Behavioral Aspects in Simulating the Future US Building Energy Demand

Michael Stadler mstadler@lbl.gov LBNL SEDS Team: Chris Marnay, Nicholas DeForest, Florence Bonnet and Judy Lai

BECC Conference Sacramento, CA Nov. 15, 2010

Limitations of Representing Consumer Behavior in a National Energy Forecast Model

- Model background & functionality
- Representation of choice
- Assessing our approach
- Relative impact of behavioral parameters
- Remaining Concerns

What is SEDS/SBEAM?

Stochastic Energy Deployment System

- National forecast model for economy-wide energy use
- Multi-laboratory collaboration (NREL, LBNL, PNNL, ANL, Lumina)
- Programmed in Analytica® to incorporate <u>uncertainty</u>
- Built to assess impact of US DOE program funding (GPRA)
- Open-source and executable on personal computer

Stochastic Buildings Energy & Adoption Model

- Standalone SEDS module for US commercial & residential buildings
- Driven by demand for building services not energy (e.g. lumen-hours, HDD)
- Includes interaction between passive and active technologies

What is SBEAM?

SBEAM Functionality

Commercial Electricity Demand Forecast

Commercial Lighting Equipment Marketshare

SBEAM Functionality

Commercial Electricity Demand Forecast

Commercial Lighting Equipment Marketshare

Structure of SBEAM

Structure of SBEAM

Structure of SBEAM

How Is Choice Represented?

Logit Function

• Marketshare (MS_i) $MS_i = \frac{v_i}{\sum_i v_i}$ • Utility (v_i)

$$v_i = e^{(-\alpha \cdot AC_i)}$$

Market share

Highest marketshare awarded to technology with the highest utility

Utility

Utility determined by annualized cost (AC) of technology and alpha factor

How Is Choice Represented?

Logit Function

• Marketshare (MS_i)

 $MS_{i} = \frac{v_{i}}{\sum_{i} v_{i}}$ • Utility (v_i) $v_{i} = e^{(-\alpha \cdot MA_{i})}$

• Multi-attribute value (MA_i)

 $MA_i = LC_i - S_{h,i} - S_{c,i} - S_{l,i}$

- Technology interaction
 - S_h savings in heating
 - S_c savings in cooling
 - S_l savings in lighting

i: index over technologies LC_i : levelized cost for *i*

Multi-attribute

In the case of building shell, multi-attribute value includes savings from interaction with building services

α

Tunable parameter to represent consumer sensitivity to differences in price

Determining α

α Sensitivity

Assessing Our Approach

Disadvantages

- Too simple?
- Ignores other motivations
 - Upfront capital cost
 - "Greenness" (CO₂)
- Assumes attentive consumer
- Ignores important phenomena
 - Reduction in service demand in response to energy prices
 - Split incentives (building owner/building operator)
 - Conservation trends

Advantages

- Simple implementation
- Executes quickly
- Easy to calibrate
- Applicable to all enduses
- Policy & service levers

How much does behavior matter?

Total off-site energy demand (2030)

Percent change due to change in parameter

Total off-site energy demand (2030)

Percent change due to change in parameter

Total off-site energy demand (2030)

Percent change due to change in parameter

Total off-site energy demand (2030)

Percent change due to change in parameter

Issues going forward

- Is the logit approach "good enough"?
- New methods for decision making?
- Estimating uncertainty in behavior
- Multi-service technology adoption
- Calibrating market trends of emerging technologies

Suggestions and critiques to improve SBEAM methods welcome