campbell et al.’s

observations were not repeated until the late 1980’s, when Ostro et al. (1992) undertook a

five-year campaign using both the Arecibo 13 cm system and the Goldstone 3.5 cm sys-

tem. In addition to detailed observations of the total RCS at a large number of sub-Earth

longitudes, these later observations yielded the first radar images of the three outer moons

via the method of Hudson and Ostro (1990). The technique, which involves a least-squares

fit of a spherical harmonic series representing the albedo, requires observations covering a

large range in satellite sub-Earth latitude and longitude in order to provide unambiguous

results. Unfortunately, when viewing the Galilean satellites, the geometry is such that the

sub-Earth latitude is never greater than a few degrees. Using the Doppler spectra method,

Ostro et al. (1992) produced low-resolution, full-disk images that were subject to the north-

south ambiguity.1

As discussed in Chapter 2, aperture synthesis imaging does not suffer from the north-

south ambiguity. During the late 1980’s to early 1990’s, Butler and Muhleman attempted

to observe Ganymede and Callisto using the Goldstone/VLA bistatic radar system. Jovian

opposition occurred during the summer months of those years. This effort did not yield

useful results, however, as the imaging ability of the system was compromised by phase

noise from water vapor in the summer atmosphere above the VLA.2 Although the Gold-

stone/VLA system does not have the zenith articulation constraint of Arecibo, for good

(u,v) plane coverage of the spectral sensitivity function it is best to observe with the VLA

when the object of interest is at northern declinations. In addition, in order to achieve

the greatest angular resolution possible, the array must be extended to its maximum size,

known as the “A-configuration,” with a 36 km maximum baseline between antennas. As the

configuration of the array is switched among four baseline spacings on a quarterly basis,

1For a description of the north-south hemispherical ambiguity, see Section 2.2.1.
2B. Butler, private communication, February 2001.
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Figure 6.1 Arecibo viewing of Jupiter. A period providing several hours of viewing per day of the
Jovian system occurs every eleven years. Radar studies of the Jovian system are usually performed
during this period to permit observations at both 13 and 3.5 cm wavelengths. To minimize path loss,
radar observations are conducted at minimum range, or minimum round-trip light time.

it is not always possible to have the array in the A-configuration during Jovian opposi-

tion. Use of the A-configuration results in approximately 350 km resolution at Jupiter’s

minimum range of ≈ 4 AU.

6.1 2000-2002 Goldstone/VLA Experiment

During the 1999–2003 period, the Jovian system again returned to northern declinations

and had favorable viewing (Figure 6.1). Jovian opposition occurred in the northern lati-

tude winter months of November through January. In addition, the VLA was in the A-

configuration during these months. This fortuitous alignment of the cycles of the Jovian

declination, range, Earth’s northern hemisphere winter, and the VLA schedule prompted a

second Goldstone/VLA bistatic radar observation campaign.

Noise contributed by Jupiter’s radiation is always a concern when observing the Jo-

vian system at radio wavelengths because Jupiter is a strong emitter of both synchrotron
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and thermal radiation in the microwave band. Since the Galilean satellites are only a

few hundred arcseconds from Jupiter when viewed from Earth, Jupiter always is either

at the edge of a mainlobe or in a sidelobe of a radiotelescope when studying these objects.

Large apertures, such as the Arecibo and Goldstone monostatic systems, have fairly narrow

beamwidths—on the order of ≈ 120 arcsec at the 13 and 3.5 cm radar wavelengths. Jupiter

does not usually appear in the main beam of these antennas when observing the three outer,

icy Galilean satellites. On the other hand, although the VLA at 3.5 cm has a fairly tight

synthesized beam of approximately 0.25–0.30 arcseconds, individual elements of the array

have fairly wide beam patterns, on the order of 340 arcsec, or approximately the radius of

Ganymede’s orbit. Except at maximum separation, Jupiter appears either in sidelobes or

the main lobe of the individual interferometer elements, decreasing the sensitivity of the

array by pushing the desired signal into the quantization noise of the VLA’s 3-bit A/D con-

verter, and making arrayed observations in the narrowband spectral-line mode infeasible.

Therefore, experiments must be timed for maximum elongation of the Galilean satellites as

viewed from the Earth (Figure 6.2). Europa and Io are never sufficiently far from Jupiter to

avoid significant noise from the planet, and we did not attempt to image these two moons.

We acquired data from both the leading and trailing hemispheres of Ganymede and

the leading hemisphere of Callisto during the December 2000 opposition. We intended

to image the trailing hemisphere of Callisto during the same period, but an error in the

Goldstone transmitter Doppler tracking prevented successful data acquisition. We repeated

the Callisto experiment during the January 2002 opposition. The VLA was not in the

A-configuration until February 2002, by which time the range to Callisto was greater than

during our year 2000 observations. Although the range was greater than desired, the signal-

to-noise ratio was sufficient for imaging. Our successful observations are listed in Table 6.1.

Callisto is easily visible in the power spectrum plot from February 2002 (Figure 6.3).
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Figure 6.2 Galilean satellite orbits. Ground-based observations with the VLA were scheduled
when the moons were at maximum westward or eastward elongation as denoted by points A and
B in the diagram, respectively. This minimizes the noise contribution from Jupiter’s blackbody
radiation. The angular separations attained by Ganymede and Callisto on the dates of observation
are listed in Table 6.1.
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Parameter Observation dates
2000 Dec. 1 2000 Dec. 5 2000 Dec. 3 2002 Feb. 4

Moon Ganymede Ganymede Callisto Callisto
Range, AU 4.05 4.06 4.06 4.38
Sub-Earth lat., deg. 3.1 3.1 2.9 1.7
Sub-Earth lon., deg. W. 81 282 77 277
Hemisphere Leading Trailing Leading Trailing
Angular sep., arcsec. 348 362 624 584
Carrier freq., MHz 8560 8560 8560 8560
TX power, kW 460 460 460 460
TX waveform CW CW CW CW
Target bandwidth, Hz 3000 3000 1200 1200
RX channel width, Hz 3052 3052 1526 1526
# Channels 64 64 128 128
Collected data, hrs. 8 8 5 8
Beam diam., arcsec. 0.26 0.29 0.28 0.27
Map size, pixels 512×512 512×512 512×512 512×512
Map spacing, arcsec. 0.05 0.05 0.05 0.05

Table 6.1 Goldstone/VLA 3.5 cm bistatic observations. The angular separation is the angle, in
arcseconds, between the moon and Jupiter as viewed from Earth. Both moons are tide-locked with
Jupiter, such that the 0 deg. meridian always faces the planet. Beam diameter given in the last
column of the table is that following imaging with CLEAN.
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Figure 6.3 Callisto cross power spectrum from Goldstone/VLA, 2002 Feb. 4. The abscissa is the frequency channel number in VLA
spectral line observing mode. The line width is set to 1526 Hz, slightly larger than the ≈ 1200 Hz bandwidth of Callisto’s echo. The
power shown is that in a single resolution element at the subradar point. The echo appears in the single, central line of the spectrum.
The power level in the non-central bins comprises the moon’s blackbody radiation, and receiver noise.



114 CHAPTER 6. GALILEAN SATELLITES OF JUPITER

The experiments listed in Table 6.1 proceeded as follows. The Goldstone transmitting

and VLA receiving observatories were scheduled to have the same view window of the

satellite. Goldstone transmitted a CW tone; its frequency was adjusted to compensate for

Doppler effects at the sub-radar point on the moon, so that the VLA received a constant

nominal frequency of 8,560 MHz. At the start of the track, the VLA initially observed well-

characterized natural radio sources for amplitude and phase calibration purposes. When the

echos from the satellite began to arrive, the VLA antennas switched to tracking the moon.

Approximately every 10 minutes throughout the track, the VLA would shift temporarily off

the target moon, track a radio point source for a minute or two, and then resume tracking the

moon. In this way, the phase response of the VLA was measured continuously throughout

the observation period, so that in post-processing, gain and phase adjustments could be

applied to the “complex visibility” data (see Section 3.1.1) to correct for array irregularities.

The VLA system is designed primarily to observe galactic and extragalactic sources

rather than solar system objects, therefore some changes to the standard observing proce-

dure were required. These modifications were developed first by Butler and Muhleman

for their previously mentioned experiments. Planets are not stationary against the celestial

sphere as are the deep space sources normally studied with the VLA, so a refinement to the

system tracking was necessary; this was achieved through adaptation of the standard VLA

tracking system to make use of a JPL planetary ephemeris. Since the array usually images

broadband sources, it is necessary to employ the VLA’s spectral line observing mode. In

this mode, the VLA uses real-time hardware to divide the received data into narrow spectral

channels. The bin width of the spectral channel was set so that the Doppler bandwidth of

the Jovian moon under observation just fits into the central spectral bin, maximizing the

SNR in that bin. For our observations, we used a bandwidth of either 3052 or 1526 Hz

per channel, to match the expected 3000 or 1200 Hz echo bandwidths of Ganymede and

Callisto.

We processed the data at the VLA Array Operations Center in Socorro, making use of

the Astronomical Image Processing System (AIPS) software developed by NRAO staff. An

example of a plane-of-sky image of Callisto is shown in Figure 6.4. The radioastronomical

unit of flux density used in this figure is the Jansky, or 10−26 W/m2/Hz. To generate these

images, first the complex visibility or spatial frequency domain data were loaded from tape
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Figure 6.4 Goldstone/VLA 3.5 cm plane-of-sky image of Callisto on 2000 Dec 3. The synthesized
beam resolution is 0.28 arcsec. This total observed power image shows the positive detection of
Callisto against the cold sky. The image is formed from the echo power in the central channel of
the VLA spectral line mode. One radar-bright feature, Valhalla, appears as a bright red area on the
right-hand side of the moon. The peak flux density received from this feature, 37.5 milliJansky per
beam, is ≈ 15 times greater than the standard deviation of the image background, 2.4 mJy/bm.
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and visually flagged for bad points. Array amplitude and phase response correction tables

were computed using the data from the calibration radio sources. A polarization calibration

using the calibration sources was performed and stored in a table. These correction tables

were then applied to the planet visibilities to calibrate the data. The baseline thermal noise

of the planet was computed using the off-planet spectral channels, and this estimate of

the planet thermal radiation was subtracted from the spectral channel containing the radar

echo. The subtraction took place in the complex visibility or (u,v) plane prior to final

imaging (Clark, 1980). In this way, the final plane-of-sky brightness map of the moon is

not biased by the moon’s own blackbody radiation. We imaged the moon by transforming

the calibrated, complex visibilities from the spatial frequency domain into the time domain.

The CLEAN algorithm was used as a feedback loop around this imaging process to remove

the array response. We specified a circular “clean box” or restricted cleaning region (see

Section 3.4) which was approximately one resolution element larger than the target disk

and guided the CLEANing. The cleaned visibilities, representing the estimate of the true

source visibilities, were then transformed from the spatial frequency domain to the image

domain onto a 512 by 512 pixel grid at 0.05 arcsec spacing using an ideal Gaussian beam

weighting equal to the achieved array resolution.

6.2 Radar cross-section model

Diffuse backscatter from an icy Galilean satellite is well-represented on a disk-integrated

basis by a simple cosn θi law where θi is the angle of incidence (Campbell et al., 1978).

The application of this law to the computation of the total normalized RCS σ̄ of a diffuse

reflecting sphere is discussed in Section 4.1.3.

When comparing VLA observations to monostatic radar results, it is important to note

the distinction between the backscatter per unit surface area and the backscatter per unit

projected area. Define η as radar backscatter cross section per unit projected area on the

plane of sky dA⊥, then

η =
dσ

dA⊥
. (6.1)
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The Goldstone/VLA instrument directly images η , which we relate to σ0 by

dA⊥ = cos(θi) dS, (6.2)

where dS is the unit of actual (not projected) surface area. The radar backscatter per unit

projected area is then

η(θi) =
σ0(θi)

cos(θi)
= ρ cosm(θi), (6.3)

where m = n−1. In the analysis which follows, we use η and m whereas Ostro et al. (1992)

and others use σ0 and n.

6.3 Observations and model fits

For the VLA, the power intensity I(x,y) received in Jansky per beam (Jy/bm) is writ-

ten (Butler, 1994)

I(x,y) = 1026 PtAtΩb

4πλ 2R2B
η(x,y), (6.4)

where Pt is the transmitter power, At is the effective transmitting antenna area, λ is the

wavelength, R is the range to the satellite, B is the receiver channel bandwidth, η is the

projected specific cross section, and

Ωb = π
r2

b

R2 (6.5)

is the solid angle of the beam for an effective beam radius rb. Using (6.4), the sky maps

of the moons are converted from Jy/bm to projected cross section η . Figures 6.5 and 6.6

show the depolarized ηSC and polarized ηOC cross sections, and the circular polarization

ratio µc in plane-of-sky coordinates.
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Figure 6.5 Ganymede dual-polarization images. Plane-of-sky images for the leading (≈ 90◦W)
and trailing (≈ 270◦W) hemispheres are shown. The images are rotated from RA/Dec coordinates
so that i) the projection of the moon’s rotation axis onto the plane-of-sky is aligned vertically on
the page, and ii) the North pole of the moon is “up.” The ratio µ c is computed only for those
resolution elements where the weaker OC echo exceeds the off-planet background noise by two
standard deviations. This leads to a “scalloping” effect around the edge of the radar-illuminated
disk, as the SNR is lowest at the radar terminator.



6.3. OBSERVATIONS AND MODEL FITS 119

2.5

0.0

0.0

0.0

µc

ηOC

ηSC

Depolarized RCS

Polarized RCS

Polarization ratio

0.7

0.7

Leading Trailing

Leading Trailing

Leading Trailing

Figure 6.6 Callisto dual-polarization images. Plane-of-sky images for the leading (≈ 90◦W)
and trailing (≈ 270◦W) hemispheres are shown. The images are rotated from RA/Dec coordinates
so that i) the projection of the moon’s rotation axis onto the plane-of-sky is aligned vertically on
the page, and ii) the North pole of the moon is “up.” The ratio µ c is computed only for those
resolution elements where the weaker OC echo exceeds the off-planet background noise by two
standard deviations. This leads to a “scalloping” effect around the edge of the radar-illuminated
disk, as the SNR is lowest at the radar terminator.



120 CHAPTER 6. GALILEAN SATELLITES OF JUPITER

Mapping from right ascension and declination coordinates to standard planetary carto-

graphic coordinates allows direct comparison of the radar data with optical albedo maps

obtained with the Galileo and Voyager spacecraft. The satellite’s polar angle with respect

to north on the plane-of-sky and the sub-Earth latitude of the center of the disk were ob-

tained from the JPL planetary ephemeris DE-405 (Standish, 1998) and used to compute the

coordinate transformation. In order to compare the radar and optical albedo images, we

overlay a grayscale high-resolution optical image with the lower resolution radar data on a

color scale. The resulting images for Ganymede and Callisto are shown in the upper panels

of Figures 6.7 and 6.8.

The normalized backscatter image is dominated by the effective hemispherical scatter-

ing law model. Removal of this background model can make deviations due to surface

heterogeneities more apparent. We employ a procedure developed by Butler (1994) to fit

and subtract the hemispherical backscatter model, finally achieving the residual backscatter

maps shown in the lower panels of Figures 6.7 and 6.8. In the process, we obtain estimates

of the normal incidence reflectivity ρ and the scattering law exponent m components of the

hemispherical scattering model (6.3).

The procedure for model fitting is as follows. Consider that the processed and CLEANed

images, Figure 6.4, are a convolution of an ideal Gaussian beam response, or “CLEAN

beam,” with the actual source distribution. In order to extract the scattering law exponent

m, we first form the radial average of the plane-of-sky map, Figure 6.4. The VLA image is

centered on the source by the observing ephemeris. The radial integration of the plane-of-

sky map is therefore centered on the target. We then modify (6.3) to include the convolution

of the “CLEAN beam” with (6.3), thus obtaining the more complex model,

f ( r̄) = 2̄Ωb

∫ 1

0
ρ cosm[sin−1( r̄′)]e−( r̄2+ r̄

′2)/Ω̄b I0

(

2 r̄ r̄′

Ω̄b

)

r̄′ d r̄′, (6.6)

from Appendix A of Butler (1994). Here r̄ = sin(θi) is the normalized radius at incidence

angle θi, Ω̄b is the actual Gaussian beam area in units of normalized radius, and I0 is

the modified Bessel function. Since radial averaging of the source distribution over the

observed disk produces a decreasing variance in our estimate of ρ with increasing radius,

we used weighted non-linear least squares to fit the complex radial profile model f ( r̄) of
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(6.6) to the observations, thereby extracting ρ and m. As mentioned in Appendix A of

Butler (1994), the variance of the noise is inversely proportional to an annulus of area

A( r̄) = π( r̄ +δ r̄)2 −π r̄2

= π[2 r̄δ r̄ +δ r̄2] (6.7)

where δ r̄ is the image plane grid spacing in planetary radii. Taking the weight to be w( r̄) =

1/A( r̄), we obtain the results shown in Figure 6.9. These one dimensional models show the

radial average projected cross section.

Once the parametric estimation is complete, we can check the accuracy of the model.

This is accomplished by substituting our estimates for ρ and m into equation (4.8) to give

a model estimate of the total normalized RCS σ̂ . This number, σ̂ , can be compared with

the true normalized RCS, σ̄ . We compute σ̄ directly by integrating all received flux in the

plane-of-sky image and applying (6.4) :

σ̄ =
∫

x

∫

y
η(x,y) dydx = 10−26 4πλ 2R2B

PtAtΩb

∫

x

∫

y
I(x,y) dydx. (6.8)

The comparison of values is given in Table 6.2. Since the limb-to-limb bandwidth

of the target can approach the bandwidth of the central channel of the VLA spectral line

mode, some energy spills into adjacent channels because the total RCS is biased by the

spectral weighting function. This effect of the frequency response of the VLA is outlined in

Appendix B of Butler (1994). To compensate, a correction factor is applied to the measured

total RCS σ̄ . This correction consists of dividing σ̄ by a factor γ , where

γ =
m+2

2π

∫ 1

x=−1

∫

√
1−x2

y=−
√

1−x2

(

1− x2 − y2)m/2

[sinc(αx)+
1
2

sinc(αx−1)+
1
2

sinc(αx+1)] dydx, (6.9)

and α is the ratio of the planet limb-to-limb bandwidth to the VLA spectral line mode

channel bandwidth. This equation for γ accounts for power which falls into the side lobes

of the Hann window function used for imaging in spectral line mode.

To highlight the areas of the planet surface which differ from the hemispherical model,
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Figure 6.7 Ganymede radar and optical albedo maps. The observations show that higher radar
albedo is associated with the terrains of Xibalba Sulcus and Uruk Sulcus ringing Galileo Regio on
the leading (left) hemisphere, and the impact crater Hershef on the trailing (right) hemisphere. The
lower image shows the data with the hemispherical backscatter law (6.6) removed. The subtraction
of the backscatter law is truncated outside a radial boundary where the standard deviation of the
image exceeds the value of the backscatter. See the feature coordinates listed in Table 6.3 and the
discussion in Section 6.4.
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Figure 6.8 Callisto radar and optical albedo maps. The observations show that there is significant
brightening associated with the large 600 km diameter Valhalla impact crater on the leading (left)
hemisphere, while on the trailing (right) hemisphere, the brightest radar feature is the impact crater
Gloi. The lower image shows the data with the hemispherical backscatter law (6.6) removed. The
subtraction of the backscatter law is truncated outside a radial boundary where the standard devia-
tion of the image exceeds the value of the backscatter. See the feature coordinates listed in Table 6.3
and the discussion in Section 6.4.
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Figure 6.9 ρ cosm(θi) model fits. These plots compare the least-squares backscatter model in (6.6)
as solid lines with the radially integrated plane-of-sky brightness for the leading hemispheres of
Ganymede and Callisto, here plotted with open circles. The estimated model parameters obtained
as the output of the fitting process—normal incidence reflectivity ρ and scattering law exponent
m—are those listed in each frame. Also see Table 6.2.
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SC Hemispherical Backscatter Parameters

Hemi- Model Measurement
Moon sphere ρ m σ̂SC σ̄SC

Ganymede Leading 1.39±0.04 1.04±0.10 0.91±0.04 0.97±0.02
Trailing 1.13±0.07 1.00±0.21 0.75±0.07 0.78±0.03

Callisto Leading 0.65±0.04 1.21±0.24 0.40±0.04 0.40±0.02
Trailing 0.32±0.02 0.28±0.17 0.32±0.04 0.31±0.02

OC Hemispherical Backscatter Parameters

Hemi- Model Measurement
Moon sphere ρ m σ̂OC σ̄OC

Ganymede Leading 1.08±0.05 1.37±0.19 0.64±0.05 0.67±0.02
Trailing 0.85±0.03 1.21±0.16 0.53±0.03 0.56±0.03

Callisto Leading 0.52±0.02 1.19±0.12 0.33±0.02 0.34±0.02
Trailing 0.35±0.03 0.49±0.23 0.28±0.03 0.28±0.02

Table 6.2 Ganymede and Callisto model fits. We use non-linear least squares to fit the model
(6.3) to the radially averaged data. Errors quoted for normal incidence albedo ρ and scattering law
exponent m = n−1 are formal errors for the least-squares process (Ryan, 1997). Modeled σ̂ comes
from substitution of the estimated parameters into (4.8), and the error is estimated from Monte Carlo
simulation. Measured σ̄ is the disk-integrated flux in the image plane; error is estimated from the
off-planet noise background. In Section 6.4 of the text, these data are compared to Table 4.2, which
summarizes results from Ostro et al. (1992).
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the model (6.6) is subtracted from the data to generate a residual backscatter image, shown

in the lower panels of Figures 6.7 and 6.8. This subtraction step is unstable near the limb of

the planet for two reasons. First, the signal-to-noise ratio is low near the limb. Second, as

mentioned in Butler (1994), the plane-of-sky image is the convolution of the cleaned map

with the Gaussian “CLEAN beam,” and therefore contains edge effects near the limb. For

this reason, the subtraction is truncated outside a radial boundary where the standard devi-

ation of the image exceeds the value of the backscatter. This results in a smaller truncation

radius for Callisto, because Callisto has a lower radar albedo and was observed from a less

favorable distance.

6.4 Discussion

The absolute accuracy of the Goldstone/VLA total-power measurement is determined by

the variance of parameters in the radar equation. The dominant uncertainties in these pa-

rameters are the ≈ 5% fluctuation of the received power measurement, the transmitted

power accuracy at ≈ 10% over the time-span of the 8 hour track, and the transmitting an-

tenna pointing accuracy of up to 0.5 dB. These error sources combine to provide an absolute

calibration standard deviation of ≈ 20% for the Goldstone/VLA instrument measurement

of normalized RCS, σ̄ .

Although these experiments are designed to map spatial variations in albedo, and not

measure total reflectivity, our values for disk-integrated scattering parameters are within

experimental error of prior observations. Our values for scattering parameters summarized

in Table 6.2 differ somewhat from those measured by Ostro et al. (1992), as summarized in

Table 4.2.

We expect to obtain somewhat different model parameters for several reasons. First,

the nature of the measurements is quite different. Ostro et al. (1992) recorded Doppler

spectra using a single, 70 m dish, while we synthesized an aperture using an array of 25 m

dishes. As mentioned in Chapter 3, there is a “hole” in the spectral sensitivity function of

a correlating array near zero spatial frequency, so the array is not as sensitive to total flux

as a single dish antenna. Second, we fitted the radial limb-darkening model directly to a

plane-of-sky brightness image, while Ostro et al. (1992) fitted a model to Doppler spectra
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which are lineal projections of the model. Both inversion methods are non-linear due to the

use of a cosn(θ) scattering law, and are not necessarily guaranteed to converge to a unique

solution. Third, the measurements are separated by more than a decade in time. Specifi-

cally, we report systematically higher normal incidence reflectivity, ρ , and scattering law

exponent, m, and lower normalized RCS, σ̄ . On average, our normal incidence albedos are

≈ 45% higher for Ganymede, and ≈ 30% higher for Callisto. The scattering law exponents,

m = n− 1, are ≈ 60% and 30% higher, respectively. The higher scattering law exponent

of this study indicates that limb darkening is stronger in our data than in the data of Ostro

et al. (1992). We measure the total normalized RCS σ̄ to be 17% lower for Ganymede, and

22% lower for Callisto. The RCS estimates are within the absolute calibration accuracy of

20-50% reported by Ostro et al. (1992).

We find the leading hemispheres of each moon to have a slightly higher average albedo

than the trailing hemisphere by 20%±5%. Such asymmetry has been noted in optical ob-

servations for many years (Morrison and Morrison, 1977), and has been attributed to sput-

tering by energetic particles from the Jovian magnetosphere (Clark et al., 1980). Sputtering

causes erosion or composition changes of the ice surface, affecting optical wavelength ob-

servations. Though such sputtering is not expected to cause changes of the surface on the

centimeter scale of the radar wavelength, one possible explanation for the noted hetero-

geneity at 3.5 cm wavelength is gardening by micrometeoroids (Pang et al., 1979), which

could cause a slight roughening (surface and volume) of the leading hemisphere relative to

the leeward hemisphere.

Terrain on Ganymede can be divided roughly into two classes. These are: i) older,

heavily cratered terrain with low optical albedo (regionis), and ii) newer, furrowed, resur-

faced terrain with high optical albedo (sulci); for example, see Pappalardo et al. (1998).

The observations (Figure 6.7) show that higher radar albedo is associated with the terrains

of Xibalba Sulcus and Uruk Sulcus ringing Galileo Regio on the leading (left) hemisphere,

and the impact crater Hershef on the trailing (right) hemisphere. While detailed studies

of these returns remain to be completed, these radar observations appear to show differ-

ences in either the composition or the surface roughness of different regions of the moons.

The sulci are thought to have been resurfaced more recently than the more heavily cratered

dark terrain making up the regionis, and appear brighter in the radar images. One possible
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Moon Feature Lat. Lon.
(deg.) (deg.)

Ganymede Bubastis Sulci 72.3S 282.9W
Cisti 31.7S 64.2W
Galileo Regio 47.0N 129.6W
Nah-Hunte 17.8S 85.2W
Hershef 47.3N 269.5W
Mysia Sulci 7.0S 7.9W
Perrine Regio 33.2N 32.5W
Uruk Sulcus 0.8N 160.3W
Xibalba Sulcus 43.8N 71.1W

Callisto Gloi 49.0N 245.0W
Igaluk 5.6N 316.0W
Valfödr 1.3S 247.0W
Valhalla 14.7N 56.0W

Table 6.3 Listing of Ganymede and Callisto terrain features. The locations of major craters, plains
(regionis) and furrows (sulci) are given as listed in the U.S. Geological Survey astrogeology catalog.

mechanism for this enhancement in the sulci is the infusion of newer, relatively pure water

ice exhibiting less attenuation to the radar signal, and formation of associated wavelength-

scale heterogeneities in the newly effused material. In Figure 6.7 in particular, Xibalba

Sulcus is apparent as a region of an enhanced RCS relative to Galileo and Perrine Regionis

on either side. On the leading hemisphere, the brightest RCS regions are associated with

the terrain between the Cisti and Nah-Hunte craters, the terrain on the northeastern side

of Cisti where the Mysia Sulci begin, and Xibalba Sulcus. On the trailing hemisphere,

the brightest features are associated with the Bubastis Sulci in the south, and the impact

crater basin Hershef in the north. The coordinates of prominent, named features are listed

in Table 6.3.

Some points can be made about our observations of Callisto. The disk-integrated cross

sections show that Ganymede is 2.1± 0.3 times as reflective as Callisto. Additionally,

radar features on Callisto do not stand out as well above the disk-integrated average as

do those in the Ganymede radar images. Optical observations of Callisto from Voyager

and Galileo show a lack of sulci-type resurfacing. As a result, the surface of Callisto is

thought to consist of older and less-pure ice, which is thought to be less bright than that of
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Ganymede. For the spatially resolved data in Figure 6.8, there is a statistically significant

brightening associated with the large 600 km diameter Valhalla impact crater on the leading

hemisphere. On the trailing hemisphere, the brightest radar feature is the impact crater

Gloi, followed by unnamed terrain between Igaluk and Valfödr, though the significance of

the brightness of this latter region is discounted due to poor signal to noise conditions. The

brightness is on the order of the standard deviation of the noise background.

6.5 Summary

A confluence of solar system geometry and telescope scheduling permitted Goldstone/VLA

aperture synthesis mapping of Ganymede and Callisto in late 2000 and early 2002. Aper-

ture synthesis can produce high quality images free of the unavoidable fold-over ambigui-

ties of single-dish radar imaging of planets. Fitting disk-integrated diffuse scattering laws

to the Ganymede and Callisto observations confirms the high backscatter cross section and

circular polarization inversion that has been noted in previous Doppler spectra observa-

tions. Our spatially resolved radar images show higher albedos associated with recently

resurfaced terrain on Ganymede and Callisto, either through tectonic motion as in the sulci,

or through cratering.
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Chapter 7

Conclusions

In this work we focused on 3.5 cm wavelength radar imaging of i) Mercury’s north and

south polar regions at 6 km resolution and ii) the disks of Jupiter’s Galilean satellites

Ganymede and Callisto at 350 km resolution. We applied two previously developed tech-

niques, random long-code delay-Doppler synthetic aperture imaging and aperture synthesis

imaging, to acquire and process new data from these solar system objects.

Our results include the following.

• New 3.5 cm wavelength, dual-polarization specific RCS maps of the north and south

polar regions of Mercury at 6 km resolution. We co-registered these data with optical

images from the Mariner 10 mission. The co-registered observations corroborate

earlier 13 cm observations (Harmon et al., 1994, 2001) which showed the bright

material exists in permanently shadowed areas of large craters.

• New 3.5 cm wavelength, dual-polarization RCS maps of the leading and trailing

hemispheres of Ganymede and Callisto at 350 km resolution. These images are of

comparable resolution to previous results but are free of north-south fold-over. Co-

registration of the data with Galileo spacecraft optical imagery shows that bright

albedo features are associated with recently re-surfaced terrain such as sulci and im-

pact craters.

131
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The new Mercury images, co-registered with Mariner 10 optical imagery, show that the

radar-bright and unusually polarized echoes indeed arise from within portions of Class 3–

4 craters that are in permanent shade, as modeled by Paige et al. (1992); Vasavada et al.

(1999) and posited by Harmon and Slade (1992); Slade et al. (1992); Butler et al. (1993);

Harmon et al. (1994); and Harmon et al. (2001). This type of backscatter is also associated

with volume scattering from ice deposits from the three outer Galilean satellites of Jupiter

and the polar caps of Mars. The previous conclusion, that these spots represent scattering

by cold-trapped volatiles in the floors of the craters, such as water ice, is supported by

thermal modeling requiring an insulating layer of regolith or dust to cover deposits in off-

pole craters to allow long-term stability. For materials with nominal electrical properties,

such a layer would cause wavelength dependent attenuation of a passing electromagnetic

wave. A model that combines angle-of-incidence dependent backscatter, with attenuation

through the layer shows that the decrease in total cross section seen at the 3.5 cm wave-

length, relative to 13 cm measurements reported by other investigators, can yield estimates

of layer thickness from 0± 11 to 35± 15 cm, depending on the scattering law exponent

n. Other scattering models could explain the polarization behavior—wavelength depen-

dent backscatter from an angled rough surface, for example. Since strong backscatter

is observed only in shadowed crater floors, however, and not from crater walls in exact

backscatter geometry, the “glinting” phenomenon noted for lunar echoes by Stacy et al.

(1997) is discounted.

Our Ganymede and Callisto images improve upon previous findings of Ostro et al.

(1992) by removing the north-south ambiguity while achieving similar resolution. Co-

registration of the radar albedo images with global mosaics of visual images from the Voy-

ager and Galileo missions shows that high backscatter areas are associated with terrain

that has been resurfaced in the recent past, such as the sulci features and the Herschef and

Valhalla impact basins. The imaging technique allows estimation of the exponent in the

standard diffuse cosn θ scattering law for each hemisphere. Least-squares fits to this model

show that although disk-integrated scattering parameters are somewhat different from val-

ues that other investigators derive, our total cross section estimates are consistent, within

experimental error, with previous observations. The absolute reflectivity of the trailing
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hemispheres of both moons is shown here to be somewhat lower than the leading hemi-

sphere.

In reducing the data, we have made some improvements to existing processing tech-

niques. These include Dolph-Chebyshev windowing of the long-code imaging data to

equalize the sidelobes of the radar ambiguity function in the delay and Doppler dimen-

sions. Also, we show that long-code data can be processed using standard FFT correlation

techniques, and that repetitive code data can be processed to avoid Doppler folding ambigu-

ities. Since the ISAR imaging process is inherently in the class of “embarrassingly parallel”

signal processing problems, our implementation of a processor is suitable for large, parallel

computer clusters.

Several extensions of this work are possible, including both experimental and theo-

retical studies. In the experimental area, the recent upgrade to the Arecibo Observatory

to support 3.5 cm receive capability has opened the opportunity for Goldstone-Arecibo

bistatic observations of the polar regions of Mercury. The additional receiving area that

the Arecibo Observatory provides permits 1.5–3 km resolution imaging, which can further

constrain the exact locations and scattering characteristics of the radar bright material. A

preliminary investigation (Slade et al., 2004) has demonstrated the feasibility of the ex-

periment, but the low declination of Mercury kept the planet confined to the edge of the

Arecibo beam. Better viewing geometries in 2005 and 2006 will yield additional opportu-

nities for 3.5 cm investigations of Mercury’s polar craters. Arecibo also has increased gain

at 13 cm wavelength from improved surface panel alignment as part of the 3.5 cm upgrade,

and should be able to support 30–50 km resolution images of the Galilean satellites which

would further resolve the regions exhibiting enhanced backscatter. There is much work re-

maining in the theoretical area in terms of modeling the observed backscatter effects. Many

of the existing models for surface and volume scattering are decades old, and newer vol-

ume scattering models have been explored only tentatively (Peters, 1992; Gurrola, 1995;

Black, 1997). The increase in available computing power, and migration to 64-bit address

space, should enable finite-difference, time-domain (FDTD) simulations of scattering from

complicated regolith structures.
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Appendix A

Radar Coding and Processing

In this Appendix, we explore alternative signal processing methods to standard long-code

processing (Harmon, 2002). For slightly overspread targets, a processing method we call

the “subset code” technique can be used either i) to process standard, repetitive code data

sets to alleviate Doppler aliasing, or ii) to speed up the processing of long-code data sets.

We also provide a technical explanation of an observation made in Section 2.3.2, namely

that the individual sub-codes of the long-code method can be considered essentially random

since the generator can be started in any state. As a result, these sub-codes satisfy orthog-

onality in a statistical sense. The composite waveform is not an optimal delay-Doppler

imaging waveform, however, since the individual pulses are transmitted sequentially in

time.

A.1 Subset codes

An adaption of the long-code technique which does not require the use of extremely long

repeating sequences, is to use shorter PN sequences, and to divide each sequence into sub-

sections. This subset code technique, as does use of the long-code, relies on the property

that one piece of a PN sequence does not correlate well with another piece. The disadvan-

tage of this technique is that since only a few unique pulse encoding waveforms are used,

unwanted sidelobes are not randomized. For example, in Figure 2.7, instead of using an

infinite number of random sequences to encode the pulses in the pulse train, A, B, C, . . .,
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we instead use just two unique sequences, and encode the pulse train as A, B, A, B, . . ..

The sidelobes are no longer random, and can be prominent. Deconvolution methods must

be employed to remove the sidelobe contributions to the image.

The idea of subset codes is not unique to planetary radar imaging. Independently coded

pulses are quite common in other pulse compression contexts, where multiple pulses must

impinge on a target simultaneously in order to achieve sufficient sampling for the Doppler

bandwidth of the expected return. Coding each pulse with the same sequence results

in unwanted correlation between the pulse echo responses, so varying the applied code

from pulse to pulse is a straightforward solution. For example, Sivaswamy (1982) de-

veloped “subcomplementary sequences,” Gerlach and Kretschmer (1992) explored “zero

cross-correlation waveforms,” while more recently Guey and Bell (1998) formulated what

they call “diversity [sic] waveform sets.” In the application arena, Lehtinen and Haggstrom

(1987) develop repeated sets of codes for imaging of the ionosphere, which is an overspread

medium at the wavelengths of incoherent scatter radar facilities.

A.1.1 Subset code processing

To demonstrate subset code processing, we present 13 cm imaging of Mercury at 20 µsec

baud, or 3 km range resolution.1 The delay depth of Mercury is ≈ 16 msec, corresponding

to 813 range bins. Thus, imaging of the visible hemisphere requires use of a length 1023

maximal length shift register sequence for standard delay-Doppler imaging. At the 13 cm

wavelength, Mercury is overspread by a factor of approximately two, resulting in a factor of

two overlap in the Doppler dimension of the output delay-Doppler array. Figure A.1 shows

the result of using standard delay-Doppler processing. Aliasing in the Doppler dimension

is apparent in the outer edges of the image as a “folding” about the Doppler bins equal to

the inverse of the pulse rate, 1/2T .

One way to view this standard pulse code signal processing technique is as a length

Nb range compression filter, followed by a downsampler of length N bauds and a FFT

matched filter bank, as shown in Figure A.2. Aliasing in the Doppler dimension happens

because the Nyquist criterion for sampling the output of the range compression filter is

1We are grateful to John Harmon of the Arecibo Observatory for providing one round-trip cycle of data
from a 1998 observation campaign for this analysis.
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Doppler

1/2T−1/2T

Figure A.1 Standard delay-Doppler processing applied to Mercury, showing aliasing in Doppler
dimension. The overspread factor at 13 cm is approximately a factor of two. The correspond-
ing aliasing folds the outer left and right halves of the echo, corresponding to the higher, aliased
frequencies, in on the central, lower frequency echo.

:length K
FFTũ(t)

h(t) = u∗(t − τ)e j2π f t

X
1

Nb

∫ Nb
0 dt

fs = 1/Nb

Figure A.2 Standard delay-Doppler decoding implemented as a correlation receiver. The receiver
consists of a range compression filter, comprising the multiplier and integrator, followed by a sub-
sampler and FFT. The baseband received signal experienced both delay and Doppler shift. The
range compression filter h(t) takes the form of the complex conjugate of the delayed signal. The
FFT constitutes a Doppler matched filter bank.
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Doppler

0
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Delay

−1/T 1/T

Figure A.3 Mercury imaged with standard, repetitive PN code, but processed by oversampling
the output of the range compression filter. The dark areas on the left and right sides of the image are
caused by correlation introduced into the output samples by the range compression filter (see text).

violated; Mercury is overspread by a factor of two. Doppler aliasing can be avoided by

sampling the output of the range compression filter at twice the default rate. For example,

decimating by N/2 bauds rather than N bauds, or equivalently sampling at 2/Nb. By

sampling at an interval which is shorter than the length of the range compression filter,

however, correlation is introduced into the output samples, and the samples are no longer

independent. This introduced correlation manifests itself as a shaping of the response in the

Doppler dimension of the output delay-Doppler array, as shown in Figure A.3. One way

of thinking about this cosine rolloff is as the spectral response of a two tap boxcar filter

applied to the output samples of the subset code process described below. Though folding

is eliminated in this case, the information at higher Doppler frequencies is lost.

For subset code processing, the PN sequence is divided into two halves, one of length

512 and one of length 511. The delay autocorrelation and cross correlation functions of

these sequences are shown in Figure A.4. As can be seen, the functions do not display

the ideal constant N/1 ratio of peak to sidelobe intensities. There is a strong correlation

peak at the proper delay for each subset code, however, so together these codes perform as



A.1. SUBSET CODES 139

−200

 0

 200

 400

 600

−400  0  400  800
−200

 0

 200

 400

 600

−400  0  400  800

V
ol

ta
ge

Lag Lag

Figure A.4 Length 512 and 511 subsets of a 1023 PN sequence, cross correlated with the length
1023 sequence. The correlation peaks occur at lags 0 and 512. The correlation value at other lags is
sufficiently low to permit imaging using the two subsets of the standard 1023 length PN sequence as
independent, non-ideal pulse compression waveforms. The range sidelobes are ≈ 1/511 in power,
while for a length 511 PN sequence they would be ≈ 1/5112.

suboptimal range compression pulse codes with low cross correlation. The timing diagram

for the two filter impulse responses is shown in Figure A.5. The correlation filter structure

for subset code processing is shown in Figure A.6. The output of the two filters consists of a

stream of range-compressed samples sampled at twice the rate of standard code processing.

After Doppler processing, the output image is as shown in Figure A.7. Subset code

processing suppresses the aliasing in the Doppler dimension as seen in the standard code

processing of Figure A.1. It also avoids the spectral nulls present in the oversampled data

set of Figure A.3. Subset code processing of standard repetitive code data sets display

significant leakage from the leading edge of the planet in all delay gates at multples of

the pulse repetition frequency fm = m/T for integer m. As the leakage is inherent to the

use of a repetitive waveform with base period T, the only solution to date for suppressing

the leakage is deconvolution of the imaging impulse response function from the final delay-

Doppler array. Harmon (2002) has used deconvolution with standard delay-Doppler coding

to remove delay clutter from the strong specular echo of the leading edge. Deconvolution

could be applied analogously to subset code-processed images.

For the central region of the output delay-Doppler array in the SC polarization, it is

possible to use the subset code processed data without any deconvolution, as the effect of

the subradar point leakage is minimal. Figure A.8 shows this for length-1 subset code pro-
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Figure A.5 Subset code filter impulse responses. The impulse response of the first filter, h1(t),
leads the impulse response of the second filter, h2(t) by 512 bauds.
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Figure A.6 Subset code delay-Doppler decoding implemented as two range compression filters
with impulse responses h1(t) and h2(t) running in parallel. The subsampled output of the range
compression filters alternately provide input samples to a FFT, which serves as the Doppler matched
filter bank.
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Figure A.7 Mercury imaged with a standard, repetitive PN code, but processed by the subset code
method. Doppler aliasing is mitigated, but clutter from the leading edge of the planet at zero delay
and Doppler appears at multiples of the pulse repetition frequency fm = ±m/T = ±m/Nb.

cessing of a length 1023 PN sequence repetitive code data set. Length-1 subset code pro-

cessing is equivalent to applying the long-code processing technique to standard repetitive

code data sets with an FFT long enough to provide the necessary cross-range resolution.

Rather than separating the delay and Doppler matched filters into two processes, a range

compression filter and an FFT, one long multiply followed by an FFT can be applied to

the data. In Figure A.8, an FFT of length N×1024 = 1023×1024 = 1047552 was applied

after multiplying the received data by a suitably lagged version of the transmitted sequence.

In the OC image, the periodic clutter appears at frequency multiples m/T where T = Nb.

In the SC image, the clutter is still present, but it is not that visible since the SC data lacks

the large, specular echo from the subradar point.

Would an alternate choice of waveform result in reduction of the periodic clutter at

points m/T ? This approach was discussed in Harcke et al. (2000). For Mercury, a choice

of PN code length 220 −1 for the same baud b used in the above experiments would allow

sufficient cross-range resolution by a length-1048575 FFT, and without periodic clutter

since the PN code would not exhibit periodicity over the coherent integration period.
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Figure A.8 Mercury imaged with a standard, length N = 1023 repetitive PN code, but processed by
length-1 subsets. The data set is the same as that from Figure A.1. This is equivalent to applying the
long-code processing methodology to a repetitive code data set. The OC echo shown in (a) displays
mitigated Doppler aliasing, but clutter from the leading edge of the planet appears at multiples of
the pulse repetition frequency ±m/T for integer m and T = Nb . The SC echo shown in (b) does not
exhibit strong clutter, since the specular echo from the leading edge does not dominate the return.
The FFT length is 1023× 1024 = 1047552, but only the central 4092 points are shown. All 1023
possible delays are computed and shown.
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Figure A.9 Mercury imaged by long-code method. Doppler aliasing is mitigated, and the clutter
sidelobes are randomized, and appear as additive noise rather than in any one particular area. The
additive noise in this image is not solely due to the use of the long-code method. A radar system with
≈ 8 dB lower SNR was used to generate this data set as compared to the system which generated
Figure A.7, as both short- and long-code data sets from the same radar system were not available.

Two conclusions regarding waveform design and processing can be made from the

above examples: i) re-processing of existing, repetitive code data sets with different signal

processing algorithms can yield usable images without the effects of Doppler folding but

with periodic clutter, and ii) use of a longer than normal PN sequence, on the order of

the coherent integration time necessary for the required cross-range resolution, can yield

images without Doppler folding or periodic clutter.

A.1.2 Comparison of long-code and subset code

The advantage of the long-code method over the subset code method is evident when view-

ing the extent of the leading edge leakage into the high Doppler bins in the output delay-

Doppler array. Such leakage is not present in a long-code image shown in Figure A.9. By

effectively changing the range compression filters for each realization of the coherent in-

tegration, the long-code method randomizes the undesirable sidelobe response of any one
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realization of the delay-Doppler ambiguity function and averages this sidelobe response

across multiple incoherent-averaging periods. The disadvantage of the long-code tech-

nique is the appearance of the undesired leakage as an overall increase in the noise floor

of the imaging process, which can mask weaker features. The randomized leakage of the

long-code method cannot be estimated and removed by deconvolution in the image do-

main, as the exact sidelobe structure of the imaging point spread function changes on a

pulse-to-pulse basis.

Since the subset code processor can be implemented as a convolution with two fixed

FIR filters, one of length 512 and one of length 511, the processing can proceed nearly as

efficiently as with standard code processing.

A.1.3 Subset-code processing of long-code data

Long-code imaging can be viewed as a subset code problem, in which a savings of three

to five in processing time can be realized if significant downsampling of the data is carried

out between the range and Doppler matched filtering stages. The smoothing and deci-

mation process implemented in standard long-code processing of each delay bin (Harmon,

2002), which is implemented as a time-domain convolution in standard processors, is math-

ematically equivalent to convolution with a length N filter to form the output of all delay

bins. Transforming time-domain convolution to the frequency-domain yields the speed

improvement noted above for slightly overspread targets such as Mercury. For massively

overspread targets such as Mars, there is no downsampling of the output of the convolution

process, and therefore no corresponding savings in processing time. For highly overspread

targets, the coherent integration time required to form the images is very short, and there-

fore the equivalent range compression filter is only 1 or 2 bauds long. Transforming this

short convolution to the frequency domain does not save but, in fact, adds to the processing

time.

The improvement to total processing time for standard long-code imaging is not as dra-

matic as the reduction in processing time for the equivalent length subset code processing.

The reason for this discrepancy is that the values of the taps in the range compression filter
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in subset code processing do not change over the course of the observation, so transfor-

mation of the filter taps to the frequency domain requires only one FFT for each filter at

the outset of processing. For fast long-code processing, the values of the taps of the range

compression filter change over the course of the observation, so the frequency domain rep-

resentation of the filters must be computed for each coherent integration interval, which

results in many additional FFTs over the course of an observing run.

A.2 Windowing to suppress long-code sidelobes

The ambiguity function is a powerful tool for examining the effectiveness of the radar

imaging process. As has been noted earlier, high sidelobes in the ambiguity function lead

to artifacts in the output delay-Doppler array, degrading the final image. By studying the

ambiguity function of the long-code imaging process, we can identify deficiencies and

develop filters to alleviate the artifacts created by the deficiencies.2

A.2.1 Long-code ambiguity function

Since the coded sequence changes for each pulse in the train, analysis of the long-code

ambiguity function is best carried out using a random signal analysis approach. As many

coherent integration intervals are averaged incoherently to form the final output delay-

Doppler array, we use a statistical description of the average ambiguity function of a co-

herent integration interval.

The statistical ambiguity function of the random BPSK waveform was first described

by Lin (1985) at the Naval Research Laboratory. If the period of the PN sequence generator

used for the long-code is many times the total observation interval, then the subsets of the

output of the PN generator can be taken as uncorrelated. We summarize the method of Lin

(1985) in this derivation.3

2We thank Bryan Butler of the National Radio Astronomy Observatories for prompting this exploration
by asking the question, “Why don’t you window your transforms in long-code processing?”

3An alternate formulation for the ambiguity function of a random PN waveform has been given by Harmon
(2002).
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-1

. . .

+1

b

Figure A.10 Random BPSK waveform. The baud or “chip” length b sets the range resolution of
the waveform. The voltage state −1 or 1 can occur with equal probability.

Define the random binary phase-shift keyed signal as

ψ(t) =
N

∑
n=1

Pn(t)e
j(2π f0t+θn), 0 ≤ t ≤ Nb (A.1)

where

Pn(t) =

{

1 (n−1)b ≤ t ≤ nb

0 else
, (A.2)

θn ∈ {0,π} with equal probability, f0 is the carrier frequency, and N is the number of bauds

of length b in the section of waveform as shown in Figure A.10 (Cook and Bernfeld, 1967).

Let cn = e jθn ∈ {−1,1}. From the definition of the ambiguity function χ ,

χ(kb+ τ ′, fd) = χp(τ ′, fd)
N

∑
n=1

cncn+ke− j2π fd(n−1)b

+ χp(b− τ ′, fd)
N

∑
n=1

cncn+k+1e− j2π fdnb,

0 < τ < ∞, −∞ < fd < ∞

where

χp(τ ′, fd) =
∫ b−τ ′

0
e− j2π fdt dt, 0 < τ ′ < b. (A.3)
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τ ′

kb

τ

Figure A.11 Lagged waveform. To compute the ambiguity function at zero Doppler, the random
PN waveform is delayed by an integer number of bauds k and by a fractional baud τ ′ (see text).

We define the quantities τ ′ and k by

τ = kb+ τ ′,

{

0 < τ ′ < b

k = 0,1, . . .
(A.4)

where k represents an integer number of bauds of lag, and τ ′ represents the fractional baud

lag. As k can be any non-negative integer, the definition of the ambiguity function has been

changed to allow cross correlation of Nb seconds of the random BPSK sequence with any

other length Nb section of the sequence. Temporarily setting fd = τ ′ = 0, we see

χ(kb,0) = b
N

∑
n=1

cncn+k. (A.5)

This is the autocorrelation function for a random binary sequence.

The ambiguity function for zero Doppler and integer offsets is

|χ(kb,0)|2 = b2E

[

N

∑
n=1

N

∑
m=1

cncmc∗n+kc∗m+k

]

. (A.6)
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To evaluate the expectation in (A.6), recall that ci ∈ {−1,1} with equal probability, and

note that the expected value of a product of unity powers of ci is

E [ci] = E
[

cic j
]

= . . . = 0, (A.7)

and the expected value of a product of squares c2
i is

E
[

c2
i

]

= E
[

c2
i c2

j

]

= . . . = 1. (A.8)

The ambiguity function for zero Doppler and integer offsets (A.6) thus becomes

|χ(kb,0)|2 =

{

b2N2, k = 0

b2N, k = 1,2, . . .
, (A.9)

with a range sidelobe ratio of

|χ(kb,0)|2k 6=0

|χ(0,0)|2
=

b2N
b2N2 =

1
N

. (A.10)

For non-zero Doppler ( fd 6= 0) and fractional offsets (τ ′ 6= 0) it can be shown (Lin, 1985)

that the ambiguity function is

|χ(τ, fd)|2 =



































sinc2[ fd(b− τ ′)] N2(b− τ ′)2
[

sinc2( fdNb)

sinc2( fdb)

]

+ sinc2( fdτ ′)Nτ ′2 k = 0

sinc2[ fd(b− τ ′)] N(b− τ ′)2

+ sinc2( fdτ ′) Nτ ′2 k = 1,2, . . .

.

Normalizing by substituting τ̄ = τ ′/b, f̄d = fdNb gives

∣

∣χ̄(τ̄ , f̄d)
∣

∣

2
=
∣

∣χ(τ̄ , f̄d)
∣

∣

2
/N2b2. (A.11)

This ambiguity function is shown in Figure A.12.
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Figure A.12 Statistical ambiguity function of the long-code method. For the typical long-code
waveform employed for 3.5 cm wavelength imaging of Mercury, the ambiguity surface exhibits low
delay sidelobes, but high Doppler sidelobes. At 40 µsec baud, the matched filter length is N = 216,
leading to 10log10(2

16) = 48 dB delay sidelobes.

Viewing the resolution elements around the peak in the ambiguity diagram, it is appar-

ent that though the ambiguity diagram has good sidelobe suppression (−50 dB) along the

delay axis, there are significant sidelobes (−12 dB) along the Doppler axis. These high

Doppler sidelobes result from lack of weighting in the Fourier analysis which forms the

bank of Doppler matched filters. This window response is commonly called the rectan-

gular or Dirichlet window in the signal processing literature. We can view χ(τ, fd) as the

multiplication of the ambiguity function of a width b pulse with the discrete time Fourier

transform of the Dirichlet kernel

χ(τ, fd) = χp(τ ′, fd)
N

∑
n=1

wncncn+ke− j2π fd(n−1)b . . . (A.12)

where wn = 1, n = 1, . . . ,N are the Dirichlet window weights with discrete time Fourier

transform

wn
|F |2−→ |W ( fd)|2 = N2 sinc2( fdNb)

sinc2( fdb)
. (A.13)
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Figure A.13 Hamming weighted ambiguity function for Mercury imaging at 3.5 cm wavelength.
The Hamming sidelobe ratio of ≈ 43 dB closely matches the delay sidelobe level for Mercury
imaging of 48 dB, resulting in a near-ideal thumbtack-like ambiguity surface. Some broadening of
the main lobe occurs as a result of windowing.

As the sidelobes contribute to blurring in the final image, we can form a more accurate

image by modifying the imaging function to eliminate the sidelobes. This is achieved by

changing the windowing function at the input to the Doppler matched filtering process.

A.2.2 Hamming and Dolph windows

There are many standard windows available for improving the sidelobe response, such as

the Hamming window. Applying the Hamming window results in the Doppler sidelobe

suppression shown in Figure A.13. The Hamming window exhibits a fixed amount of

sidelobe suppression equal to ≈ 43 dB near the main lobe. For the case of Mercury imaging

at 3.5 cm as shown in Figure A.13, the Hamming window coincidently results in a level

of sidelobe attenuation in the Doppler dimension equal to that produced by the coherent

integration time sets for the delay dimension.



A.2. WINDOWING TO SUPPRESS LONG-CODE SIDELOBES 151

 0
Doppler

 0
delay

-70

-60

-50

-40

-30

-20

-10

 0

dB

Figure A.14 Hamming weighted ambiguity function for 3.5 cm Mars imaging. At 40 µsec baud,
the matched filter length is N = 29, resulting in 10log10(1/29) = −27 dB delay sidelobes. A mis-
match between delay and Doppler sidelobe suppression produces a non-ideal ambiguity surface.
The delay sidelobes are ≈ 15 dB higher than the Hamming-weighed Doppler sidelobes.

The needed amount of Doppler sidelobe suppression is not fixed, however. One charac-

teristic of the long-code ambiguity function not previously mentioned specifically, but ap-

parent when viewing the result in (A.9), is that the sidelobe level of the ambiguity function

in the delay dimension is 1/N. As discussed in Section 2.1.2, the total coherent integration

time for one particular chosen delay resolution or radar baud will change as a function of

planet rotation angular velocity.

The shorter coherent integration time in the case of Mars imaging at 3.5 cm results

in ≈ 30 dB delay sidelobes as shown in Figure A.14. The sidelobe attenuation provided

by the Hamming window is too great in this case, as Figure 2.13 shows that an idealized

thumbtack ambiguity function has flat skirts (Rihaczek, 1969).

We introduce here a design method for long-code imaging, adapting the amount of

Doppler sidelobe suppression so that the sidelobe level in the delay and Doppler dimensions

can be equalized, while keeping the Doppler resolution consistent with the range resolution.

The Dolph window is rare among data windows in that it has an adjustable design

parameter, which makes it possible to trade main lobe width for lower sidelobes, without
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Figure A.15 Length 1023 Dolph-Chebyshev window. The distinguishing characteristic of the
Dolph window is the impulse at each end of the weighting function. This impulse is responsible for
the equiripple property of the sidelobe response.

changing the length of the window. Dolph (1946) developed the window as a weighting

function for broadside linear arrays of antenna elements. The window is computed from a

series of Chebyshev polynomials, and is sometimes called the Dolph-Chebyshev window as

a result. An example Dolph weighting function is shown in Figure A.15. Note the impulses

at either end of the weighting function. Dolph sought a uniform sidelobe response across

the sidelobe region, and the Chebyshev polynomial construction allows this.4 The Dolph

window did not find much use in its original application because the impulse at opposite

ends of the weighting function is difficult to achieve in linear antenna arrays. As long as

it does not cause numerical instability in the integration of the final result, the impulse is

readily applied in digital signal processing. For the FFT transforms used in current long-

code imaging, numerical stability is not an issue for digital floating point arithmetic.

4The equal ripple property is also desirable in FIR filter design, and Chebyshev polynomials were found
ideal for the task by Parks and McClellan (1972). The correspondence between windowing functions and
filter design is well known—see for example Oppenheim and Schafer (1989)—and will not be discussed
further.
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The Dolph-Chebyshev window sidelobe level is specified readily. The window’s nor-

malized frequency response is

∣

∣W̄ ( f̄d)
∣

∣

2
=

∣

∣TN−1
(

z0 cos(π f̄d/N)
)∣

∣

2

|TN−1(z0)|2
, (A.14)

where the Chebyshev polynomial TM(z) is defined as

TM(z) =

{

cos[M cos−1(z)], |z| ≤ 1

cosh[M cosh−1(z)], |z| > 1
, (A.15)

where for a desired sidelobe level of −20log10(s) dB the scaling constant z0 is

z0 = cosh

[

1
(N −1)

cosh−1(s)

]

. (A.16)

In order to apply the Dolph window to long-code processing, it is necessary to derive

a relationship between sidelobe attenuation in the delay and Doppler dimensions. Equal-

izing the delay and Doppler sidelobes causes the ambiguity function to approach the ideal

thumbtack-like point spread function as shown in Figure A.16. The sidelobes in this figure

should be compared to those in Figure A.14, where Hamming weighting produces over

15 dB of unwanted sidelobe attenuation.

A.2.3 Consideration of cross-range resolution

Use of windowing broadens the central lobe of the ambiguity function in the fd dimension.

This necessitates correlating for a longer time Nb to equalize range and cross range reso-

lutions. Longer correlation times result in a lower sidelobe level in the delay dimension,

which decreases as

10log10(1/N). (A.17)

Simultaneously optimizing the range and cross range sidelobes requires solution of the

transcendental equation
√

N = TN−1

[

cos(π/2N)

cos(π fc/ fs)

]

, (A.18)
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Figure A.16 Dolph weighted ambiguity function for Mars imaging. By correctly choosing the
Dolph window coefficients to match the ≈ 27 dB attenuation in the delay dimension, the sidelobe
suppression in the Doppler and delay dimensions is equalized.

where the cutoff frequency is fc = ωs f0b/2.

The solution point N ′ for a particular imaging problem is easily obtained numerically.

That a solution to the expression (A.18) exists as can be seen from Figure A.17, a plot

of both sides of the equation. As the Chebyshev polynomial increases exponentially, a

solution point indicated by the intersection of the two curves exists for all non-trivial win-

dow lengths. Applying the design equation to the Mars imaging problem results in the

equalization of delay and Doppler sidelobes of the long-code imaging process as shown in

Figure A.16. The criterion for equal resolution in the delay and Doppler dimensions can be

incorporated into the equation by including the effect of the broadening of the main lobe

into the equation for delay sidelobe level.

Applying the proper window to the data before Doppler matched filtering results in

an enhancement to the apparent quality of the radar imaging system as the contributions

from sidelobes of the imaging function are equalized in both the delay and Doppler dimen-

sions. The resulting ambiguity function more closely approximates the ideal thumbtack

point spread function. There are two caveats to this enhancement. First, the broadening of

the main lobe of the Dirichlet window requires increasing the coherent integration time to
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Figure A.17 Plot of both sides of (A.18) for Mars imaging at f0 = 8560 MHz (3.5 cm) and
baud b = 40 µsec. The intersection point of the curves gives the window length N ′ ≈ 3300 which
equalizes the delay and Doppler sidelobe levels of the long-code radar ambiguity function.

achieve equal resolution in the delay and Doppler dimensions, and this increase can cause

blurring due to migration through delay-Doppler resolution elements. The limit for unfo-

cused processing must be adhered to, or an alternate focusing method (Stacy, 1993) must

be employed. Second, weighting of the received pulse causes a loss in peak SNR due to

the filter mismatch (Urkowitz et al., 1973). For a window of length N, the loss factor γ is

defined by

γ =
N ∑N

n=1 w2
n

(

∑N
n=1 wn

)2 , (A.19)

and the Dolph-Chebyshev weights wn for N even are

wn =
2
N

{

s+2
N/2−1

∑
k=1

TN−1

[

z0 cos

(

πk
N

)]

cos

[

2πk
N

(

n− N +1
2

)]

}

. (A.20)

n = 1, . . . ,N (A.21)

Parameters z0 and s are as defined previously. This decrease can be alleviated using peri-

odogram methods (Welch, 1967), but the typical 50 percent overlap of such methods can
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result in a doubling of the processing time.

A.3 Orthogonality of sub codes of the long-code waveform

As mentioned in in Section 2.3.2, the individual sub-codes of the long-code method can

be considered essentially random since the generator can be started in any state. Here

we use statistical signal analysis to show that the baseband, unmodulated sub codes of the

long-code method are orthogonal, and hence exhibit one property of optimal delay-Doppler

codes Guey and Bell (1998). We emphasize that satisfying this condition does not mean

that the long-code method—which uses time-division multiplexing of the pulses on a RF

carrier—is optimal in practice.

Let s(t) be the complex baseband transmitted signal defined on the interval 0 ≤ t ≤ T .

A single point scatterer is located at delay τ0 and Doppler ν0. The corresponding baseband

received signal from a point scatterer after demodulation is

r(t) = s(t − τ0)e
j2πν0τe jφ , (A.22)

where the term e jφ = e j2π f0τ0 accounts for accumulated carrier phase at frequency f0, and

τ is the matched filter delay. Assume the signal is passed through a matched filter for a

signal q(t), where

q(t) = s(t − τ)e j2πντ (A.23)

is the signal from a point scatterer assumed to be at point (τ,ν). The differences

(τ − τ0,ν −ν0) (A.24)

then represent the difference between the assumed location of the point scatterer and the

actual location at (τ0,ν0). The matched filter for the initial point is

hτ,ν(t) = q∗(T − t)

= s∗(T − t − τ)e− j2πν(T−t), (A.25)
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where the asterisk represents complex conjugation, and the filter has been delayed by a

time T to make the solution causal.

The maximum output of the filter occurs at t = T. To demonstrate this, we can compute

the convolution of q(t) and hτ,ν(t) evaluated at t = T

q(t)∗hτ,ν(t) =
∫ ∞

−∞
s(γ − τ)e j2πνγs∗[T − (t − γ)− τ]e− j2πν [T−(t−γ)] dγ, (A.26)

where ∗ in binary operator context denotes the convolution operation and γ represents the

time shift inherent in the convolution. Evaluating the convolution at t = T gives

q(t)∗hτ,ν(t) =
∫ ∞

−∞
s(γ − τ)s∗(γ − τ) dγ = Es, (A.27)

where Es is the signal energy, the maximum output of the matched filter.

The response of the matched filter to the incident wave from the point scatterer at

(τ0,ν0) evaluated at time t = T is denoted by OT (τ,ν). The response is computed as

OT (τ,ν) = r(t)∗hτ,ν(t)|t=T

=
∫ ∞

−∞
s(γ − τ0)e

j2πτ0γe jφ s∗[T − (t − γ)− τ]e− j2πν [T−(t−γ)] dγ
∣

∣

∣

∣

t=T

= e jφ
∫ ∞

−∞
s(γ − τ0)s

∗(γ − τ)e j2π(ν0−ν)γ dγ. (A.28)

Making a change of dummy integration variable ξ = γ − τ0

OT (τ,ν) = e jφ
∫ ∞

−∞
s(ξ )s∗[ξ − (τ − τ0)]e

j2π(ν0−ν)(ξ+τ0) dξ

= e jφ e j2π(ν0−ν)τ0

∫ ∞

−∞
s(ξ )s∗[ξ − (τ − τ0)]e

j2π(ν0−ν)ξ dξ

= e jφ e j2π(ν0−ν)τ0

∫ ∞

−∞
χs(τ − τ0,ν −ν0) (A.29)

where the ambiguity function of the signal s(t), denoted by χs(τ,ν) is

χs(τ,ν) =
∫ ∞

−∞
s(t)s∗(t − τ)e j2πνt dt. (A.30)
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With this notation, Guey and Bell (1998) continue to show that for a set of N signals

si(t), i = 0, . . . ,N − 1 transmitted on independent channels, the response of the array of

matched filters O i
T (τ,ν) to a single point scatterer at (τ0,ν0) is

O
0
T (τ,ν) = e jφ e j2π(ν−ν0)τ0 χs0(τ − τ0,ν −ν0)

= χ̃s0(τ − τ0,ν −ν0)

O
1
T (τ,ν) = e jφ e j2π(ν−ν0)τ0 χs1(τ − τ0,ν −ν0)

= χ̃s1(τ − τ0,ν −ν0)
...

O
N−1
T (τ,ν) = e jφ e j2π(ν−ν0)τ0 χsN−1(τ − τ0,ν −ν0)

= χ̃sN−1(τ − τ0,ν −ν0). (A.31)

These response signals can be combined coherently to form

O
C
T (τ,ν) = e jφ e j2π(ν−ν0)τ0

N−1

∑
i=0

χsi(τ − τ0,ν −ν0) (A.32)

which has the form of a point target at (τ0,ν0) imaged by a new point spread function

C(τ,ν) =
N−1

∑
i=0

χsi(τ,ν) (A.33)

and is called the “composite ambiguity function.”

Using this foundation, Guey and Bell (1998) define the following terms and prove the

following two-part theorem:

Definition: For a set of N signals s0(t),s1(t), . . . ,sN−1(t) each with total energy

Es =
N−1

∑
i=0

∫ ∞

−∞
|si(t)|2 dt, (A.34)
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define the volume V (c)
amb under their associated composite ambiguity function C(τ,ν) as

V (c)
amb =

∫ ∞

−∞

∫ ∞

−∞

∣

∣

∣

∣

∣

N−1

∑
i=0

χsi(τ,ν)

∣

∣

∣

∣

∣

2

dτdν . (A.35)

Theorem:

1. The volume V (c)
amb under the composite ambiguity function satisfies

E2
s

N
≤V (c)

amb =
N−1

∑
n=0

N−1

∑
m=0

∣

∣

∣

∣

∫ ∞

−∞
sn(t)s

∗
m(t) dt

∣

∣

∣

∣

2

≤ E2
s . (A.36)

2. Furthermore, the minimum volume is achieved when {s0(t),s1(t), . . . ,sN−1(t)} is a

set of equal-energy orthogonal signals. �

This theorem shows that by proper choice of an optimal signal set {si(t)}, the volume under

the composite ambiguity function can be reduced, resulting in an overall imaging point

spread function with better resolution characteristics than a single repeated waveform.

We now show that randomly chosen, binary phase-shift-keyed waveforms satisfy the

conditions of this theorem. From the definition of the long-code signal in Section A.2.1 we

can see that any two length M sections of the truly random code will satisfy the orthogonal-

ity requirement of part 2 of the theorem. Neglecting fractional offsets, the expected value

of the inner product of the two sections s1(t),s2(t) of long-code will be

E
∫ ∞

−∞
s1(t)s

∗
2(t) dt = E

M−1

∑
i=0

(δc1,n)(δc2,n) (A.37)

where δ is the pulse baud or chip length, c1,n,c2,n ∈ {−1,1} with probability 1
2 are the chip

values, and E is the expectation operator. Since E(c1,nc2,n) = 0 for random chips, we have

E
M−1

∑
i=0

(δc1,n)(δc2,n) = δ 2
M−1

∑
n=0

E(c1,nc2,n) = 0 (A.38)
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The energy of the selected subset signal is

Es = E
∫ ∞

−∞
si(t)s

∗
i (t) dt = δ 2

M−1

∑
i=0

E(c2
i ) = δ 2M (A.39)

which is independent of the particular instance of the random binary waveform. Since

subsets of the random binary waveform satisfy (1) and (2) of the theorem, it would appear

that they form an optimal set of diversity waveforms for enhanced resolution imaging.

There is one difficulty in satisfying the constraint under which the theorem was proved.

Guey and Bell (1998) assume that the signals are sent at the same time and at the same

carrier frequency by non-interfering channels. In practice, it is desirable to send all pulses

on the same channel via time-division multiplexing, as suggested by Sivaswamy (1982).

But Zeoli (1982) points out, as do Guey and Bell (1998), that even if motion of the target

through range-Doppler cells is insignificant over the time interval NT needed to transmit N

pulses, a transmit time dependent total carrier phase term e j2πν0iT is present in the received

signal for each pulse, so that the output of the matched filters becomes

O
0
T (τ,ν) = χ̃s0(τ − τ0,ν −ν0)

O
1
T (τ,ν) = e− j2πν0T χ̃s1(τ − τ0,ν −ν0)

...

O
N−1
T (τ,ν) = e− j2πν0(N−1)T χ̃s1(τ − τ0,ν −ν0). (A.40)

These terms may be combined by estimating the unknown Doppler ν̂0 and multiplying

each received signal si(t) by the correction term e− j2πν̂0iT before coherent combining. The

problem with this method is that if there is a second point target in the target space at

location (τ1,ν1), then there will be a mismatch between this target’s velocity ν1 and the

estimated velocity for the first point target ν̂0. The response of the coherent sum to this

additional target will be

O
C
T (τ,ν) =

N−1

∑
i=0

e j2π(ν1−ν0)iT χsi(τ − τ1,ν −ν1) (A.41)

This is called “defocusing” by Guey and Bell (1998) or “self noise” by Harmon (2002).



A.4. SUMMARY 161

Guey and Bell (1998) suggest that an iterative technique may be attempted to correct for

this issue, and note that when the field of the radar is filled with many strongly scattering

point sources, unbiased estimation becomes problematic.

A.4 Summary

Long-code imaging can be cast into a more general form called subset codes, which im-

proves the processing efficiency. The subset code technique may also be used to process

conventional repetitive code data sets to remove the effects of Doppler aliasing, albeit again

at the cost of higher clutter. The higher clutter of long-code processing can be partially off-

set by the choice of a Dolph window that equalizes the sidelobe ratio in the delay and

Doppler dimensions. The long-code waveform ultimately fails to meet the optimal wave-

form criteria, even though the individual, baseband sub-pulses satisfy the orthogonality

condition of the theorem of Guey and Bell (1998). We desire to image a natural surface

which effectively consists of many point sources, one in each resolution cell of the imaging

radar’s field of view. All resolution elements contribute a “defocus” or “self-noise” term

when using a time-division-multiplexed, modulated waveform. Guey and Bell (1998) re-

mains an interesting information-theoretic result, but implementing the concept for radar

imaging of natural surfaces remains an unsolved problem.
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Appendix B

Mercury Polar Region Maps

This appendix collects the 6 km resolution radar maps of Mercury from Chapter 5 and

presents them co-registered with optical data from the Mariner 10 mission prepared by

Robinson et al. (1999).1 Each polar stereographic projection is broken up into six panels

and presented in order according to the key in Figure B.1 on page 164.

1Electronic versions are available on-line from ������������� � � �	� ��
��������
����������� �����	������� ��������� ���
��� �������
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Figure B.1 Key for alignment of Mercury image plates.
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South Pole Plate 1
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South Pole Plate 2
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South Pole Plate 3
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South Pole Plate 4
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South Pole Plate 5
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South Pole Plate 6
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North Pole Plate 1
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North Pole Plate 2
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North Pole Plate 3
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North Pole Plate 4
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North Pole Plate 5
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North Pole Plate 6
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