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A somewhat limited number of computationally tractable moels of simulating turbulent premixed
combustion currently exist. Most of these methods eithezadly or indirectly require information
about how fast flames propagate in turbulent flow fields. Is #hork a dynamic model for describing
turbulent burning velocities in the context of large eddyusliation (LES) is presented. This model
uses a surface filtering procedure that is consistent withdstrd LES filtering, and that additionally
only uses information that comes directly from the flame frd@¥s such, it is consistent with level set
methods, where arbitrary constraints can be imposed ortetdet field variable away from the flame
front. Brief results showing model validation in the corttekdirect numerical simulation (DNS) are
presented.

1 Introduction

Turbulent premixed flames are particularly difficult to dése in the context of Large-Eddy Sim-

ulation (LES). Most industrially relevant premixed flamegsein either the corrugated flamelets
regime or the thin reactions zones regime [1]. The width efitimer reaction zone of a flame in

these regimes is comparable to, if not smaller than, the Kgbmov length scale that describes
the size of the smallest turbulent eddies in the flow. Flanehg@at zones, which are typically

much broader than reaction zones, may also, in the corrdienelets regime, exist on sub-

Kolmogorov length scales. In LES, by definition, the smallesgth scales of a flow are filtered

out. As a result, in industrially relevant regimes the titimss that occur between unburned and
burned states occur on subfilter scales.

Premixed combustion models for implicitly filtered LES these standalone progress variable or
finite rate chemistry approaches will thus, it seems, alWaysAll models are limited by the ac-
curacy of the schemes they use for evaluating gradientsy@asdheme is capable of resolving the
sharp subgrid transitions that occur in premixed implié3_near flame fronts. Premixed implicit
LES models that attempt to resolve flame structure are therefspecially prone to numerical
errors in the most critical regions of the flowfield.

In response to the problem of subfilter transition, levelrsethods such as th&-equation have

been suggested as a means of simulating premixed turbweriustion [1-3]. In these methods,
flame fronts are described using isocontours of field vaegbAt the relevant isocontours, the field
variables are governed by equations describing how thesfimopagate. Away from the relevant
isocontours, smooth gradients are prescribed for the faglidivles to ensure numerical resolution.

1



5th US Combustion Meeting — Paper # B30 Topic: Turbulent Flames

In these methods, the inner reaction zones of premixed flamegeated as coherent structures.
The effect of the chemical activity that occurs within réactzones appears in level set equations
almost entirely as a front propagation speed. This speeidhvidrapproximately equivalent to the
laminar burning velocity in the unfiltered case, is therefone of the most significant modeling
inputs in LES of premixed turbulent combustion. Traditibbarning velocity models rely on a
series of coefficients that have been determined througlgsssaof both experimental and direct
numerical simulation (DNS) data [3, 4]. These coefficieasdd approaches have been success-
fully applied in the context of RANS, where level set methoéfsr an alternative to the problem
of reaction rate closure [3,5]. In LES, however, where inttaeous flame realizations are avail-
able, it should be possible to eliminate the use of constaefficients by employing dynamic
procedures that determine coefficients automatically.

Im et al. [6, 7], for example, proposed a dynamic level set propagatiodel in which level set
field variables are treated as scalars. Subfilter contahatio front propagation are determined by
evaluating burning velocities at two different filter les@nd comparing the results to differences in
the magnitude of the gradient of the level set field variabte@se same two levels. Igt al. claim
that this approach can be physically interpreted as emfgriitame consumption conservation.
They base this claim on work by Kerstedt al. [8] where it was demonstrated that a volume
average of the magnitude of the gradient of the level setVigtible is equivalent to a measure of
the total front area within the volume. In Kersteinal’s work, each isocontour of the level set field
variable was treated as an equally valid representatioheofiame front. Under this assumption,
volume averaging is equivalent to averaging over multipdaf realizations.

More recent work [2, 3, 9] has stressed that level set gongraguations are only valid at the field
variable isocontour that they describe, and that tradai@veraging procedures therefore cannot
be used. Specifically, because the value of a level set figidbla can be arbitrarily defined
away from an isoconotour describing a flame front, volumeayieg procedures can produce
arbitrary results. In the present paper, then, a dynaminibgrvelocity model is proposed that
only considers information directly from the 2-D front otémest. This model requires the use of
a unique filtering approach that is developed and present&kction 2. In Section 3, the new
filtering technique is applied to develop the dynamic mo@&sction 4 presents an evaluation of
the model in the context of DNS. Brief conclusions are offidreSection 5.

2 A governing equation for a premixed flame front

Level set equations can be derived by setting the substaeti@ative of a generic field variable
equal to zero at a surface of interest. The resulting exjgeskescribes how the field variable
isocontour associated with that surface evolves. In prethbES, the derivation of an equation
governing flame front behavior can be approached in a differay. A flame front can gener-
ally be defined as an isocontour of a generic progress variablhis variable might represent,
for example, a non-dimensionalized temperature. The equgbverning the behavior of such a

variable is
Oc Oc 1 0 (Dac) 1

— 4 y— = —— — )+ - . , 1

ot Ox;  pOx; P Oz, pr @)
whereu; is the local flow velocity in thgth direction,p is the fluid densityD is the diffusivity of
the variablec, andwp is a source term that describes the effects of chemicaliogsctTo derive
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an equation describing the flame front associated with acpéat c isosurface, information from
Eq. (1) needs to be extracted directly from this isosurfaeeg arbitrarily defined as= ¢,. This
extraction operation can be performed by multiplying Eq.With a delta functiong (¢ — ¢),

oc oc 10 80 1.
This delta function does not necessarily need to be an |eﬁmitally thin Dirac delta. Rather,
hereo will be defined as a normalized Gaussian of finite width. Agjlas this width is small
compared with the length scale associated with the innetiozazone of a flame, multiplication
with 0 (¢ — ¢o) will effectively give a null result everywhere except at fteme front. This finite

width definition ofd is convenient because it eliminates the problem of dealiitly the special
mathematical properties of the Dirac delta.

Just as Dirac delta functions may equivalently be writterd@svatives of heaviside functions,
Gaussians may equivalently be written as derivatives @fréanctions. Since thé function that
appears in Eq. (2) only depends arthe chain rule may be used to rewrite the left-hand side of
Eq. (2). Remembering that what here will be referred to ahdaviside functiorf{ represents an
error function of finite width, this procedure gives

dc dc|  O[H (c— )] 0[H (¢ — )]
(e~ o) [81& T 3%} R A T ®)
To move the delta function on the right-hand side of Eq. (20 ithe relevant derivatives, the

gradient of the progress variable must first be written imgeof the front normal direction at,
which here will be denoted;,

oc
55, = o Vel = m; Vel @
Use of the product rule on the diffusive term then gives
3} dc 0
5 (D50 ) = o196l G2 e D1Vl ©)
Finally, the delta function acts div¢| as
6 (c—co) Ve =10 (c—co) Ve = [V [H (¢ = co)]]. (6)
Applying the results of these manipulations to the rightdhaide of Eq. (2) produces
10 oc 1.
ste=e S, (07 ) + 5on] = )

Dk|V[H (¢ —co)]| + 0(c— 00)% [nja%] (pD V<) +wR} ., (8)

wherek is the divergence of the normal vector, or the curvature.umrsary, then, operating on
Eq. (1) with ad function gives
O0[H (¢ —¢)] O0[H (¢ —¢)]

Dk|V [H (¢ —c)]| + 0(c—co) % {njaixj (pD |V¢|) + wR} : (10)
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Equation (10) governs the behavior of a heaviside functian tracks the flame front.

A new variable will now be introduced for the purposes of tioteal convenience. The varialde
will be defined as

G=H(c—c). (11)
A universally valid substitution of into Eq. (10) gives
oG oG
T Uiy = DE|VG| + 51,6,V (12)
where
1 0 .
- (pD|Vc|) +wr| . (13)

e T Nelp [V o

The quantitys,, ., describes the propagation velocity of the isosuriaeec,, which is a function

of the diffusion and source terms in the progress variabl&ton, as expected. In the absence
of curvature and strain effects;, ., reduces to the unstretched 1-D laminar flame spgedin
turbulent settings, however, these effects exist and gperitant. Although they causg ., to de-
viate froms;, it has been shown that in the absence of high intensity keinioes; can reasonably
approximatesy, ., [10].

A further modification to this working definition of propagat speed will be made for conve-
nience. Laminar burning velocities are often provided d¢tmiged on an unburned reference state.
To allow such values to be used in the context of the modehiibbe developed, the same will
be done here. The net result of using a 1-D approximation anditoning, then, is

p
SLco = SL = _USL,u- (14)

Unlike level set variablesj can be volumetrically filtered because there is nothingetyi about
its definition. DefiningF (r) to be some appropriately normalized filter kernel and theyamgy
it to the g field gives

g(x,t) = F(r)G(x—r,t)dr = F(r)H (c(x—r,t) —co)dr, (15)
Ir|<A [r|<A
whereA is some characteristic filter width. This filtering proceglis consistent with LES in the
sense that the same filter kerfe(r) that is used to filter the Navier-Stokes equations can be used
to filter a representation of the flame front. It will be assdrhere that the filter kernet (r) does
not change from point to point in physical space

This same filter may be applied to Eq. (12). Doing so produces

G  _0G = e pu_ o
where _ _
_ oG _ 0G
I'= (Uj —833‘j — Uj —81’3) (17)
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Figure 1: Application of Eq. (15) to the surface co = 0 defined by the field variable ¢(X,Y) =
1.8sin (27X) + sin (187X 4 sin (£82X) + 2Y. The uppermost plot shows the exact surface. The
three lower plots show the effects of filters of various width s on the surface. From top to bottom,
single filters of widths 0.16, 0.64, and 1.28, respectively, were used. For this example case, a box

filter was used for F (7).

and
Pusr |VG| = sLu|vg| (18)

have been used. Eqg. (18) represents the mtroduction of a&lndedcribing the filtered burning
velocity, s7.

Since this equation has been developed in the context athiardensity flows, it is interesting to
note what happens when Favre velocity filtering is used. th ®ases, all filtered velocities are

defined as .

u; (x,t) = = F(r)p(x—r,t)u; (x—r,t)dr, 19
jx )= 5o | FWpxoru o (19)
which leads to the following definition of fluctuating veltes
1
uh(x,r,t) =u; (x —r,t) — ——— F)p(x—r,t)u;(x—r,t)dr. 20
g (xort) = u;( ) 5000 Jpin (r) p( ) ( ) (20)

When these velocity fluctuations are multiplied with spatiivatives ofG = H (¢ — ¢;) in theT'
term, for example, information is retained only directiytla front. Thep (x,¢) term in Eq. (20)
is therefore simply the front conditioned densityx,t) = p(cy). In this sense, all fluctuating
velocities in Eq. (16) are conditioned on the density at thatt

Figure 1 demonstrates how the filtering operation propasé&dji (15) affects a 2-D front consist-
ing of a variety of wavenumbers. As shown, a small filter reesoenly the highest wavenumbers,
while larger filters remove smaller and smaller wavenumbers

Equation (12) is very useful because it is filterable. Eveardahe application of a filter, however,
the equation describes a jump that occurs over a singlewit#h. It is therefore not numerically
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tractable. To numerically solve this equation, a level selhhique must be used. The great advan-
tage of deriving Eq. (12) and subsequently Eq. (16) is thaettplicit subfilter terms that need to
be used in the level set representation are now known.

3 Dynamic propagation model

The existence of the appropriate filtering procedure for #aurfaces developed in the previous
section makes it is possible to derive a dynamic identity tescribes the speed at which a tur-
bulent front propagates. This identity will be derived gskg. (12). In some respects, it may be
regarded as an analog of Germano’s identity.

When a broad test filter, which here will be denoted by the patator, is applied to Eq. (16), that
equation becomes

5G /83 T T T T~
R +(T) = (PwIval) + p—“gT}vg} 21)

When the bar and hat filters are mstead applied to Eq. (12);|ngale operation, a different result
is obtained, 7

a_ 8_ — N

8g + Jag +T'= Dr VG| + p—sT va|. (22)

Equations (21) and (22) form the basis for the developmet‘ne)ﬁynamic model.

Unlike the subfilter Reynolds stress terms that appear itfilteeed Navier-Stokes equations, the
subfilter term is relatively insignificant. Specifically, this term dess$s how high wavenumber
velocity components move the filtered front. They tend towle the instantaneous front, but they
act only along a 2-D surface within the filter volume. Whensthéerms are filtered, therefore,
they will on average have no effect on the mean front positiSBome of the subfilter velocity
fluctuations will tend to move the subfilter front locatiomié@rd, and some will tend to move the
front location backward. But because these fluctuationsak@eviations from the local filtered
velocity, when integrated along the front over the filterurak, they will all tend to cancel out.
To illustrate this point, if a non-propagating front weréeased in a flowfield of homogeneous
isotropic turbulence, subfilter scale velocity fluctuasamould exist. But the mean front position
would remain stationary, even though the exact front becamare and more wrinkled. Subfilter
velocity fluctuations should therefore be unable to contalio front propagation on their own.
They will contribute to front propagation through the irmse in surface area that they promote,
but this effect appears through another term in the equaltibarefore, the approximatioms~ 0

andl’ =~ 0 will be made.

The broad idea behind deriving a dynamic modeldgris to produce a front speed that ensures
mean flame front position is independent of the filter beingdud his can be achieved by forcing
equations (21) and (22), which were created using diffeseiguences of filter application, to
produce equivalent front positions. Since the hat filter qn E21) commutes with derivatives,
subtracting these two equations and manipulating produces

1,29 5, %7 (DwIVET) — Dw VGl 4+ | 298] - Z|va] | (23)
T Oz, D D
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Again, the terms on the left-hand side describe the effdcliftered velocity fluctuations and so
can be dropped.

For the purposes of simplification, the remainder of thisgpayll consider the corrugated flamelets

regime only. This eliminates the need to introduce a modstmaing the effects of subfilter cur-
/\

vature in Eq. (23). Under this approximation the diffusieemis D« |VG| and Dk |VG| can be
dropped, and the identity reduces to

= =
= |vg| = 2 |vg|. (24)
p P

LES turbulent burning velocity models usually depend muchearstrongly on the filtering level at
which they act than on spacer will therefore be drawn outside the filter integral, leaving

—
s p VY

gl (25)
vg

ET ﬁ_l

This equation represents the final form of the dynamic idigritut in a practical computation tige
variable will not be available. Again, this is becagsandergoes a sharp transition at the front and
is not computationally resolvable. Eq. (25) can be writtea more useful form by manipulating
the filter definition. If for the purposes of demonstratior ttensity at the front is assumed to be
independent of the filter level, and if the first filter levehasponds to a completely resolved field,
then

[VG| = VG| = Fon (1) [VH (¢ (x — 1.1) — ¢)]| dr (26)

r<2A

= For (r)o (c(x—r,t) — o) |Ve(x —r,t)|dr. (27)

r<2A

It will be assumed here thal/c| does not strongly vary along the flame front. This assumption
does not exactly hold in a real flame where reaction ratesmdepea certain extent on flame
curvature [10]. However, it is in agreement with the use @f ldiminar burning velocity for the
description of the reaction and diffusion terms in Eq. (I)d @rovides leading order accuracy.
The benefit of this assumption is that it alloj¥sc| to be brought out of the integral, which in turn
makes it convenient to define a variable describing the amaiuinont area that exists per filter
volume,

aop = Foa (r)d(c(x—r,t) —¢p) dr. (28)

r<2A

When F is a tophat filterasn describes the exact unfiltered flame area within the filteralom
When F is a Gaussiangsa gives flame surfaces near the center of the filtering domairemo

weight. Using these definitionw/a may be rewritten

VG| = [Vell,, aza. (29)
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The denominator of the right hand side of Eq. (25) may be &mitt

VG| = v, Fon (1) 8 (¢ (x —1,8) — o) ny (x — 1, ¢) dr (30)

r<2A

The expression within the absolute value sign approximatekcribes the area density of the
filtered flame front within the filter volume. This quantity will be deéid asi,A. Finally, since the
right-hand side of Eq. (25) describes flame area densitigsnithe same filter volume, the actual
flame areas may be used in the identity,

°T ;front‘ (31)
ST Afront

St

This form of the identity agrees with Damkohler’s hypotlsd&il],

ST Aemact
T~ ,
SL Amean

(32)

and enforces the condition that the mass a flame consumelsldieoumdependent of filter level.
The remainder of this brief will use a burning velocity mogebposed by Peters [2, 3],

ST — SL
ul

= —yDa + \/(vDa)Q + vaDa. (33)

Since it has been assumed for simplicity that in this pap8r fteames in the corrugated flamelets
regime are under consideration, the form that this burnéigarty model takes in that regime will
be used,

ST = SL—FU/%. (34)

In what follows, Eq. (31) will be treated as a dynamic idgntiq. (34) will be used to model,
anda in Eq. (34) will be viewed as a dynamic coefficient.

4 DNS Validation

A direct numerical simulation (DNS) of a front propagatimgforced homogeneous isotropic tur-
bulence was performed to validate this model. The paramescribing the DNS are shown in
Table 1. Turbulence was forced using the linear scheme chlResnd Meneveau [12], and the
simulation was run at a constant density. A uniform cartesi@sh was used, but in the direction
of front propagation the domain length was doubled so tloait fstatistics could be gathered for a
longer period of time. The level set equation

oG oG

WMJG—% =5, |VG| ¥ G =G, (35)

was solved to describe front evolution. As there are no sifeiterms in this equation, the front
effectively resides in the corrugated flamelets regime.-iitgalization procedure was performed

after every three time steps to force the level set field égiaway from the front to conform to a
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Simulation Constants Turbulence Parameters
Mesh size = 256 x 128 x 128 Rey =39
Ar=1.0-10"3m Re; =101
v=187-10""m?/s Integral length scald, =7.7- 1073 m
p=1.16 kg/m3 Eddy turnover timer = 0.20 s
Burning velocity,s;, = 0.06 m/s Komogorov scaley =5.0 - 107* m
Forcing coefficientA = 2.4 Largest eddy sizd,=16.0 - 1072 m

Table 1: DNS Parameters

distance function. Reinitialization was accomplished bstfusing an iterative marker method to
estimate the distance to the front, and subsequently gp&/iADE in psuedo-time to improve the
accuracy of this estimate. The third order WENO scheme ofjeeal.[13] was used for the PDE
step.

Statistics involving the front itself were computed usingprmation from only one isocontour of
the level set field variable. This isocontour was used to agmfhe area of the flame, as needed
in the model. Neumann boundary conditions were prescribetht level set at each end of the
domain in the propagation direction. The front, howeveveneame so near these boundaries that
their treatment influenced behavior. Periodic boundaryitaoms were prescribed for the level set
in the other two directions.

A parallel, structured code that is second order in both &@me space was used to compute the
flow. Although the code was run using an implicit solver, tHeLGiumber was limited to 0.5 to
ensure that all structures were time resolved. BecausertbarIforcing scheme used here adds
energy to the flow at all wavenumbers, the turbulent flowfietds witialized within a128 cube,
and then copied to an adjacent cube. This prevented theajemeof wavenumbers smaller than
the inverse of the box size. Periodic boundary conditionseewesed in every direction for the
velocity field. Figure 2 shows two instantaneous realizetiof the flowfield and front.

Figure 3 shows mean front displacement as a function of tcomputed both directly from the
DNS and from a variety of models. If no turbulent burning \eép model is used, front displace-
ment is severely under-predicted, as expected. The stakialent burning velocity model of Eq.
(34), however, somewhat over-predicts front displacem&his over-prediction primarily devel-
ops at early times as the front, which is initially flat, traimss to a wrinkled surface under the
influence of turbulence. In contrast, the dynamic model etely predicts this transition. The
solid line, for example, uses unfiltered fields to describesa fiiter level, and completely filtered
fields to describe a second. Applying Eq. (31) in this contextsists of multiplying the laminar
burning velocity by the area of the fully resolved front ahén dividing the result by the width
and height of the domain, which represents the area of th@letety filtered front. The results
are in excellent agreement with the DNS data.

The dynamic model produces results that are somewhat lessase when filter levels that are
very closely spaced are used. For example, when unfilteidiagly filtered fields are used in Eq.
(31), front displacement is mildly over-predicted. Thisoerdoes not signify a problem with the
modeling approach as much as it highlights the difficulty @eéatibing how velocity fluctuations,
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Figure 2: Snapshots from a DNS of front propagation. The leve | set is the wrinkled surface, and the
cut plane shows voriticity magnitude. The left image shows a n early time in the simulation, while
the right image shows the fully developed front.

u/, change with very small changes in filter wavenumber. If thetflations are relatively small
to begin with, as they are when a singly filtered field is usédreors made in predicting’ will
strongly affect the solution of Eq. (31). The sensitivitydyihamic front propagation models i
was also noted by Irat al. [6] in the context of scalar isosurfaces.

Difficulties in predicting filtered velocity fluctuationseaalleviated to a certain extent when the test
filters selected span a wider range of wavenumbers. The—ine in Fig. 3 shows that dynamic
model predictions considerably improve when quadruplgriéiti and completely filtered fields are
used as test levels.

Figure 4 shows speeds and area ratios from both the DNS anubithels as a function of time. The
front propagation speed that the static turbulent burneigaity model predicts varies smoothly in
time, because it depends only on averaged velocity fluctaathat are a function of the amount of
kinetic energy in the domain. The actual front propagatieoeity, however, oscillates at relatively
high frequency. The dynamic model, regardless of the filisesl, appropriately captures this high
frequency behavior, which appears through the surfacedre front. Specifically, even in the
dynamic case that uses unfiltered and singly filtered figh#satea ratio of the fronts that is plotted
using the right vertical axis qualitatively matches thet pliche DNS front propagation speed. The
errors in the model are therefore due to the scaling of tlda aatio, which again is a function of
subfilter velocity fluctuations.

Finally, since the model’s sensitivity td has been emphasized, it is appropriate to describe how
this quantity is computed in the DNS. The most critical reguoient for this computation is that
there be a match between the filtering procedure used ondhedrea and the procedure used on
the velocity field. At a minimum, this means that the filterikgynel F that is computationally
applied to the front should be the same as that applied todloeity field. Experience showed,
however, that this alone was not enough. Attempts to extidigrences inu’ from turbulent
viscosities computed at two filter levels, or from model tuemce spectra mapped onto the velocity
fields, proved insufficient. Rather, the energy of the veéjotelds at each filter level had to be
computed. A difference in the velocity fluctuations asswdawith different filters could then be
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— [2— 12—

wheref is the kinetic energy associated with the velocity figld Even when an arbitrary means
of computingw’ was used, this technique accurately described how velfloityuations varied
with the filter used.

formed,

IS

5 Conclusions

In consistent LES procedures, subfilter models should aehsoire that all mean predicted quan-
tities are independent of the filters being used. In this papdynamic model for calculating the
propagation speed of flame fronts was presented. This maatierived in a way that ensures that
this filter independence criteria is met. In the derivatibthis model, a new approach to writing
a flame front equation was presented. This approach waslimefause it both worked in con-
junction with standard LES filtering techniques and becaussed information from only a 2-D
surface. Using this approach, the terms that describe wrhififluences on the turbulent burning
velocity were explicitly determined. Furthermore, theserts were used to derive a dynamic iden-
tity for the burning velocity. When enforced, this identégsures that evolving a flame front and
then filtering the result yields the same answer that evglaifiiltered front does. In its simplest
form, the identity may physically be viewed as an enforcenoéilame mass consumption con-
servation. A DNS was performed to validate the proposed miynanodel. Results showed that
the model predicted the speed of a propagating turbulent fMith more accuracy than a static
turbulent burning velocity model.
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