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Convergent Iterative Constrained Variation Algorithm for
Calculation of Electron-Transfer Transition States
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We present an efficient mathematical framework to determine the potential-dependent transition states of electron transfer
reactions by quantum calculations. This approach makes it more feasible to study heterogeneous electron transfer processes with
the theory of local reaction center for electron transfer. It is shown that the new formulation regenerates previously published
results obtained by the constrained variation method. Our solution algorithm replaces the constrained optimization problem
defined in a multidimensional space by a single equation in terms of only one variable that is solved for in each iteration. This
method leads to fast convergence, reliability, and robustness of the located transition states for more complex systems with a larger
number of degrees of freedom, especially for smooth energy surfaces.
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Electron transfer �ET� reactions in solutions or at heterogeneous
interfaces and electrodes constitute the core of chemical processes in
many applications ranging from electrochemical power generation,
such as fuel cells, to biological systems. Knowledge of the electro-
chemical steps in these processes plays a vital role in the analysis of
reaction mechanisms and in understanding the chemistry involved.
While quantum computations have been extensively used to inves-
tigate many non-ET reactions in the reduction steps of oxygen in
fuel cells,1,2 similar studies on ET reactions, despite their signifi-
cance, need further improvement.

The theories of ET developed over the past decades3,4 provide
insight into basic electrochemical phenomena. The quadratic model
of Marcus5 for electron transfer processes has been widely applied
to describing outer-sphere reactions,6 adiabatic electron transfer at
the electrode surface,7,8 as well as nonadiabatic ET reactions.9,10 The
main challenge in dealing with ET reactions is the dependence of
rate parameters, such as activation energies and frequency factors,
on the properties of the environment such as solvent polarizability,
reorganization energy, and in particular, the electrode potential.

The effect of these factors has been studied to some extent in the
past. For instance, the role of the solvent in complex reactions has
been investigated by estimating the solvent reorganization
energy11-16 and also the solvent interaction with an electric field17

using ab initio and classical molecular dynamics simulations.
Many studies on electrochemical reactions use the Butler–

Volmer approximation to describe the dependence of electrochemi-
cal reaction rates on the electrode potential. In this model, the elec-
trode potential linearly affects the activation energy of an ET
reaction. However, quantum and semiclassical theories of electron
transfer processes indicate a nonlinear dependence of the activation
energy on the environment parameters including the electrode
potential, which are of great importance in describing ET
reactions.18 In one approach, an electron is added or removed from
the whole system or a surface species to simulate the effect of
charge transfer or electric field in electrochemical reactions.19 Al-
though this and similar techniques can provide useful information
about the
phenomenological trends, more sophisticated models of electron
transfer are still to be incorporated into computational studies of
such reactions.

In recent years, Anderson et al.20-24 have proposed a practical
approach to calculate activation energies as a function of the elec-
trode potential using high-level ab initio quantum computations.
Their model, namely, the local reaction center electron transfer
theory, has been applied to investigate ET reactions such as the
electrochemical oxidation of CO, the hydrogen oxidation reaction,
and oxygen reduction steps both in solution and in the presence of
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platinum.25-29 The above model for potential-dependent ET reac-
tions can be applied to complex systems with a larger number of
structure variables if the transition states are found with a small
number of trials. In this paper, we present a new algorithm, the
convergent iterative constrained variation �CICV� method, which is
based on the analytical expansion of the activation energy and either
the ionization potential �IP� or the electron affinity �EA� of the mol-
ecule around any local point on the potential energy surface �PES�.
After a brief discussion on the local reaction center theory, the new
method is presented and the mathematical formulation is derived.
The results obtained using this methodology for the oxidation reac-
tion of PtOH2 are compared to the literature results. Next, the CICV
method is used to find the transition states of the Pt2O2H oxidation/
reduction reactions. The results are then validated against each other
based on the concept of microscopic reversibility. Finally, the con-
vergence of this method is studied and discussed.

Local Reaction Center Theory

Historically, electron transfer processes are discussed in terms of
donor and acceptor centers. In this picture, it is assumed that an
electron which is initially localized in the donor region is transferred
at the transition state to the distinct region of the acceptor.3

Anderson et al.,21-30 introduce a reaction center that instead of the
conventional donor–acceptor centers in ET theories, communicates
with the metal electrode. In this theory, the electron transfer state is
defined as the state where the IP, for an oxidation reaction, or the
EA, for a reduction reaction, of the reaction center equals the ther-
modynamic work function of the electrode. The work function of the
electrode is in turn a function of the electrode potential Ee. Denoting
EA or IP as �, this condition may be written for both oxidation and
reduction reactions as

� = eEe �1�
Equation 1 expresses the ET condition in the local reaction center
theory. On the scale of the standard hydrogen electrode �SHE�, the
electrode potential Ee is given as29,31

Ee/V = U/V + 4.6 �2�

where 4.6 V is the average value of the thermodynamic work func-
tion of the SHE based on experimental estimates, and U is the elec-
trode potential with respect to the SHE. The EA and IP of the reac-
tion center are by definition the change in the energy when the
system jumps from its initial state to its final state, i.e., the states just
before and right after the charge transfer. Because the PES of the
molecule is a function of multidimensional structure coordinates x
for any given electrode potential, there may exist multiple configu-
ration points on the PES that satisfy the electron transfer condition
�Eq. 1�. As a result, the transition state of the oxidation/reduction
reactions x* is identified as the point in the set of solutions satisfying
the ET condition, where the activation energy attains its minimum.
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The activation energy at the transition state � is the increase in the
energy of the system E at the transition state with respect to the
energy at the ground state

� = Etransition state − Eground state �3�

In general, the dependence of the potential energy on x is not a
known function, and quantum computations usually determine only
sampled points on the energy surfaces. One approach that has been
used to find the transition states with the above theory is the pattern
search technique that compares several candidate points on the PES
and picks the one with the lowest activation energy corresponding to
a certain electrode potential.23 The sampling process of the PES in
the pattern search requires many quantum simulations and, there-
fore, is a computationally expensive solution approach.

Kostadinov and Anderson32 used the constrained variation �CV�
method, explained below, in order to reduce the number of required
quantum simulations. Their approach, based on the Lagrange multi-
pliers method, adopts a more efficient search algorithm to accelerate
the determination of transition states. In this algorithm, a new vari-
able � is introduced to include the electron transfer condition Eq. 1
in the Lagrange function L defined by

L�x,�� = ��x� − ����x� − eEe� �4�

The minimization of L is achieved if the partial derivatives of L with
respect to all independent variables x and � are equal to zero. This
leads to the following two conditions

�� = � � � �5�

� = eEe �6�
Equation 5 is a vector equality, and it demands that the gradients of
� and � at the transition states be colinear. The scalar Eq. 6 is the
ET condition and a restatement of Eq. 1.

The computational process of the Lagrangian formulation by the
CV method is carried out in two steps. In the first step, a point on the
PES is found that satisfies the ET condition, i.e., Eq. 6. Next, a
particular line search algorithm is followed to maintain the direction
of the change in x, the structure variables, perpendicular to the gra-
dient of � until the constrained minimum of � is found by fulfilling
Eq. 5 �see Fig. 1�. It is assumed that the ET condition will remain
the least perturbed while the algorithm simultaneously attempts to
minimize the activation energy. Although the gradients of � and �
are calculated by finite differences using a small step size of
0.0004 Å, a shift in potential is observed as the algorithm converges
to the corresponding transition states.32 Therefore, at each step, the
final transition state has an IP �or EA� that is slightly different from

Figure 1. Graphical demonstration of the CV algorithm: the CV method
locates xfinal, which corresponds to a slightly different IP �or EA� from the
target work function of the electrode �2.
the target work function of the electrode �Fig. 1�. Despite the
substantial improvement of the CV method over the pattern search
algorithm, still a large number of quantum simulations are required
to compute the gradients and to find the optimum points in the
multidimensional space of the configuration variables. As a result,
the whole calculation time can increase tremendously if more struc-
ture variables of the nuclei configuration participate in the search
algorithm.

Convergent Iterative Constrained Variation (CICV) Method

In the Born–Oppenheimer approximation, the potential energy
surface of a quantum system is a function of the nuclei coordinates
or, from a geometrical point of view, a function of the structure
variables x. Hence, � and � of the reaction center are also, by
definition, functions of x. Consequently, the second-order expan-
sions for � and � within the Born–Oppenheimer approximation can
be represented as truncated multivariable Taylor series about any
local point on the PES

dx = x − x0 �7�

��x� = �0 + B�
Tdx +

1

2
dxTA�dx �8�

��x� = �0 + B�
Tdx +

1

2
dxTA�dx �9�

where A�, A� and B�, B� stand for the second and first derivatives of
� and � with respect to x evaluated at x0

A� = � �2�

�x�x
�

x0

A� = � �2�

�x�x
�

x0

�10�

B� = � ��

�x
�

x0

B� = � ��

�x
�
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�11�

The first and second-order derivatives of the PES are available from
the output of single quantum computations without performing
additional calculations necessary in finite difference estimations.
The gradients of � and � now can be computed by taking the
derivative of the above two equations with respect to x

�� = B� + A�dx �12�

�� = B� + A�dx �13�

where �� and �� are the first derivatives of � and � with respect to
x at any point x around x0. The desired change dx in structure
variables is then expressed in terms of the undetermined parameter �
using Eq. 5, 12, and 13

dx = �A� − �A��−1��B� − B�� �14�

Equation 14 can now be used to eliminate dx in Eq. 12 and 13.
Substituting the updated expansion of �� and �� in Eq. 6 then
leads to an equation that is a function of � only

�0 + B��A� − �A��−1��B� − B�� +
1

2
��B� − B��T�A�

− �A��−TA��A� − �A��−1��B� − B�� = eEe �15�
Any root-finding algorithm such as the Newton–Raphson method
can be used to solve this scalar equation for �, which in turn directly
leads to the estimation of dx from Eq. 14. Thus, the CICV method
replaces the two-step multivariable approach of the CV method with
a single one-variable step. The increase in the computational cost of
this step with increasing the degrees of freedom of a given system is
negligible and reflected only in the matrix operations of Eq. 15 and
not in the quantum calculations. Therefore, the solution algorithm in
the CICV method is, to a great extent, independent of the dimension
of x. This is shown below.
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The iteration loop begins with assigning a new value to the elec-
trode potential starting from an initial nuclear configuration x0. After
solving Eq. 15 for � and Eq. 14 for dx, a candidate set of structural
coordinates x1 is estimated by

x1 = x0 + dx �16�

Next, the EA �or IP� of the system is computed by performing two
quantum simulations at the new geometry, which also provide the
derivatives required for the Taylor expansions of � and � in Eq. 8
and 9. The algorithm loop repeats until the cosine squared of the
angle between the gradient vectors �� and ��, Eq. 17, reaches a
desired value close enough to unity

cos2 � =
��� · � ��2

��2 � �2 �17�

This co-linearity between �� and �� assures the fulfillment of
Eq. 5, while at the same time the solution of Eq. 15 in each iteration
implies that the EA �or IP� of the reaction center is very close to the
work function of the electrode.

Because this algorithm solves the Lagrange equations, Eq. 6 and
5, at each iteration, it provides more control over the electrode po-
tential at transition states �Fig. 2�. The shift in the electrode potential
at transition states observed in the CV method is practically re-
moved, because the tolerance in the target electrode potential can be
set to any desired value. The number of iterations needed to locate
the transition states within the accuracy of the quantum computa-
tions and of the proposed model for ET depends on the smoothness
of the PES, i.e., on the precision of the second-order representation
of the Hamiltonian in terms of the structure variables. Hence, for
smooth energy surfaces, the CICV method converges almost inde-
pendently of the dimension of the search space x. This allows a
larger number of degrees of freedom in the molecule structure to be
included in the constrained optimization of the system at a low
computational cost, which is a valuable feature for studying larger
systems.

Results

The transition states of two electrochemical reactions are pre-
sented in this paper. For the first reaction, the results obtained by the
CICV method are compared with those of the CV method in the
literature. In the second one, the reliability of the transition states
computed by the CICV method is studied using the principle of
microscopic reversibility. The convergence of the method is inves-
tigated and discussed last.

Figure 2. Graphical demonstration of the CICV algorithm: the CICV
method solves the Lagrange equations such that at each iteration the IP �or
EA� of the molecule converges to �2.
Oxidation of PtOH2

For comparison and demonstration purposes, the oxidation of
PtOH2 previously studied by Kastadinov and Anderson32 was inves-
tigated and the activation energy vs the electrode potential was
obtained using the CICV method presented in the previous section.
Oxidation reactions describe the deprotonation of the adsorbed
molecule according to

PtOH2 → PtOH + H+ + e−�U� �18�

The details of quantum computations, repeated here for conve-
nience, are the same as those used by Kostadinov and Anderson.32

The hydronium ion was modeled by a hydrogen atom attached to
three water molecules, H+–OH2�OH2�2, as shown in Fig. 3. Five
intermolecular distances were varied in the simulation whereas the
other distances and angles were fixed at the optimized structure. The
contribution of anions and cations was accounted for in the Hamil-
tonian of the system by adding a point charge of − 1

2e placed 10 Å
away from the first oxygen atom of the hydronium ion along the
H+–O line. This point charge corresponded to the Madelung sum for
a rock salt structure of ions in a 0.1 M solution of monoprotic acid.
The quantum simulations were performed using the MP2 level of
theory implemented in GAUSSIAN 0333 along with the 6–31G**

basis set for O and H, and an effective core potential and double zeta
valence orbital basis �LANL2DZ� set for Pt. Before the actual CICV
calculation, the five distances in the reaction center were optimized
while the other structure distances and angles were fixed at their
corresponding ground state values. The optimized structure is
equivalent to the point of zero activation energy illustrated in Fig. 4,
and it serves as the starting point for the CICV computations. The
calculated electrode potential at zero activation energy is 0.856 V,
which is very close to the value of 0.867 V obtained in Ref. 32.
Figure 4 demonstrates the potential dependence of the activation
energy for the oxidation of the PtOH2 precursor hydrogen-bonded to
three water molecules using the CICV method. It is observed that
the CICV method can reproduce the activation energy curves in very
good agreement with those obtained by the CV method. The slight
disagreement might be due to small differences in the optimized
structure parameters.

Figure 3. Reaction center for oxidation of PtOH2·�H2O�3 along with five
interatomic distances used to optimize the transition states. R4 and R5
distances were changed symmetrically for both of the two hydrogen-bonded
water molecules.
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Microscopic Reversibility of Pt2O2H Oxidation/Reduction

To further examine the accuracy of the computed transition states
by the CICV method, oxidation/reduction steps of Pt2O2H were
studied as an additional test case

Pt2 − O2 + H+ + e−�U� � Pt2 − O2H �19�

The structure of Pt2O2, hydrogen-bonded to a hydronium ion
�Fig. 5�, constitutes the precursor for Reaction 19. Here we show
that the results predicted by the CICV method satisfy the principle
of microscopic reversibility, which requires that the transition con-
figurations be the same at any electrode potential for the forward
and backward reactions.34 Microscopic reversibility offers a way to
derive the oxidation curve from the reduction data and vice versa.
The agreement between the calculated and the derived curves indi-
cates the consistency of the transition states identified by the solu-
tion algorithm.

The solution algorithm locates the transition states of the
oxidation/reduction steps for the molecule shown in Fig. 5. The
activation energies that are computed from these transition states are
called calculated activation energies. The EA of the reduced center
and the IP of the oxidized center in Eq. 19, which equal to the
electrode potential, are determined from the PES of the same pre-
cursors. These PES surfaces, which are determined independently

Figure 4. Activation energy at different potentials for oxidation of
PtOH2 · �H2O�3 from the CICV method compared with the CV method.

Figure 5. The reaction center for Pt2O2H oxidation/reduction reactions:
Pt2O2H attached to three water molecules to account for the effect of the
solution.
from both the forward and backward steps, should match in prin-
ciple. Therefore, at any given electrode potential, the transition state
on these PES surfaces should correspond to the same molecular
structure. Having computed the transition states from one step, one
can obtain the activation energies for the other step using Eq. 3.
Here, these latter activation energies are called derived activation
energies.

Anderson et al.34 report difficulties in obtaining Pt2O2H activa-
tion energy curves in the first series of usual calculations by the CV
method. Namely, the activation energies obtained by computing the
reduction reaction do not match those computed from the data
obtained in computing the oxidation reaction, thereby violating the
principle of microscopic reversibility. This problem has not been
observed for simpler systems, such as hydrogen reactions on Pt,
where the transition configurations were found to be compatible for
the forward and backward reactions. It was suggested to determine
the true transition states of Pt2O2H reactions by starting the CV
calculations from a structure corresponding to the average of the
structures found from the computations of the oxidation and the
reduction reactions.34 Using this procedure, the activation energies
obtained after three such iterations were in agreement with those
determined from the data of the reverse reaction.

In contrast to the CV method, the activation energy curves from
the CICV method are directly obtained in the first calculation and
are in remarkable agreement with the curves derived from the
reverse reactions. This is shown in Fig. 6. The requirement of
microscopic reversibility is hence satisfied, which confirms the
reliability of the transition states computed using the CICV method.
Ten degrees of freedom were optimized in the constrained variation
calculations �Table I�. Varying this large number of optimization
parameters, which was made possible by the new method, is the
reason for observing such good agreement. The intersection point of
the oxidation and reduction activation energy curves in Fig. 6 cor-
responds to an electrode potential of 0.93 V, which is only 0.01 V
different from the value computed by Anderson et al.34 The CICV
curves for this case also compare well with the final activation en-
ergies of the CV curves, which are not shown here.

Convergence of the CICV Method

In the solution algorithm of the CICV method, the electrode
potential appears as a parameter. Hence, the activation energy has to
be computed for each specified value of the electrode potential. The
simulations start typically with the structure of the transition state
determined for the previous potential. Within the computation of the
activation energy of each specified potential, several iterations may
be needed to meet the convergence criteria. A simulation is consid-
ered converged if both of the convergence criteria corresponding to

Figure 6. Calculated and derived activation energy curves for Pt2O2H
reactions after the first series of computations using the CICV method to
determine the transition states.
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the conditions given by Eq. 5 and 6 are met. The first condition is
that 1 − cos2 � has to be smaller than a prescribed tolerance. The
second condition demands that ��/e − Ee� be smaller than a second
prescribed tolerance.

Here, the number of iterations required to determine the activa-
tion energy for a given potential is used to assess the convergence of
the CICV method for different degrees of freedom in the structure
variables. The activation energy curve for the oxidation of Pt2O2H,
given in Eq. 19 was obtained allowing for two, six, and ten degrees
of freedom. These degrees of freedom are defined in Table I. For
each case, eight different potentials were computed with 0.0005 as
the tolerance for the cos2 �-condition, and 0.01 V for the electrode
potential condition.

Figure 7 shows that more iterations are needed for 6-degrees of
freedom �DOF� and 10-DOF cases compared with the 2-DOF case.
However, the 10-DOF case needs essentially the same number of
iterations to achieve convergence as the 6-DOF system. This result
is expected, because the solution algorithm is to a large extent inde-
pendent of the dimension of the structure variable vector x. In each
iteration, only the nonlinear scalar equation, Eq. 15, is solved for �.
Consequently, the convergence is mainly affected by the accuracy of
the Taylor expansions in Eq. 8 and 9 to represent the PES of the
system. This depends less on the number of structure variables than
the point on the PES used as the initial guess. In principle, it could
be expected that the expansion is more accurate for a smaller num-
ber of DOF, but the opposite could be the case. As an example, this
can be observed for the high-potential, 10-DOF simulations, which
require fewer iterations than the corresponding 6-DOF
simulations.

Table I. Degrees of freedom of the precursor in the Pt2O2H oxi-
dation reaction, Eq. 19.

DOFnumber DOF type Atomsa

1 Bond length Ha–Oa

2 Bond length Ob–Ha

3 Bond length Oa–Od

4 Bond angle Oa–Od–Ptb

5 Bond angle Ha–Oa–Od

6 Dihedral angle Ha–Oa–Od–Ptb

7 Bond length Od–Ptb

8 Bond angle Od–Ptb–Pta

9 Bond length Hb–Ob

10 Bond length Oc–Ob

a The atomic labels of the molecule are depicted in Fig. 5.

Figure 7. Number of iterations per step required for the oxidation reaction of
Pt O H.
2 2
Conclusion

The CICV method is proposed to compute transition states and
potential-dependent activation energies of electron transfer reac-
tions. It is shown that the method offers faster convergence and
better control over the desired electrode potential compared to the
CV approach by Kostadinov and Anderson32 and the pattern search
methods. The CICV approach is a constrained optimization method
using the method of Lagrange multipliers, which leads to two �N
+ 1� conditions, where N is the number of structure variables. These
conditions are combined using Taylor series expansions to a single
nonlinear equation for the Lagrange multiplier. The method exploits
the first- and second-order gradients of the potential energy surface,
typically provided by quantum simulation packages, such as
GAUSSIAN, at no extra computational cost. The calculated activa-
tion energy curve for the oxidation of PtOH2 is in good agreement
with the values obtained by the CV method. The CICV method was
found to be convergent in the sense of satisfying the microscopic
reversibility requirement, even for complex systems. This is demon-
strated for oxidation/reduction reactions of Pt2O2H. The conver-
gence of the method is shown to be almost independent of the DOF
in the structure variables. Instead, the convergence depends on the
accuracy of the second-order Taylor series expansion of the PES.
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