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Abstract
Higher-order, conditional moment closure approaches to modelling local
extinction and reignition in turbulent, non-premixed combustion are
investigated. This is done by studying closure strategies of the conditional
source term itself. Feasibility studies are done using direct numerical simulation
(DNS) experiments which exhibit varying degrees of local extinction. The
higher-order conditional moments are taken directly from the DNS experiments
as opposed to solving modelled transport equations for them. Results show
that with moderate levels of extinction, the conditional probability density
function (pdf) of the reduced temperature is unimodal, but skewed, and at least
third-order terms in a series expansion of the nonlinear chemical source term
conditional on the mixture fraction are required to predict the conditional means.
With higher levels of local extinction, the conditional pdf shapes can be bimodal
and third-order closure breaks down. The success of a presumed beta pdf shape
for conserved scalars is well known. A beta probability distribution for the
conditional reactive scalar cannot describe either the unimodal or bimodal pdf
shapes which result from the local extinction and reignition events. However,
predictions of the conditional means are excellent with the beta pdf model
incorporated into a conditional moment closure modelling framework. The
modelling results show little sensitivity to the conditional variances.

1. Introduction

Currently, a fundamental closure approximation in conditional moment closure modelling
(Klimenko and Bilger 1999) of turbulent, non-premixed combustion is first-order closure of
the average nonlinear chemical source terms, ẇ, conditioned on the mixture fraction, ξ(t, x):

〈ẇ(Y(t, x), θ(t, x), ρ(t, x))|ξ(t, x) = η〉 ≈ ẇ(〈Y|η〉, 〈θ |η〉, 〈ρ|η〉) , (1)
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where Y is the vector of mass fractions of the reacting species, ρ is the density of the mixture,
and η is the sample space variable of ξ . θ ≡ (T − T∞)/(Tf − T∞) is the reduced temperature,
where Tf is the complete conversion temperature and T∞ is the reference temperature. The
utility of first-order closure using conditional averaging is illustrated in figure 1, which shows in
subplot (a) the reduced temperature θ as a function of ξ from the direct numerical simulation
(DNS) experiment of Sripakagorn et al (2000). Subplot (b) shows the probability density
function (pdf) of θ with the condition that ξ is within a given range of ξst ± �η, where ξst

is the stoichiometric value of the mixture fraction, 0.5 for this case. �η decreases from the
dash–dotted line to the dashed line and finally to �η ≈ 0 for the solid line. Thus, the solid line
is a representation of the conditional pdf of θ at ξ = ξst. The figure illustrates three points:
(a) the inapplicability of first-moment closure under conventional (unconditional) averaging,
as is well known; (b) the much improved representation of the pdf of θ by its mean value alone
due to conditioning on ξ , helping to validate (1); and (c) a negative skewness of the pdf due to
the existence of local extinction and reignition events in this experiment, which threatens the
validity of (1). The extinction/reignition events, clearly visible in subplot (a) and evident in
the pdfs at low values of θst in subplot (b), are interpreted as fluctuations about the conditional
mean in a conditional moment closure modelling framework.

Recently, modelling of the conditional variance has been proposed to improve closure
of the conditional chemical source term: the conditional variance can be used (a) in an
additional, second-order correction to (1) (Kronenburg et al 1998, Mastorakos and Bilger
1998, Swaminathan and Bilger 1998), or (b) to construct a presumed pdf shape of one or
more reactive scalars (Klimenko and Bilger 1999). Presently, we investigate the feasibility of
both these higher-order, conditional moment closure approaches for local extinction/reignition
modelling by quantifying the differences between using truncated series expansions and an
integral over a conditional pdf for the reaction rate. The DNS experiment of Sripakagorn
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Figure 1. Motivation of the work. Subplot (a) is a scatter plot of the reduced temperature, θ , as a
function of the local mixture fraction, ξ , at t∗ = 1/2 (time has been non-dimensionalized by the
initial large-eddy turnover time) from the 1283 DNS experiment of Sripakagorn et al (2000). (The
DNS is described in section 2 of this paper.) Subplot (b) shows the conditional pdf of θ conditioned
on ξ within a decreasing range, ±�η, of ξ values about ξst = 0.5, the stoichiometric value of the
mixture fraction. The range decreases from the dash–dotted line (�η = 0.25), to the dashed line
(�η = 0.1), and finally to �η = 0.005.
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et al (2000), specifically designed to investigate extinction/reignition, offers an ideal test-
case to investigate the merits and drawbacks of the higher-order conditional moment closure
strategies. The modelling issues associated with closure of the conditional variance equations
can be found in Swaminathan and Bilger (1998). Here, we use the exact conditional variance
(and higher moments) available from the DNS to focus on the errors associated with the
closure strategies for the conditional chemical source term rather than those associated with
the modelling assumptions required to close the higher-order conditional moment equations.

The paper is organized as follows. In the next section, the DNS experiments used to test
the modelling approaches are reviewed. In section 3, the higher-order closure strategies are
described and the governing equations are given. In section 4, a priori modelling comparisons
are made with the DNS experiments of a one-step, second-order, reversible global reaction
in homogeneous, isotropic, and decaying turbulence. Finally, the paper concludes with
an assessment of the two conditional moment closure modelling approaches for describing
extinction/reignition.

2. DNS experiment

The production rates for fuel (F), oxidizer (O), and product (P) for the present numerical
experiment of F + O

k�
k/K

2P evolving in isotropic, homogeneous, and decaying turbulence are
ẇF = −ẇ, ẇO = −ẇ, and ẇP = 2ẇ, respectively, where

ẇ(YF, YO, YP, θ) = kYFYO − k

K
Y 2

P (2)

k(θ) ≡ A exp

(
−Ze

α

)
exp

[
− Ze(1 − θ)

1 − α(1 − θ)

]
.

Here, A is the frequency factor (multiplied by density and divided by molecular weight,
assumed equal for all species), α ≡ (Tf − T∞)/Tf is the heat release parameter, and
Ze ≡ αTa/Tf is the Zeldovich number. Ta is the activation temperature. Tf is defined for
the one-step, irreversible chemistry scheme, i.e. for K = ∞ or no backward reaction. For
the above reversible chemistry scheme, with finite K , the maximum value of θ , denoted by
θeq, is less than unity. The ‘equilibrium constant’ is held fixed at K = 100 to help insure the
resolution of the reaction zone in the numerics. With K = 100, the resulting maximum value
of θeq = 0.83 at ξst. The Schmidt number is 0.7 and Lewis numbers are unity. The turbulent
flow is governed by the incompressible Navier–Stokes equations with viscosity independent
of the temperature (cf Sripakagorn et al (2000) for details of the simulation).

Chemistry rate parameters in (2) are α = 0.87 and Ze = 4. Values of A define different
numerical experiments with low (A = 13.0 × 104), moderate (A = 8.0 × 104), and high
(A = 0.3 × 104) levels of local extinction. These cases correspond to ‘Case A’, ‘Case B’,
and ‘Case C’, respectively. Categorization of the level of local extinction by the terms ‘low’,
‘moderate’, and ‘high’ are described later in this paper. These experimental cases were used
to investigate local extinction/reignition in another extension of conditional moment closure
modelling (Cha et al 2001). The present, singly conditional moment closure modelling
extensions are to be distinguished from this previous investigation of a doubly conditional
moment closure approach. In Cha et al (2001), the modelling focused on improving first-
moment closure for the extinction/reignition problem by introducing a second conditioning
variable, the scalar dissipation rate, χ ≡ 2D(∇ξ)2, to account for the additional fluctuations
about the singly conditional means not attributable to ξ . In the definition of χ , D is the
molecular diffusivity of ξ . In all three numerical experiments, the evolution of the turbulent
scalar dissipation rate field is identical. The A values in the chemical source term of the species
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transport equations are changed to alter the quenching value of χ to, in effect, yield the varying
levels of the conditional fluctuations of θ (cf Cha et al (2001) for details). Cha et al (2001)
discuss the influence of the fluctuations of χ on the θ fluctuations. We review some results
from this work later in this paper. Here, the focus is on the impact of these θ fluctuations on
singly conditional closure strategies of the chemical source term.

3. Conditional moment closure approaches

3.1. Higher-moment conditional moment closure approaches

The conditioned average of ẇ as a function of all conditional moments can be obtained
with: (a) a series expansion of the exponential in (2) about 〈θ |η〉 ≡ θ − θ ′ with ε ≡
αθ ′/(1 − α(1 − 〈θ |η〉)), valid for |ε| < ∞; (b) a series expansion for (1 + ε)−1, valid for
|ε| < 1; and (c) a decomposition of all species mass fractions about their conditional means,
Y ≡ 〈Y |η〉+Y ′, where Y ′ represents the fluctuation about the conditional mean. Conditionally
averaging, the result yields

〈ẇ(YF, YO, YP, θ)|η〉 = ẇ(〈YF|η〉, 〈YO|η〉, 〈YP|η〉, 〈θ |η〉)(1 + B + C + · · ·), (3)

where

B = 〈Y ′
FY

′
O|η〉

〈YF|η〉〈YO|η〉 − 1

K

〈Y ′2
P |η〉

〈YP|η〉2
+

Ze

[1 − α(1 − 〈θ |η〉)]2

( 〈Y ′
Fθ

′|η〉
〈YF|η〉

+
〈Y ′

Oθ ′|η〉
〈YO|η〉 − 2

K

〈Y ′
Pθ

′|η〉
〈YP|η〉

)
+

(
Ze/2

1 − α(1 − 〈θ |η〉) − α

) 〈θ ′2|η〉(1 − 1/K)

[1 − α(1 − 〈θ |η〉)]3

C =
(

Ze/2

1 − α(1 − 〈θ |η〉) − α

)
α2/Ze

1 − α(1 − 〈θ |η〉)
( 〈Y ′

Fθ
′2|η〉

〈YF|η〉 +
〈Y ′

Oθ ′2|η〉
〈YO|η〉 +

2

K

〈Y ′
Pθ

′2|η〉
〈YP|η〉

)

+
α

1 − α(1 − 〈θ |η〉)
( 〈Y ′

FY
′
Oθ ′|η〉

〈YF|η〉〈YO|η〉 − 1

K

〈Y ′2
P θ ′|η〉

〈YP|η〉2

)

− α4/Ze

[1 − α(1 − 〈θ |η〉)]2
〈θ ′3|η〉

(
1 − 1

K

)

valid for |ε| < 1. The complete series is always convergent for α � 1.
For the present case of a single-step reaction, the conditional averages of all species and

temperature can be obtained from the single equation for the average of θ conditioned on ξ(
d

dt
− 〈χ |η〉

2

∂2

∂η2

)
〈θ |η〉 = 2ẇ(〈YF|η〉, 〈YO|η〉, 〈YP|η〉, 〈θ |η〉)(1 + B + C). (4)

〈χ |η〉 is the conditionally averaged dissipation rate of ξ , specified directly from the DNS.
eQ and eY closure has been invoked (Cha et al 2001). For convenience, (4) is referred to as
the cmc3 model (third-order closure), as the cmc2a model with C = 0 (second-order closure),
and as the cmc1 model with both B = 0 and C = 0 (first-order closure). All double and triple
conditional correlations are taken from the DNS.

3.2. Presumed conditional pdf approach

The beta distribution, or ‘beta pdf’, is a standard model to describe a random variable, Θ say,
whose set of all possible values lies is some finite interval [
−, 
+] (Ross 1984). The beta
pdf is a two parameter distribution given by

pΘ(
) = 1

B(a, b)
(
 − 
−)a−1(
+ − 
)b−1(
+ − 
−)1−a−b (5)
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for 
− < 
 < 
+, where 
 is the sample space variable of Θ. The free parameters a and b

enforce the first and second moments of Θ and are given by

a = 〈Θ〉 − 
−


+ − 
−

(
(〈Θ〉 − 
−)(
+ − 〈Θ〉)

〈Θ′2〉 − 1

)
,

b = 
+ − 〈Θ〉
〈Θ〉 − 
− a ,

where 〈Θ〉 and 〈Θ′2〉 are the mean and variance of Θ, respectively. It is sometimes
useful to write the pdf in (5) as ‘pΘ(
; a, b)’, explicitly showing this parametrization, or
further, as ‘pΘ(
; t, x)’, if a(t, x) and b(t, x) varied in time and space, for example. Both
notations equivalently represent ‘pΘ(
)’ in (5). In (5), B(a, b) normalizes the pdf such that∫

pΘ(
) d
 = 1.
The presumed beta pdf model for describing the mixing of a conserved scalar is described

in Bilger (1980). For the present case of a single-step reaction, pΘ(
) models the conditional
pdf of the reacting scalar θ on ξ , written as pθ |ξ (
). θ is bound by 0 � θ � θeq(η), where θeq

is the equilibrium profile, a function of the mixture fraction. (This function is known ahead
of time from a given chemical kinetic model.) That is, 
− = 0 and 
+ = θeq for any given
value of ξ = η. Applying the presumed beta pdf pθ |ξ (
) to the conditional moment closure
equations yields(

d

dt
− 〈χ |η〉

2

∂2

∂η2

)
〈θ |η〉 = 2

∫
ẇ(YF, YO, YP, θ)pθ |ξ (
) d
 , (6)

where ẇ(YF, YO, YP, θ) is a known function of the ξ and θ sample space and pθ |ξ (
) is
parametrized by the conditional mean and variance of θ , 〈θ |η〉 and 〈θ ′2|η〉, respectively, through
a(t, η) and b(t, η) (see below). Equation (6) is an integro-differential equation for 〈θ |η〉(t, η)

and only 〈θ ′2|η〉 is taken from the DNS to evaluate the right-hand side of (6) for the a priori
study. Equation (6) is referred to as the cmc2b model throughout the remainder of the paper.

3.3. Implementation issues

Conditionally averaged quantities from the DNS required for the a priori modelling studies
include 〈χ |η〉(t, η), 〈θ2|η〉(t, η), and 〈θ |η〉(0, η) for all the higher-order conditional moment
closure approaches. 〈θ3|η〉(t, η) is also required for the cmc3 model.

The conditionally averaged scalar dissipation rate can be decomposed as 〈χ |η〉 =
〈χ |ξst〉 exp{−2[erf−1(2η − 1)]2} (Cha et al 2001) with no appreciable effect on the solutions.

Binning of the DNS experimental data in η is done with equal points per bin as opposed
to using equally incremented bin sizes for calculating all conditional means, resulting in
more accurate and smoother profiles. Because there is an equal amount of fuel and oxidizer
in the system, as mixing proceeds, the number of data points increases with time towards
ξ = 0.5 = ξst. With the above binning procedure then, the bin width at ξst decreases with
increasing time. In figure 1(a) for example, which shows less than 1% of the total available 1283

DNS data points (randomly chosen), �η = 0.02 at ξst with 128 bins; at a later time, t∗ = 1,
�η = 0.01 at ξst. For a given ξ bin then, there is always a constant number of data points, of
the order of 104. The accuracy of an ensemble is proportional to the inverse of the square root
of the number of points. This yields an uncertainty of about ±0.8% for a singly conditional
mean; double and triple this value for second- and third-order statistics, respectively. The
uncertainties add for each product and divide in the calculations for B and C in (4). Thus, for
example, the uncertainty in C would be of the order of 5%. The cmc3 model results show no
appreciable change within these and higher uncertainties: it takes ±30% relative errors added
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to the DNS second- and third-order statistics to yield a 5% maximum difference in the 〈θ |η〉
modelling results. Cubic interpolation is used in ξ space to interpolate all the one-dimensional
profiles onto a fixed η grid. Cubic splines are used to interpolate the required one-dimensional
profiles in time where the DNS data are not available. (Note, DNS data are always available
within the ξst bin, as discussed above.) Boundary conditions for equations (4) and (6) at
η = 0, 1 are 〈θ |η〉(t, 0) = 〈θ |η〉(t, 1) = 0.

For the cmc2b model, the conditional pdf on the right-hand side of (6) can be written as

pθ |ξ (
; t, η) = �(a + b)

�(a)�(b)

a−1(θeq − 
)b−1θ1−a−b

eq .

Here, � is the gamma function (Press et al 1992), and

a(t, η) = 〈θ |η〉
θeq

( 〈θ |η〉(θeq − 〈θ |η〉)
〈θ ′2|η〉 − 1

)

b(t, η) = θeq − 〈θ |η〉
〈θ |η〉 a

where the (t, η) dependences come through relating a and b to 〈θ |η〉 and 〈θ ′2|η〉. For the present
Arrhenius reaction rate (Ze = 4), the source term is sufficiently localized about ξst in mixture
fraction space and θeq can be set to θeq at ξst for all η with no appreciable effect on the solutions.
(For the present, one-step reversible reaction with K = 100, this value is θeq = 0.83.) This
approximation would become even more accurate with increasing Ze. The beta pdf can be
zero or infinity at or near the 
 boundaries. Trapezoidal integration is used for the right-hand
side of (6), with the contributions near the boundaries given by 0.5(
N − 
N−1)ẇN−1(
) at
the 
N−1/2 grid point and an analogous contribution at 
1/2.

4. Results and discussion

Figure 2 compares the higher-moment modelling results (lines) to the DNS experimental data
(symbols). Solid circles are the conditionally averaged temperatures at ξst taken directly from
the experiment. Subplot (a) is from the same case as was shown in figure 1. The deviation of
〈θ |ξst〉 from the equilibrium value, θeq = 0.83 at ξst, is due to the local extinction/reignition
events that were seen in figure 1(a). Only the frequency factor was decreased in the DNS for
the case shown in figure 2(b), which results in increased extinction levels, and hence shows a
larger deviation from θeq as compared to the case in subplot (a). Open circles are the standard
deviation about 〈θ |ξst〉 and open triangles are the (non-dimensional) skewness defined as

s = 1

〈θ ′2|η〉3/2

∫
(
 − 〈θ |η〉)3pθ |ξ (
) d
,

where pθ |ξ (
) is the conditional pdf. Note that s is a function of 〈θ3|η〉, a third-order term.
Hence, only the cmc3 model explicitly incorporates the skewness. In figure 2, solid lines are
first-order modelling results (cmc1), dashed lines are second-order predictions (cmc2a), and
dash–dotted lines are third-order modelling results (cmc3).

Cha et al (2001) discuss the limitations of cmc1 modelling of local extinction and
reignition. To summarize, local extinction events cannot be accounted for by cmc1 modelling
and thus the DNS data are overpredicted for case B (subplot (a) in figure 2). A reignition
mechanism does not exist in cmc1 modelling and thus first-moment closure predicts global
extinction for case C, although the DNS data recover to a burning state (subplot (b) in figure 2).
(Deviations of cmc1 modelling predictions from the DNS data for case A were small, as
extinction levels for this case are low.) Presently, we are interested in the extent the higher-
moment closure strategy can correct for the shortcomings of cmc1 modelling.
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(a) (b)

Figure 2. Comparison of higher-moment modelling results with DNS data. •, conditional average
of the reduced temperature, 〈θ |ξst〉; ◦, standard deviation about conditional means, (〈θ ′2|ξst〉)1/2;

, skewness, |s|/10. ——, first-order, conditional moment closure results (cmc1); - - - -, second-
order modelling results (cmc2a), and — · —, third-order predictions (cmc3). Subplot (a) moderate
extinction case (case B) and subplot (b) high extinction case (case C) from Cha et al (2001). The
bin widths are of the order of 0.01; less than 0.01 for times t∗ > 1/2 (cf discussion of section 3.3).

In case B (subplot (a) in figure 2), second-order closure causes the mean to be
underpredicted. Consideration up to the third-order terms in (4) evidently counteracts this
effect and leads to good predictions of the data. (The modelling results for case A (not shown)
are similar to case B but with much smaller deviations from the data.)

In case C (subplot (b) in figure 2), first-order closure is unable to predict the onset of
reignition (in the mean). Both second- and third-order closures can predict the global reignition,
but deviate from the data beyond t∗ � 1/2. Of note is that the skewness, |s|, decreases in the
higher extinction case while the variance remains comparable.

Discussion of the modelling results in figure 2 centre around the conditional pdfs of θ

at ξst for representative times of interest. (case A is not discussed here, as extinction levels
are low and do not significantly impact the conditional pdfs.) The left column of figure 3
shows pθ |ξ at ξst, t∗ = 1/4, 1/2, 3/4, and 3/2 for case B. At early times (t∗ < 1/2), the pdfs
are unimodal—have a well-defined, single peak—with some negative skewness. The series
expansion of the conditionally averaged reaction rate, (3), does not know the shape of the pdf.
Evidently, skewness, or third-order information, and variance, or second-order information,
are sufficient to correct first-moment closure, resulting in the good agreement with the data
that was seen in figure 2(a). For larger times, t∗ � 1/2, some bimodality begins to appear
in the pdfs, but not enough to cause problems for third-order closure, the cmc3 model. For a
general unimodal pdf, at least third-order moments are required to capture skewness. For this
experimental case with moderate local extinction levels, the skewness is always negative for
pθ |ξ as the temperature can never exceed θeq. The implication is that in such a circumstance
at least third-order information is required in the series expansion of 〈ẇ|η〉.

The right column of figure 3 shows pθ |ξ at ξst for case C (corresponding to subplot (b)
in figure 2) at t∗ = 1/4, 1/2, 3/4, and 3/2. For t∗ � 1/4, the standard deviation about
the conditional average is comparable to case B, but with reduced skewness (cf figure 2),
and second-order closure yields comparable results to the third-order closure predictions.
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Figure 3. Conditional pdfs of θ at ξst for case B (left column) and case C (right column). Solid
lines are the presumed beta pdf predictions using the exact conditional means and variances from
the DNS. Approximately 104 data points are used to generate the pdfs (cf discussion of section 3.3).
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For t∗ � 1/2, the pdfs become bimodal—have well-defined, double peaks—and thus the
skewness can no longer characterize the shape of the pdfs. Third-order closure also breaks
down. Bimodality becomes stronger for increasing times with comparable peak temperatures.
The comparable standard deviations from the conditional mean for this case as compared to
case B (cf figure 2) is due to the combined effect of the high extinction levels in this case, which
decrease 〈θ |ξst〉, and the bimodality of the pdf. The cause of the reduction in the skewness
from case B is due to the remarkable symmetry in the pdfs.

The skewed unimodal and bimodal pdf shapes in figure 3 are due to the realistic, Arrhenius
kinetics which result in a bistable dynamic system (Pitsch and Fedotov 2001), as determined
by the steady flamelet solution (Peters 1983). With low to moderate local extinction levels, the
extinction events lead to the negatively skewed pdf shapes, as was seen in the left column of
figure 3 (case B). With moderate to high extinction levels, the upper and lower stable branches
lead to the bimodal pdf shapes, as was seen most dramatically in the right column of figure 3
(case C) for times t∗ > 1/2. That the transitional probabilities always correspond to the
minimum probability of the bimodal distributions is a direct result of the unsteady dynamics
of the bistable system switching between the upper, high temperature (θst ∼ O(1)) and lower,
low temperature (θst ∼ O(0.1)) stable branches (Pitsch et al submitted). This switching is of
course due to extinction and reignition.

Figure 3 also shows the predictions of the conditional pdf shapes using the presumed
beta pdf model (solid lines). In this figure, both the conditional mean and variance were
taken directly from the DNS data. The success of the presumed beta pdf model for passive
scalar mixing is well known. Figure 3 shows that the presumed beta pdf model does not have
the flexibility to describe the variety of reactive scalar pdf shapes due to the modifications
by reaction, more precisely, the extinction/reignition dynamics which result from realistic
Arrhenius kinetics. In particular, the unimodal peaks are always underpredicted for case B
(left column). In case C (right column), the presumed beta pdf shape also underpredicts
the twin peak densities of the bimodal pdfs, while the transitional probabilities between the
extinguished and burning states are always overpredicted.

In spite of the failure of the presumed beta pdf model to describe the unimodal and bimodal
conditional pdf shapes of the reduced temperature, a priori modelling results of (6), the cmc2b
model, show surprisingly excellent agreement with the DNS experiments. Figure 4 compares
cmc2b modelling results for 〈θ |ξst〉 (solid lines) to the DNS experimental data (symbols).
Model cmc1, first-moment closure results are given by the dashed lines. Only the conditional
variance, 〈θ ′2|ξ〉, is taken from the DNS to evaluate the right-hand side of (6) for the cmc2b
modelling results. For all cases, cmc2b modelling yields improved predictions over first-
moment closure. In particular, for case B, cmc2b modelling can accurately describe the effect
of local extinction on the singly conditional means. For case C, cmc2b modelling accurately
predicts the transition back to a burning state. We remind the reader that cmc2a, which also
only uses the conditional variance, could not accurately predict this transition.

Discussion of the excellent agreement between cmc2b modelling results and the DNS
data centre around the singly conditional pdfs of figure 3. The cancellation of errors between
the presumed beta distribution and the actual reactive scalar pdfs (that were discussed in
relation to figure 3) can be seen from equation (6). The right-hand side can be reinterpreted
as the integral over the presumed beta pdf shape weighted by the nonlinear chemical source
term. Figure 5 shows representative results reproduced from figure 3 with the chemical source
term function (dashed lines) overlaid. The figure shows how the strong nonlinearity of the
chemical source term cancels the errors made by the presumed beta distribution. When the
pdf is unimodal (case B), the large underprediction of the peak value made by the presumed
beta pdf model is diminished by the strongly vanishing chemical source term as θst → θeq
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Figure 4. Comparison of presumed beta pdf modelling results (lines) with DNS data (symbols).
Symbols are DNS data of the conditional average of the reduced temperature at stoichiometric,
〈θ |ξst〉: �, low extinction level case (case A); •, moderate extinction level case (case B), and ,
high extinction level case (case C). ——, presumed beta pdf modelling results (cmc2b) and - - - -,
first-order, conditional moment closure results (cmc1).

(a) (b)

Figure 5. Why the presumed beta pdf modelling works. Representative results reproduced from
figure 3 with the chemical source term function (- - - -) overlaid.

and offsets the overprediction made by the beta pdf at lower temperatures. When the pdf
is bimodal (case C), only the transitional and high temperature probabilities are significant
and a similar cancellation of errors occurs as in the unimodal case. The strong nonlinearity
of the chemical source term, due to the realistic Arrhenius kinetic model, leads to a bistable
system and the characteristic unimodal and bimodal pdf shapes already described. Ironically,
figure 5 shows that it is the strong nonlinearity of the chemical source term which leads to
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the cancellation of errors under cmc2b modelling. Hence, this type of cancellation of errors
is also expected to occur in reacting flows of practical interest, where Arrhenius kinetics
are used.

Figure 6 shows sensitivity results of cmc2b modelling to the conditional variance. Solid
lines reproduce the results from figure 4, which use the exact variance from the DNS. Dashed
lines show results with ±30% relative errors added to the DNS variance. The results show little
sensitivity of the singly conditional means as predicted by cmc2b modelling to the actual DNS
variances. Swaminathan and Bilger (1998) discuss the modelling issues associated with the
conditional variance. The present sensitivity study, shown in figure 6, suggests that in practice
even a crude estimate of the conditional variance may be sufficient to predict the effects of
local extinction and reignition on 〈θ |ξ〉.

The insensitivity of thecmc2bmodelling to the conditional variance may not hold for larger
Zeldovich numbers than the present value of Ze = 4. (Ze ≈ 8 for hydrocarbon combustion.)
Increasing the Ze would shift the onset of the exponential rise in the chemical source term
function to higher temperatures than seen in figure 5. Below this higher temperature, the errors
between the actual and presumed beta pdf would then become unimportant as ẇ = 0 there
(cf the previous discussion surrounding figure 5). However, the discrepencies at and near the
upper peak values of the pdfs would be weighted more due also to the shift in the maximum
value of ẇ to higher temperatures with increasing Ze. This assumes that the general form of the
conditional pdfs, as shown in figure 5 for example, are unaffected by a larger Ze. However, for
larger Ze, the quenching value of the scalar dissipation rate will decrease. This will increase
the timescale for the extinction events and hence increase the transitional probabilities relative
to the upper peak value. This could improve the beta pdf representation of the conditional pdfs.
The net impact of these competing effects cannot be presently gauged beyond this speculation
and it is acknowledged that the sensitivity of cmc2b modelling to the conditional variance may
be higher for larger Zeldovich numbers.

(a) (b)

Figure 6. Sensitivity study of cmc2b modelling to conditional variance. Symbols, DNS data of
singly conditional average of the reduced temperature at stoichiometric, 〈θ |ξst〉 (•). Lines, cmc2b
modelling results: exact variance, 〈θ ′2|ξ〉, from DNS used in the a priori modelling results (——),
±30% relative errors added to the DNS variance (- - - -).
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5. Conclusions

Higher-order strategies providing closure for the chemical source term in conditional moment
closure modelling are investigated. Feasibility studies are carried out by using higher-order
conditional statistics taken directly from direct numerical simulation experiments which exhibit
local extinction and reignition. Modelling issues associated with closure of the transport
equations for the higher-order moments are not addressed.

With moderate levels of local extinction, the conditional pdfs are unimodal (single peaked).
Mean and variance information alone in the series expansion of the conditional average of the
chemical source term is insufficient to describe the influence of the fluctuations. That is, first-
and second-order closure cannot describe the conditional means and third-moments (or the
skewness of the pdfs) are also required to obtain good predictions. With high levels of local
extinction, the pdf can adopt a strong bimodal shape and third-order closure is insufficient to
describe the conditional averages.

Conditional second moment information is only sufficient to describe the effect of
extinction/reignition on the conditional averages if a presumed beta pdf model is used.
The presumed beta pdf shape is not flexible enough to describe the singly conditional pdfs
of a reacting scalar undergoing extinction/reignition. However, the strong nonlinearity of
the chemical source term can cancel the deviations under a singly conditional presumed
beta pdf shape closure strategy, equation (6) in this paper. The insensitivity of the model
to the conditional variance of the reacting scalar suggests the possibility of using the
conditional variance which results from the fluctuations of the dissipation rate of the mixture
fraction alone.
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