Energy Problems; Energy Policy; Energy Efficiency

Classes without Quizzes

James Sweeney Stanford University Director, Precourt Institute for Energy Efficiency Professor, Management Science and Engineering

Three Public Policy Drivers for Energy Policy

- Environmental Protection
 - Global Climate Change
- Security
 - Oil/International vulnerability
 - Vulnerability of infrastructure to terrorism, natural disaster, or human error
- Economics (Public policy and private sector issues)
 - Prices of electricity, gasoline, natural gas
 - Price volatility: oil, natural gas, wholesale electricity
 - Management for energy efficiency can be very profitable

Environmental

Fossil fuels account for

- 98% of the US carbon dioxide net releases into the atmosphere
- 82% of the releases of greenhouse gases, measured on a carbon equivalent basis.

U.S. CO₂ Emissions 2005

U.S. CO₂ Emissions 2005

Energy Security Issues

- Production of oil concentrated into unstable areas of the world
- Sudden supply reductions can sharply increase oil price
 - Short run demand elasticity about

- 0.1 to - 0.2

- Percentage price increase will be 5 to 10 times the percentage supply reduction
- Sudden oil price increases can lead to worldwide recession
- Petroleum revenues fund terrorist activities

World Oil Production (84.5 Million Barrels Per Day): 2007 Crude Oil, Natural Gas Plant Liquids, and Other Liquids

Oil and Gas Reserves, Billion Barrels Oil Equivalent

Saudi Aramco (Saudi Arabia)	302 ExxonMobil	23
National Iranian Oil Co	302 Pertamina (Indonesia)	22
Gazprom (Russia)	198 Lukoil (Russia)	21
Iraqi National Oil Co	136 BP	19
Qatar Petroleum	133 Pemex (Mexico)	19
Kuwait Petroleum Co	109 PetroChina	19
Petroleos de Venezuela	105 Shell	16
Adnoc (Abu Dhabi)	80 Yukos (Russia)	13
Nigerian Natnl Petroleum Co	41 Chevron	12
Sonatrach (Algeria)	38 Petrobras (Brazil)	12
Libya NOC	31 Total (France)	11
Rosneft (Russia)	28 Surgutneftgas (Russia)	9
Petronas (Malaysia)	26	

State Owned/Controlling Interest. Private Sector Owned

Energy - Economic Issues

Crude Oil prices

- Crude Oil prices are currently high
- Prices on futures markets suggest that crude oil prices are most likely to further increase
- World demand continues to grow
 - Development of China and increase in the number of passenger cars
 - India is likely to follow
- Expectation that conventional oil supply may peak soon
- Incentives for dominant suppliers to limit investment in new production capacity so as to keep prices
- Incentives for dominant suppliers to keep future prices uncertain so as to limit competitive investments

Crude Oil Futures Prices: As of Eight Dates

Energy Efficiency:

Economically Efficient Reductions in Energy Use Intensity

US Energy Consumption By Fuel

Source: EIA, Annual Energy Review

Energy Efficiency Compared to CO₂-Free Energy Supply

- A 30% reduction in all energy intensity implies that 25.5 quads of fossil fuels are not used, reducing CO₂ emissions by 25.5%
- A 60-fold increase in wind plus solar can displace about 25 quads of fossil fuels.
- A factor of five increase in nuclear power can displace 30 quads of fossil fuels.
- 1 billion tons per year of celluosic conversion of biomass can displace 5 quads of gasoline.

U.S. Energy Use by Sectors: 2007

Global cost curve of GHG abatement opportunities beyond business as usual

GHG reduction opportunities widely distributed – 2030 mid-range case

Why Do Negative Cost Options Continue ?

Market Failures and Market Barriers

Market failures	Market barriers		
Unpriced costs and benefits	Low priority of energy issues		
Distortionary regulatory and fiscal policies	Incomplete markets for energy efficiency		
Misplaced incentives	Capital market barriers		
Insufficient and inaccurate information	(Cognitive Skills)		

Source: Brown, Marilyn. 2001. "Market failures and barriers as a basis for clean energy policies." *Energy Policy*

Market Failures

- Externalities of Energy Use ("Unpriced costs and benefits")
 - Global Climate Change
 - Risks of Energy Price Shocks
 - Limitations on our Foreign Policy Options
 - Terms of Trade Impacts (Pecuniary "Externalities")
 - Automobile risk shifting by purchase of heavy vehicles
- Pricing Below Marginal Cost
 - Non-time-differentiated Electricity Pricing
- Information Asymmetry/ Agency Problems
 - Consumer Product Marketing
 - New Building Construction
- Suboptimal Technology Options
 - Incomplete capture of intellectual property
 - Sub-optimal technology directions, due to externalities
- Non-Convexities
 - Learning By Doing Technology Spillovers
 - "Chicken and Egg" Problems

Split Incentives: Market Penetration of Energy Efficiency Measures in Owner-Occupied and Rental Housing in California (CEC 2004)

Market Barriers

- Low Priority of Energy Issues
 - Generally means that energy costs are so small that it is not worth the effort to try to optimize
- Incomplete markets for energy efficiency
 - Discrete nature of commodities offered for sale
 - Information problems when offering energy efficiency services
- Capital market barriers
 - Simply a recognition of opportunity cost of capital investments
- Cognitive issues
 - Probably very important for residential, small commercial, and individual transportation decisions

Market Barriers Example

- Cognitive issues: automobile purchase
 - Automobile purchase decisions
 - First cost bias
 - Automobile design decisions
 - Understand first cost bias
 - Don't design optimally efficient cars
 - Consumers don't have option to choose optimally efficient cars because they are not offered for sale
 - Market stays in equilibrium
- Cognitive issues: programmable thermostats
 - 2004 study. Only 20% of Americans own programmable thermostats. Of those, 70% don't use programmable features because they're too complicated.

Levels of Interventions

Based on the socio-ecological model of health behavior

Thanks to Carrie Armel

- Policy interventions:
 - formal rules, instituted by government, utility companies
- Physical environment characteristics:
 - Built environment: e.g., is a city is walkable
 - Technology: e.g., are programmable thermostats are intuitive so people use them.
- Sociocultural level: include media communications
 - serial dramas and public service announcements
- Interpersonal or face-to-face contact
 - Programs at schools, faith-based organizations, Girl Scout troops, YMCAs
- Individual level:
 - people figure out changes themselves

Example: Lighting for Residential and Commercial Use

Commercial Building Energy Uses

Source: 2006 Buildings Energy Data Book

Lighting as Share of U.S. Electricity

- Lighting use
 - About 800 Terawatt hours (10¹²) per year
- Electricity Generation
 - 3815 Terawatt hours per year
- Lighting is 21% of all electricity use

ecourt Institute

From "U.S. Lighting Market Characterization" prepared for DOE EERE by Navigant Consulting, 2002 **Energy Efficiency**

Figure ES-1 Shares of Sectoral Energy Use by Lighting Technology

From "U.S. Lighting Market Characterization", prepared for DOE EERE by Navigant Consulting, 2002

LEDs Efficacy Increases by 30% Per Year

Energy Implications of 100% LEDs @ 120 Lm/wt System Efficacy

ſ	

The Precourt Institute for Energy Efficiency

Precourt Institute

- A research and analysis institute at Stanford
- Established in October 2006
- Initial funding by Jay Precourt
- Mission
 - To improve opportunities for and implementation of energy efficient technologies, systems, and practices, with an emphasis on economically attractive deployment
 - Focus on the wise use of energy
 - Energy efficiency: economically efficient reductions in energy use (or energy intensity)

Key Distinguishing Features of the Precourt Institute

• Focus on significant short term (no more than a decade

PIEE Research Matrix

	Sectors					
Methods	Buildings	Transpor- tation	Electricity	Industry	Appliances	
Engineering						
Modeling						
Systems						
Behavior						
Policy						

Workshops/Conferences

Completed

- 2007 Energy Summit, June 2007. Jointly with Silicon Valley Leadership Group
- Behavior, Energy, and Climate Change. Jointly with ACEEE, California Institute for Energy and Environment, November 2007
- Energy Crossroads. (Stanford Student-Organized Event, partial support). Spring 2007; Spring 2008
- Energy Efficiency Workshop, with Snowmass Workshop on Integrated Assessment of Global Climate Change, July 2007
- 2008 Energy Summit, July 11, 2008. Jointly with Silicon Valley Leadership Group.
- Electricity Measurement and Feedback Workshop. Sept. 4th-5th, 2008

Future

- Behavior, Energy, and Climate Change. Jointly with ACEEE, California Institute for Energy and Environment, November 16-19, 2008
- 2009 Energy Summit, June 29, 2009. Jointly with Silicon Valley Leadership Group.

http://piee.stanford.edu

