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A flamelet formulation for non-premixed combustion that allows an exact description of differential diffusion
has been developed. The main difference to previous formulations is the definition of a mixture fraction
variable, which is not related directly to any combination of the reactive scalars, but defined from the solution
of a conservation equation with an arbitrary diffusion coefficient and appropriate boundary conditions. Using
this definition flamelet equations with the mixture fraction as the independent coordinate are derived without
any assumptions about the Lewis numbers for chemical species. The formulation is shown to be exact if the
scalar dissipation rate is prescribed as a function of the mixture fraction. Different approximations of the scalar
dissipation rate that had been derived from analytic solutions for special cases are investigated by varying the
diffusion coefficient of the mixture fraction transport equation. As examples, counterflow flames of hydrogen
and n-heptane, which have much larger and much smaller diffusivities than oxygen and nitrogen, are
considered. It is shown that the use of equal thermal and mixture fraction diffusivities yields a sufficiently
well-described flame structure and is therefore recommended for the definition of the mixture fraction diffusion
coefficient. Finally, the possibility of using constant species Lewis numbers has been examined. It has been
found that once an appropriate set of Lewis numbers is determined, good results are achieved over wide ranges
of the parameters, such as scalar dissipation rate, pressure, and oxidizer temperature. © 1998 by The
Combustion Institute
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v stoichiometric mass ratio
stoichiometric coefficient of species or
element i

dynamic viscosity

reaction rate
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transformed time coordinate

scalar dissipation rate
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Subscripts

1,F Fuel
2, Ox Oxidizer
st stoichiometric mixture

INTRODUCTION

Flamelet theory for non-premixed combustion
has been used successfully for numerical predic-
tions of turbulent combustion [1-5] and the
evaluation of experimental data [6-7]. Accord-
ing to Refs. 9 and 10 the flamelet equations are
given by

Y, x %Y, 0 )
p at P 2572 m; = (1)
aT  x9°T 1aop X
e —— - — 4 . = .
Plor ~ P20z ¢, o E} hahy = 0. (2)

This formulation relies on the Shvab—Zeldov-
ich formulation of the species mass fraction and
energy equations, which involves the approxi-
mation of unity Lewis numbers for all species
(see, for example, Ref. 10). The Lewis numbers
Le; are defined by

A
Lei - pD,‘Cp (3)

and represent the ratio of thermal to mass
diffusivities.

Several authors have investigated the influ-
ence of nonunity Lewis numbers on turbulence-
chemistry interaction [11] and on laminar flame
structure using asymptotic analysis [12-15] and
numerical calculations [16], reporting large
changes in temperature, species profiles, and
the extinction limit [16]. Cuenot et al. [15] have
even shown that the adiabatic flame tempera-

ture is not necessarily a monotone function of
the fuel and oxidizer Lewis numbers.

To account for differential diffusion effects,
flamelet calculations often are performed using
stretched counterflow diffusion flames with re-
alistic transport properties instead of using the
flamelet equations [17]. In Ref. 18 an additional
equation for the mixture fraction was intro-
duced in order to be able to plot the numerical
results for counterflow diffusion flames as a
function of the mixture fraction. On the other
hand, when the equations are to be solved in
mixture fraction space, a problem arises. Mauss
et al. [19] retained nonunity Lewis numbers in
the diffusion term solving the equations

p o =0 @)

instead of Eq. 1. However, the assumption of
unity Lewis numbers is used in the transport
equation for the mixture fraction and this re-
sults in an inconsistent formulation, if Eq. 4 is
combined to calculate element mass fractions
and these are used to determine the mixture
fraction.

The same problem arises in the evaluation of
experimental results, if comparisons to flamelet
calculations are made. But this can be circum-
vented by determining the mixture fraction
from the numerical solutions with the same
definition used in the evaluation of the experi-
mental data.

The aim of this study is to derive an improved
flamelet formulation for the numerical simula-
tion of non-premixed combustion. The work
focuses particularly on the definition of the
mixture fraction, the effects of differential dif-
fusion, and the modeling of the scalar dissipa-
tion rate. First, a new definition that allows the
inclusion of differential diffusion effects will be
given. Then, using appropriate transport mod-
els, the flamelet equations will be derived. Fi-
nally, simplifications of the transport model are
discussed.

All equations are for the one-dimensional
flame configuration, since then the final results
are exact with respect to the transformation,
rather than being the result of asymptotic ap-
proximations.
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Calculations are shown for steady hydrogen/
air flames, since the low Lewis number of
hydrogen, Leyy, = 0.3, causes nonequal diffusion
effects to be pronounced. The ambient condi-
tions of the presented test calculations are a
pressure of p = 1 bar and fuel and air temper-
atures of T = T, = 300 K. To study possible
simplifications of the transport model, n-hep-
tane is used to represent fuels with a higher
Lewis number. Chemical rate constants are
taken from Bollig et al. [20].

MIXTURE FRACTION

Since the early work of Burke and Schumann
[21] the structure of non-premixed flames has
been discussed in terms of conserved scalar
variables, which are chemistry independent.
These simply describe the mixing between fuel
and oxidizer.

The classical definition of the mixture frac-
tion is that of a normalized conserved scalar
variable [10] employed by Burke and Schumann
[21]. This is derived from a one-step overall
chemical reaction vgF + v5,0x — vpP with the
reaction rate w, where F, Ox, and P refer to fuel,
oxidizer, and products, respectively.

With the operator

0
§£=p5+pV°V—V-(pDV) (5

the Shvab-Zeldovich formulation of the trans-
port equations for the mass fractions of fuel and
oxidizer, with the same diffusivity for all species,
is

$(YF) = —VFWF‘U
(Yo = —voWoxw.

Elimination of the reaction rate o leads to the
coupling function B

(6)

33(;3)533( Ye Yox ) = 0. (7)

VW voWox

If one considers a two-feed system [22],
where feed 1 is the fuel stream and feed 2 is the
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oxidizer stream, the coupling function is nor-
malized as

B~ B
zZ= 8
By~ B2 ( )
to yield a mixture fraction given by
7 = vYp — Yor + Youo
N vYg, + Yoxz ’
)
voxWox
V= .
VW

According to Eq. 8 the mixture fraction Z is a
conserved variable with the properties of being
unity in feed 1 and zero in feed 2.

If the chemistry is very fast and hence occurs
in thin layers and the diffusivities of fuel and
oxidizer are nearly the same, as for instance for
methane/air mixtures, this definition can be
used for the interpretation of experimental
data. However, if more general chemistry is
considered, fuel may first be converted to inter-
mediate species. These intermediates can occur
in broad layers, in which both fuel and oxidizer
concentrations are negligibly small, and hence
the mixture fraction from Eq. 9 has a constant
value.

An alternative definition designed to remedy
this problem is based on local element balanc-
ing [24]. If Z; are the element mass fractions of
C, H, and O and a global reaction

Vcc + VHH + Voo d P, (10)

is considered, the coupling function can be
derived as

ZC ZH ZO )=O

L) = §£<VCWC " vuWh -2 voWo
(11)

With Eq. 8 the mixture fraction is then given by

_ ZAJ(wveWe) + ZullvaWy) + 2(Zo o — Zo)/(voW o)

ZC,I/(VCWC) + ZH,I/(VHWH) + 220’2/(V0WO)

(12)
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Equation 12 no longer determines the local
species composition, but the stoichiometric
value of the mixture fraction is still preserved.
The main disadvantage of this definition is that
in the evaluation of experimental data all con-
tributing species have to be known accurately.
Furthermore, differential diffusion effects ap-
pear in a transport equation for the mixture
fraction derived from the definition given by Eq.
12.

Other definitions of the mixture fraction, for
instance an H atom balanced definition [24],
have been used in the literature. These are
equivalent to Eq. 12 but can have advantages in
the evaluation of experimental data.

To create a formulation that considers differ-
ential diffusion, the mixture fraction has to be
defined differently. The definitions according to
Egs. 9 and 12 have been shown to be inappro-
priate, because it is impossible to derive a conser-
vation equation without the assumption of simple
mixing. Hence, we define the mixture fraction in
a two-feed system directly as a conserved scalar
satisfying the transport equation

YA
pE+pv-VZ—V-(pDZV-Z)=0 (13)

and being zero in one feed and unity in the
second feed. For this definition no assumptions
about the Lewis numbers of the chemical com-
ponents have been made. As a consequence, the
mixture fraction no longer preserves its stoichi-
ometric value because the mixture fraction dis-
tribution is only determined by the conservation
equation and hence is uncoupled completely
from the local composition. However, this is not
a restriction for the resulting flamelet model,
since the stoichiometric value of the mixture
fraction is not required. As a constant reference
value of the mixture fraction the stoichiometric
value evaluated from Eq. 9 or 12 will be used.

In Eq. 13 D is an arbitrary diffusion coeffi-
cient, which, for instance, can be chosen such
that the Lewis number of the mixture fraction
Le is equal to unity.

Equation 13 also can be derived formally
from an element-based definition of the mixture
fraction under the assumption of unity Lewis
numbers, but note that here the transport equa-

tion is the definition of the mixture fraction, and
thus simple transport has not been assumed.

FLAMELET EQUATIONS

If laminar counterflow diffusion flames are con-
sidered, a one-dimensional set of equations can
be derived [25] and the governing transport
equations for species mass fractions Y; and
temperature 7 are given by

oY, a—Y—i+a(YV i; = 0 14
4 aypiiy) m; =0, (14)

_+_
Poar TPV %y
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£+ oT 0 ( aT)
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N

aT 9

+ 3 pY Ve LA
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b4 Pi'é;— ot

N
>, ki, = 0. (15)
i=1

The diffusion velocities are commonly ex-
pressed by the Curtiss—Hirschfelder approxima-
tion [26] with a correction velocity V“ accounting
for mass conservation (Method IIT in Ref. 27)

Vy=Vi+ V7, (16)

where the ordinary diffusion velocities in the
absence of pressure gradients and external
forces are given by

. 1 3X; D;oY, D,oW
R e T
X; ay Y, oy W ay
w
et vy

and the correction velocity, determined from
the mass conservation constraint S;_; YiVi =
0, is

i Y, X Y.D.oWw
= Z D, —+ E W *é;

k=1

ver

(18)
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Fig. 1. Comparison of different diffusion velocity approxi-
mations in a hydrogen diffusion flame. Solid line represents
use of polynary diffusion coefficients; dashed line represents
use of binary diffusion coefficients. Dotted line represents a
simple mixing approach with diffusion velocities approxi-
mated by Eq. 19.

Figure 1 demonstrates the importance of the
diffusion approximation. Numerical calcula-
tions applying this approximation are compared
with a more complex model using polynary
diffusion coefficients (Method I in [27]). The
models are in good agreement, which has already
been shown by other authors [28]. Additionally, to
demonstrate the necessity of an elaborated diffu-
sion model for a general formulation, the results
using a simple model for the diffusive fluxes,
approximating the diffusion velocities by

1 dY;
Vy=—5D

Yi i—a;’ (19)

are shown in Fig. 1. This model has, for exam-
ple, been employed by Smooke et al. [29] for
methane flames leading to reasonable results
and also is used in Eq. 4. However, for hydrogen
flames the approximation yields a remarkable
overprediction of the temperature and an incor-
rectly predicted flame location.

The individual parts of diffusive fluxes pYy;, Vi,
of hydrogen, separated in the contributions from
mass fraction and molecular weight gradients of
ordinary diffusion and diffusion correction as
given in Eqs. 17 and 18 are compared in Fig. 2,
showing all of them to be in the same order of
magnitude, and, hence, none to be negligible.

Introducing the diffusion velocity given by
Eq. 16 in Egs. 14 and 15 yields
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Fig. 2. Individual contributions to diffusive fluxes of the fuel
in a hydrogen diffusion flame. Solid and dashed lines
represent the mass fraction and molar mass dependence of
ordinary diffusion; the dotted and the dash-dotted line
represent respective parts of the diffusion correction.

3Y, 3Y, @ Y, 8X;
+ pv T - pD, = +

P o ay \P7i X, ay
N3 Y, an>
/El 3y (PYkaX Sy ) T 0 (20)
and
oT, T o g)
Per ot T PV 3y T ay \ M ay
ol Y; 0X; aT
B AT
P N
- £-+ S g, =0 1)

Equations 20 and 21 are solved with a conti-
nuity and a momentum equation. In these equa-
tions the strain rate appears as an independent
parameter, which for planar potential flow is
defined as a, = ou./dx. Since pv from the
convective terms in Egs. 20 and 21 will in the
following be eliminated by Eq. 13, continuity
and momentum equations are not needed here,
and the influence of the strain rate is included in
the scalar dissipation rate, which will be defined
below. In the following derivation of the flame-
let equations the mixture fraction definition
given by Eq. 13 is used. The results obtained by
solving the flamelet equations are compared
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with the solution of Egs. 20 and 21. Therefore,  to Egs. 20 and 21 and using Eq. 13, Eq. 3 and
Eq. 13 is solved with these equations as a  the relation
passive scalar.

Following Refs. 8 and 9, a flame attached
coordinate system is introduced in Eqs. 20 and ) aZ\ 9Z 9 VA
21 by replacing the spatial coordinate y with the ay ( z 6—y> = @ﬁ( z 5;)
mixture fraction Z and using t = ¢ as the other

independent variable. ad»( ¢, [ DA
Applying the formal transformation rules PXz7y 57

oZ pc,lez
& 9 9Z 9 (23)
—_— + -
at  at ot oZ
2
9 _9Z 9 (22) for an arbitrary scalar quantity ¢ leads to the
ay ay y FY4 flamelet equations

aY;, px Le, 9%,

(Lez 3%Y, . Y, . Le, 82W>
Le, “9Z> W *Le 9Z*

~ - "
-~

4. diffusion VgW 5. diffusion correction V5" + VyCW

1'2 i(Lez)+(Lez_l)(apx+ L cpi( A )) aY;
4| “PX 57 \ Le, Le, 0z " PXE2 N 9z \¢,Le,) ) oz

VD Y

6. differential dlffusmn

o 5] 32 ) s i B
Ta[PXwez\Le,) T Le PXyp) T PXEC2 N 5z \e Le, W) ) |0z

~~

7. differential diffusion Vf;w

1 X Le, Lez( L, 0 ( A ))] ayY,
fl + |~ vy 2Tk
t32 [ZPXY' oz (Lek> T Le, \az XY Fextez 5 am o e, Vi) ) ez

8. differential diffusion VfY
1 X Y.Y, 0 [{Lez\ Le, Y, a( A Y,.Yk) oW
t3 2 [2 Xw aZ(Lek " Te, AL A e, W )|z

9. differential diffusion V7" (24)

o

and



2. + 3. heat conduction
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[13% 0 A oT
1)< +pXLZ/\aZ (c Lez)”ﬁ

6. convection by nonunity mixture fraction Lewis number

N
px L
R

(8Y+Y6W)(1 )GT
oZ W oZ 9Z

—

7. enthalpy flux

0.

(25)

In these equations the scalar dissipation rate
x has been introduced as
dZ\*?
Xx=2Dz —

o (26)

The differential equations (Eqgs. 24 and 25)
describe the instantaneous local structure of the
flame sheet, still accounting for nonequilibrium
by stretch and differential diffusion. The deriv-
atives of the molar fractions are expressed in
terms of the mass fractions and the molecular
weight of the mixture to point out the differ-
ences to the flamelet equations given by Egs. 2
and 4. These equations still appear in the first
three terms of Eq. 24 and terms 1, 2, 4, and 5 of
Eq. 25, if the mixture fraction Lewis number
Le, is assumed to be unity. Since all transported
scalars, mixture fraction, species mass fractions,
and the temperature are subject to the same
convective transport, the convective terms ap-
pearing in Egs. 20 and 21 disappear. The addi-
tional terms in Eqs. 24 and 25 describe the flux
of species mass fractions and temperature rela-
tive to the mixture fraction due to different
diffusive transport.

In the species mass fractions equation the
terms appearing in addition to Eq. 4 result from
the model for the molecular transport of the
chemical components, which is more complex
than that for the mixture fraction in Eq. 13. The
fifth term in Eq. 24 includes the diffusion cor-
rection corresponding to the second and fourth
term. The sixth term is formally a convection
term and accounts for the different diffusion
velocities of the mixture fraction and the species

mass fractions. The seventh term is the corre-
sponding contribution from the molecular
weight derivative according to the last term of
Eq. 17. Term 8 and 9 are the diffusion correc-
tions of term 6 and 7.

In the energy equation given in Eq. 25, the
sixth term vanishes if Le, is assumed to be unity
and only the enthalpy flux term and a term
accounting for the spatial derivative of the heat
capacity remain in addition to Eq. 2. The latter
results from the different form of the diffusion
terms of the energy and the mixture fraction
equation.

To illustrate the effect of differential diffu-
sion, the diffusion correction will be neglected
and unity mixture fraction Lewis number, con-
stant but nonunity species Lewis numbers, con-
stant pD ,, and constant molecular weight of the
mixture are assumed. Then, Eq. 24 reduces to

o; _ px %Y
Par " 2Le, 022 ™
1 1 dpx oY,
T3 (1 B Lei> 0z 9z~ ° 27

The only difference between Eq. 27 and Eq. 4
is the fourth term in Eq. 27, which is a convec-
tion term describing the flux of species i against
the mixture fraction with the convection velocity

1 1\ opx
ap (1 L> oz 28)
It will be shown later that this term is not the

dominating contribution of the additional terms
appearing in Eq. 24. However, it will be dis-
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Fig. 3. H, mass fraction distribution in hydrogen diffusion
flame from solution of flamelet equations in Eqs. 24 and 25
(bold long dashed line) compared with results from the
counterflow diffusion flame (solid line). Solutions of simpli-
fied flamelet equations are represented by dotted line for
convection term included (Eq. 27) and by dash-dotted line
for convection term excluded (Eq. 4).

cussed exemplarily to explain the influence of
these terms.

In hydrogen flames the density does not vary
much in the rich part and py closely follows y,
which can be described by a bell-shaped curve
between Z = 0 and Z = 1. The Lewis number
of hydrogen is less than one, and hence the
convection velocity is negative for small values
of the mixture fraction and positive for large
values of the mixture fraction. The effects of the
convection term are shown in Figs. 3 and 4,
where the results obtained using the simplified
flamelet equations including the convection
term in Eq. 27 are compared with the results of
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Fig. 4. Temperature distribution in hydrogen diffusion
flame. See Fig. 3 for further explanation.
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Fig. 5. Evaluation of individual terms of Eq. 24 in hydrogen
diffusion flame. Diffusion term (terms 2-4) is given by the
solid line, convection term (term 5) by dashed line, and
remaining transport terms (terms 6—8) by dotted line.

the flamelet equations without the convection
term in Eq. 4 and to the results of the exact
flamelet equations given by Eq. 24.

The convective transport causes an increased
hydrogen mass fraction for small values of Z
and a decreased mass fraction for large Z. The
temperature distribution given in Fig. 4 reveals
that the flame is shifted markedly to the lean
side. However, comparison with the solution of
the exact flamelet equations shows that the
convection term is even overcompensated by
other effects. This is also shown in Fig. 5, where
from the solution of the exact hydrogen mass
fraction flamelet equation given in Eq. 24 the
diffusion term (terms 2, 4, 5) is compared with
the convection term (term 6) and the remaining
transport terms (terms 7-9). Obviously, in con-
trast to term 6, terms 7-9 are positive at the lean
side and negative for higher values of Z. Since
chemical reactions are small outside a thin
reaction zone at approximately Z = 0.01, terms
6-9 have to be balanced by the diffusion terms
and are therefore of the same order of magni-
tude.

Figure 6 shows the individual contributions of
terms 6-9 from the solution of the hydrogen
mass fraction equation given in Eq. 24 revealing
all terms to be of comparable magnitude for
Z > 0.8. Terms 7 and 9 yield the most impor-
tant contributions for 0.2 < Z < 0.8 and in the
reaction zone term 6 is predominant.

In these calculations the mixture fraction
Lewis number has been chosen as unity so that the
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Fig. 6. Individual contributions of newly appearing trans-
port terms in flamelet equation for the chemical compo-
nents given in Eq. 24 in hydrogen diffusion flame.

ratio of fuel and mixture fraction Lewis number is
approximately Ley /Le; ~ 0.3. By increasing the
Lewis number ratio to unity, term 6 disappears.
For larger values of the Lewis number ratio the
convection velocity in Eq. 28 changes direction
and since terms 7-9 vanish for large species Lewis
numbers, term 6 becomes dominant.

The most important feature of the flamelet
equations given in Eqgs. 24 and 25 is that they
are exact with respect to the transformation and
that, except for the validity of Egs. 20 and 21, no
further assumptions are made. Hence, if the
scalar dissipation rate is known, Eqs. 24 and 25
yield exactly the same results as Eqgs. 20 and 21.
To prove this, Figs. 3 and 4 show hydrogen mass
fraction and temperature profiles from the so-
lution of Egs. 20 and 21 and Egs. 24 and 25,
respectively. For the solution of the flamelet
equations, the applied scalar dissipation rate
has been evaluated from the solution of the
counterflow configuration using Eq. 26. The
profiles do not even show numerical differences,
if central differences are used in the numerical
discretization scheme.

SCALAR DISSIPATION RATE

Applying the universal coordinate transforma-
tion given by Eq. 22, the spatial coordinate is
replaced by the mixture fraction. Since all sca-
lars are transported convectively with the same
mean flow velocity, temperature and species
mass fractions move with the mixture fraction
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and the convective terms in Egs. 20 and 21
vanish with the transformation. Diffusive fluxes
arising from spatial gradients are described as a
function of the gradients of the mixture fraction
Z, and hence the influence of the flow field on
the flamelet structure is represented completely
by the scalar dissipation rate x.

In flamelet calculations for turbulent flows
often flamelet libraries are used. These libraries
are computed in advance and are assumed to be
independent of the flow. The scalar dissipation
rate can therefore not be taken from the flow
field calculation, but has to be introduced as a
scalar parameter. Then, the mixture fraction
dependence of the scalar dissipation rate, which
is required to compute the flamelet libraries,
has to be modeled.

It was shown in Ref. 8 from the analytic
solutions of laminar counterflow diffusion
flames and for the unsteady mixing layer that for
constant density and unity ratio of mixture
fraction Schmidt number Sc, and Chapman-
Rubesin parameter C, which are defined as

) (29)

the scalar dissipation rate can be expressed as a
function of the mixture fraction

X(Z) = Zexp {=2fertc Q2P (30)
where erfc™! stands for the inverse of the
complementary error function.

From the asymptotic analysis of counterflow
diffusion flames Kim et al. [32] formulated an
improved relation for variable density, but still
Sc, = 1 and C = 1. Their scalar dissipation
rate that will be used in the following discus-
sions is given by

a., 3(ypo/p + 1)°
41 2\p./p+1

- exp {—2[erfc 1(22)]%. (31)

In Figs. 7 and 8 the results of Egs. 30 and 31
are compared with the scalar dissipation rate
evaluated from the solution of the mixture
fraction transport equation given by Eq. 13. The
maximum flame temperatures in counterflow
diffusion flames as a function of the scalar

x(Z) =
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dissipation rate y are shown in Fig. 7. Here, x,,
denotes the scalar dissipation rate of a stoichi-
ometric mixture fraction Z according to the
mixture fraction definitions, in Egs. 9 or 12. As
pointed out earlier, the stoichiometric mixture
fraction determined by the solution of Eq. 13 is
not a constant and can therefore not be used as
a constant reference value in the presented
flamelet formulation.

The scalar dissipation rate evaluated from the
solution of the mixture fraction transport equa-
tion using Eq. 13 is the definition of x and is

arey uonedissi() Jejess
paznewioN

Normalized Scalar Dissipation Rate
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Fig. 8. Mixture fraction dependence of scalar dissipation
rate calculated using transport equation (Eq. 13, solid line)
compared with evaluations using the fuel mass-based Z-
definition (Eq. 9, short dashed line), the element mass-
based Z-definition (Eq. 12, long dashed line), and formulas
from analytic solutions given by Eq. 30 (dash-dotted line)
and Eq. 31 (dotted line).

represented by the full lines. Additionally, the
stoichiometric scalar dissipation rate has been
calculated from the strain rate by using Egs. 30
and 31, represented by the dashed and dotted
lines, respectively. Both formulas describe the
trends quite well, while Eq. 31 is shown to be a
reasonably accurate approximation even for the
absolute values of the scalar dissipation rate.
The mixture fraction dependence of the sca-
lar dissipation rate in a hydrogen diffusion
flame, again calculated by the solution of Egs.
13, 30, and 31, is shown in Fig. 8. The scalar
dissipation rate has been made nondimensional
using x;, which is evaluated at Z, according to
Egs. 9 or 12. Because of the almost constant
density throughout the rich part of the flame,
the results of Eqgs. 30 and 31 differ only slightly,
both yielding good approximations in the reac-
tive layer. In general, the approximations tend
to underpredict the scalar dissipation rate. The
reason is that the underlying assumption of Sc,
= C = 1 implies that in the derivation of Eq. 31

p’Dz = (pi) . (32)

If in the definition of the mixture fraction given
by Eq. 13 the diffusion coefficient is determined
from a unity mixture fraction Lewis number,
p’D, depends on the temperature. Under the
simplifying assumptions of constant molecular
weight of the mixture and A/c, ~ T'? [29] this
can be approximated by

p’D, ~ T7%3, (33)

This shows that Eq. 32 is a reasonable as-
sumption because of the weak temperature de-
pendence, but Eq. 31 will underpredict the
scalar dissipation rate, since Eq. 33 shows that if
p’D, is evaluated in the oxidizer stream with
the assumption C = 1 it is an upper bound of
the mixture fraction diffusivity, which leads to
lower mixture fraction gradients.

Figure 8 additionally demonstrates the influ-
ence of the definition of the mixture fraction by
showing the scalar dissipation rate evaluated
with the mixture fraction definitions from Eqgs. 9
and 12. Although x defined by the mixture
fraction transport equation (see Eq. 13) and
from the analytic solutions given by Egs. 30 and
31 are described by bell-shaped functions, the
evaluations of the scalar dissipation rate using
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Fig. 9. Scalar dissipation rate and temperature distribution
in hydrogen diffusion flame for pD, = Ajc,. Solid lines
represent the counterflow diffusion flame; dashed lines
represent flamelet solution with scalar dissipation rate ap-
proximated by Eq. 31 and dotted line flamelet solution with
assumption of constant Lewis numbers for chemical
components.

the fuel mass definition (see Eq. 9) or the
element mass definition of the mixture fraction
(see Eq. 12) show an additional local minimum
for small values of Z. This leads to a completely
different behavior of the scalar dissipation rate
in the reaction zone. Also this has been found
experimentally, for instance by Nandula et al.
[6] and Chen et al. [7].

In the presented flamelet formulation, the
scalar dissipation rate is the only unknown that
has to be modeled. Figures 9 and 10 show
calculations for a hydrogen and an n-heptane
diffusion flame, respectively, using Eqs. 24 and
25 with the scalar dissipation rate approximated
by Eq. 31, represented by the dashed lines,
compared with the solution of Egs. 20, 21, and
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Fig. 10. Scalar dissipation rate and temperature distribution
in n-heptane diffusion flame for pD, = A/c,. See Fig. 9 for
further explanation.
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13, given by the full lines. The diffusion coeffi-
cient in Eq. 13 has been chosen from pD, =
Alc,, from the assumption Le, = 1. The scalar
dissipation rate is well approximated around the
reaction zone for both fuels. However, for Z >
0.2 it is strongly underestimated for the hydro-
gen flame and is shifted to the rich side for the
n-heptane flame. The resulting error in the
maximum flame temperature due to the mod-
eled scalar dissipation rate is shown in Fig. 9 to
be approximately 35 K for the hydrogen flame.
For the n-heptane flame the maximum temper-
atures, depicted in Fig. 10, are almost identical,
but the flame is slightly shifted to the lean side.

Although a constant, and especially a unity,
Lewis number of the mixture fraction has some
advantages, it could be worthwhile to consider
the definition p°D, = (pu).. from Eq. 32 in the
equation for the mixture fraction, since then Eq.
31 is an exact solution of the mixture fraction
equation with respect to diffusive transport. The
only approximation that has to be applied is for
the convective mass flux pv, which is deter-
mined from the asymptotic analysis of counter-
flow diffusion flames [32]. Then, the Lewis
number of the mixture fraction Le is

__Pp A
(p)e cp’

Le, (34)

Indeed, using constant p>D, in Eq. 13 and
introducing the mixture fraction Lewis number
according to Eq. 34 in Eqs. 24 and 25, the scalar
dissipation rate given by Eq. 31 is a much better
approximation for both the hydrogen and the
n-heptane diffusion flame. This is shown in Figs.
11 and 12, where again the scalar dissipation
rate from the solution of the mixture fraction
transport equation in Eq. 13, given by the full
lines, is compared with the analytic solution in
Eq. 31, given by the dashed lines. The maximum
of the scalar dissipation rate is still underpre-
dicted, but the overall shape is in much better
agreement in both figures. However, this does
not lead to a significant improvement of the
solution. The comparison of the resulting tem-
perature profiles shows those for the hydrogen
flame to be slightly improved with an error in
the maximum temperature of approximately 25
K, but in the n-heptane flame an underpredic-
tion of the scalar dissipation rate of approxi-
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Fig. 11. Scalar dissipation rate and temperature distribution
in hydrogen diffusion flame for pD, = (pp)../p from Sc, =
C = 1. See Fig. 9 for further explanation.

mately 15% for Z < 0.05 causes a shift of the
temperature profile to the lean. In the following
we will therefore fix the arbitrary diffusion
coefficient in the mixture fraction definition by
pD; = A/c, from the assumption Le; = 1 in
the definition of the mixture fraction.

The maximum flamelet temperatures in hy-
drogen and n-heptane diffusion flames are
shown in Fig. 13. Solutions from counterflow
diffusion flames indicated by the solid lines are
compared with flamelet solutions with the scalar
dissipation rate approximated by Eq. 31 given
by the dashed lines. The agreement for n-
heptane is very good, the errors for the hydro-
gen flames caused by the approximation of the
scalar dissipation rate are approximately 25 K
throughout the whole parameter range. The
scalar dissipation rate at extinction is well pre-
dicted for both fuels.
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Fig. 12. Scalar dissipation rate and temperature distribution
in n-heptane diffusion flame for pD, = (pu)./p from Sc,
= C = 1. See Fig. 9 for further explanation.
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Fig. 13. Maximum flame temperature as a function of scalar
dissipation rate at Z,;, for hydrogen and »n-heptane diffusion
flames with pD, = A/c,. See Fig. 9 for further explanation.

CONSTANT LEWIS NUMBER APPROACH

The use of constant Lewis numbers for the
chemical components has some advantages in
the present formulation, for example all Z-
derivatives of the species Lewis numbers in Eq.
24 vanish. The main benefit, however, is that the
very expensive calculation of the binary diffu-
sion coefficients, which are required to evaluate
nonconstant Lewis numbers for the chemical
components, can be omitted.

Although the fuel Lewis numbers in the in-
vestigated hydrogen and n-heptane diffusion
flames vary over the mixture fraction by a factor
of approximately 2, the reasonable results from
calculations using constant Lewis numbers
given, for example, in Figs. 9-13, represented by
the dotted lines, indicate that the constant
Lewis number approach for chemical species
can be applied with an acceptable error. How-
ever, the results depend strongly on the partic-
ular choice of the Lewis numbers. Therefore, in
this section a new approach is suggested for the
determination of the values for the constant
Lewis numbers from a flamelet solution with
detailed transport, and the applicability to dif-
ferent parameter and boundary conditions is
investigated.

The effects of the particular choice of the
species Lewis numbers on the flame structure
are examined by employing a sensitivity analy-
sis. The results for hydrogen and n-heptane
diffusion flames are depicted in Figs. 14 and 15.
Figure 15 includes only species with a sensitivity
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Fig. 14. Sensitivity analysis of influence of species Lewis
numbers on maximum temperature in hydrogen diffusion
flame.

coefficient larger than *1%. The sensitivity
coefficients are defined as

Le;, 0T«

S, = T —aLei . 35)

In the hydrogen flame the Lewis number of
the fuel is shown to have a strong impact on the
flamelet structure, since it determines the flame
location, whereas the Lewis numbers of the
remaining species have much smaller sensitivity
coefficients. In n-heptane diffusion flames the
oxygen molecule has the highest sensitivity co-
efficient. Also, the fuel is shown to have a strong
influence on the temperature. Since n-heptane
is converted completely and replaced by inter-
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Fig. 15. Sensitivity analysis of influence of species Lewis
numbers on maximum temperature in n-heptane diffusion
flame.
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mediates at approximately Z = 0.2, the Lewis
numbers of these also influence the tempera-
ture. In particular Lec y, has a sensitivity com-
parable with the fuel Lewis number.

Since the chemical conversion of more com-
plex fuel molecules to combustion products
occurs in several separated consumption layers,
the constant Lewis numbers cannot be deter-
mined at one certain location in the flame, such
as for instance at the stoichiometric mixture or
the point of maximum flame temperature. In-
stead, the Lewis numbers of the chemical com-
ponents are evaluated at the point of maximum
consumption rate. The Lewis numbers of the
final combustion products, CO, and H,O, are
evaluated at the point of maximum formation
rate. For inert species, in our examples the N,
molecule, the value at the point of maximum
flame temperature has been used. This ap-
proach leads to very good results for hydrogen
flames; however, for n-heptane flames the flame
location is shifted to the rich side and the
predicted temperature is too low. Considering
the results from the sensitivity analysis in Fig, 15
this indicates that the Lewis number of molec-
ular oxygen, n-heptane, or acetylene is too high.
For molecular oxygen, the Lewis number at the
maximum consumption rate is already the
smallest possible choice between pure air and
oxygen consumption. The acetylene Lewis num-
ber, as well as the Lewis numbers of other
intermediates, hardly vary between formation
and consumption because of the thin reaction
layers. Hence, only the fuel Lewis number,
which varies from 1.1 to 1.9 between pure fuel
and maximum consumption, can be used to
adjust the flame position and thereby the tem-
perature. Here, a value of Lec ;= 1.3 has
been used.

The constant values of the Lewis numbers
applied in this paper are given in Table 1 for
species with a sensitivity coefficient S; > 1%.
This approach leads to satisfying results, which
are given by the dotted lines in Figs. 9-12 as a
function of the mixture fraction and in Fig. 13 as
the maximum temperature as a function of the
scalar dissipation rate. The calculations have
been performed using the approximation for the
scalar dissipation rate from Eq. 31. The good
agreement in all cases shows that for an appro-
priate choice of Lewis numbers the flame struc-
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TABLE 1
Lewis Numbers of Species with Sensitivity Coefficients

S, > 1%

Ho/air n-C;H, /air
N, 1.32 0.978
0O, 1.10 0.989
H 0.175 0.165
OH 0.747
H, 0.313 0.275
H,O 0.817
CO, 1.27
C,H, 1.18
C,H, 1.17
n-C;H4 1.30

ture, here only represented by the temperature,
is well predicted over a wide range of scalar
dissipation rates.

To examine the universal applicability of a set
of constant species Lewis numbers determined
under certain conditions, the pressure has been
varied up to 20 bar and the oxidizer tempera-
ture up to 800 K. The results are compared with
detailed transport flamelet calculations in Figs.
16 and 17. These show that the appropriate
choice of the values for the constant species
Lewis numbers is independent of the flame
conditions.

SUMMARY AND CONCLUSIONS

In the present study, a flamelet formulation for
non-premixed combustion has been presented,
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Fig. 16. Pressure dependence of maximum flame tempera-
ture for pD, = A/c, and scalar dissipation rate approxi-
mated by Eq. 31 using detailed transport (solid lines)
compared with constant species Lewis number approach
(dashed lines).
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Fig. 17. Oxidizer temperature dependence of maximum
flame temperature for pD, = A/c, and scalar dissipation
rate approximated by Eq. 31 using detailed transport (solid
lines) compared with constant species Lewis number ap-
proach (dashed lines).

which allows an exact description of differential
diffusion. The key to this formulation is the
definition of the mixture fraction as a conserved
scalar, which is only determined by the solution
of a transport equation and appropriate bound-
ary conditions. The diffusion coefficient of the
transport equation is arbitrary and has been
chosen to be equal to the thermal diffusivity. In
this definition, the mixture fraction does not
represent a combination of element mass frac-
tions, and in particular, the stoichiometric value
of the mixture fraction is not a constant. How-
ever, both consequences do not lead to strong
restrictions for practical applications, because
the mixture fraction as defined by Eq. 12 can
always be obtained from the solution.

Using the mixture fraction as the new inde-
pendent coordinate, the flamelet equations for
the evolution of the chemical components and
the temperature can be derived by the transfor-
mation of the governing equations, without any
assumption about the Lewis numbers of the
chemical species. The transformation has been
shown to be exact, if the scalar dissipation rate
is calculated as a function of the mixture frac-
tion from the full set of fluid dynamic equations.

In the application of flamelet models to non-
premixed turbulent combustion a mixture fraction
transport equation has to be solved in order to
determine the statistical distribution of the lami-
nar flamelets. One of the main advantages of the
present model is that also this equation does not
depend on the unity Lewis number assumption.
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Although in this paper the model has been
discussed in terms of steady diffusion flames, it
also can be applied in unsteady turbulent non-
premixed flow situations. The numerical imple-
mentation, as well as the choice of initial and
boundary conditions, is very similar to conven-
tional non-premixed flamelet models.

For numerical purposes the mixture fraction
dependence of the scalar dissipation rate usu-
ally has to be approximated. From the analytic
expressions given in the literature, Kim’s formu-
lation [31] is recommended here.

The constant species Lewis number approach
has been shown to yield reasonable results, if the
Lewis numbers of the chemical components are
determined appropriately. Once the Lewis num-
bers are evaluated for a particular test case, they
can be applied over a wide range of parameters
for scalar dissipation rate, pressure, and boundary
temperatures without loss of accuracy.

This research was supported by the European
Commission in the frame of the JOULE III—
Programme (JOF3-CT95-0003) and by the Euro-
pean Council for Automotive Research and De-
velopment (EUCAR) (Volkswagen and Volvo)
within the DIESEL project.

REFERENCES

1. Liew, S. K, Bray, K. N. C,, and Moss, J. B., Combust.
Flame 56:199-213 (1984).

2. Miiller, C. M., Breitbach, H., and Peters, N., Twenty-
Fifth Symposium (International) on Combustion, The
Combustion Institute, Pittsburgh, 1994, pp. 1099-1106.

3. Hollmann, C., and Gutheil, E., Twenty-Sixth Sympo-
sium (International) on Combustion, The Combustion
Institute, Pittsburgh, 1996, to appear.

4. Pitsch, H,, Wan, Y. P., and Peters, N., SAE Paper
952357, 1995.

5. Pitsch, H., Barths, H., and Peters, N., SAE Paper
962057, 1996.

6. Nandula, S. P., Brown, T. M,, and Pitz, R. W., Com-
bust. Flame 99:775-783 (1994).

7. Chen, Y. C, Mansour, M. S., and Peters, N., Twenty-
Sixth Symposium (International) on Combustion, The
Combustion Institute, Pittsburgh, 1996, to appear.

8. Peters, N., Combust. Sci. Technol. 30:1-17 {(1983).

9. Peters, N., Prog. Energy Combust. Sci. 10:319-339
(1984).

10. Williams, F. A., Combustion Theory, 2nd ed., The
Benjamin/Cummings Publishing Company, Menlo
Park, CA, 1985 pp. 10, 73.

H. PITSCH AND N. PETERS

11. Menon, S., Calhoon, W. H., Goldin, G., and Kerstein,
A. R., Twenty-Fifth Symposium (International) on Com-
bustion, The Combustion Institute, Pittsburgh, 1994,
pp. 1125-1131.

12. Law, C. K., and Chung, S. H., Combust. Sci. Technol.
29:129-145 (1982).

13. Im, H. G,, Law, C. K., Kim, J. S., and Williams, F. A,
Combust. Flame 100:21-30 (1995).

14. Seshadri, K., and Trevino, C., Combust. Sci. Technol.
64:243-261 (1995).

15. Cuenot, B., and Poinsot, T., Combust. Flame 104:111~
137 (1996).

16. Barlow, R. S,, and Chen, J.-Y., Twenty-Fourth Sympo-
sium (International) on Combustion, The Combustion
Institute, Pittsburgh, 1992, pp. 231-237.

17. Haworth, D. C., Drake, M. C., Pope, S. B., and Blint,
R. J., Twenty-Second Symposium (International) on
Combustion, The Combustion Institute, Pittsburgh,
1988, pp. 589-597.

18. Peters, N., in Reduced Kinetic Mechanisms for Applica-
tions in Combustion Systems (N. Peters and B. Rogg,
Eds.), Springer-Verlag, New York, 1993.

19. Mauss, F., Keller, D., and Peters, N., Twenty-Third
Symposium (International) on Combustion, The Com-
bustion Institute, Pittsburgh, 1990, pp. 693-698.

20. Bollig, M., Pitsch, H., Hewson, J. C., and Seshadri, K.,
Twenty-Sixth Symposium (International) on Combus-
tion, The Combustion Institute, Pittsburgh, 1996, pp.
729-737.

21. Burke, S. D., and Schumann, T. E. W., Ind. Eng. Chem.
20:S.998 (1928).

22. Bilger, R. W., Combust. Sci. Technol. 13:5.155 (1976).

23. Bilger, R. W, Twenty-Second Symposium (Internation-
al) on Combustion, The Combustion Institute, Pitts-
burgh, 1988, pp. 475-488.

24, Masri, A. R., and Bilger, R. W., Comb. Flame 73:261-
285 (1988).

25. Smooke, M. D., Puri, I. K., and Seshadri, K., Twenty-
First Symposium (International) on Combustion, The
Combustion Institute, Pittsburgh, 1986, pp. 1783-1792.

26. Curtiss, C. F., and Hirschfelder, J. O., J. Chem. Phys.
17:550-555 (1949).

27. Coffee, T. P., and Heimerl, J. M., Comb. Flame
43:273-289 (1981).

28. Daguse, T., Croonenbroek, T., Rolon, J. C., Darabiha,
N., and Soufiani, A., Comb. Flame 106:271-287 (1996).

29. Smooke, M. D., and Giovangigli, V., in Reduced Ki-
netic Mechanisms and Asymptotic Approximations for
Methane-Air Flames M. D. Smooke, (Ed.), Springer-
Verlag, New York, 1991 pp. 11, 16.

30. Effelsberg, E., and Peters, N., Twenty-Second Sympo-
sium (International) on Combustion, The Combustion
Institute, Pittsburgh, 1988, pp. 693-700.

31. Kim, J. S., and Williams, F. A., SIAM J. Appl. Math.
53:1551-1566 (1993).

Received 18 March 1997; accepted date 30 August 1997



