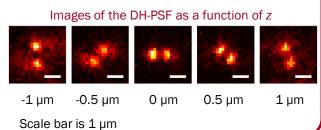
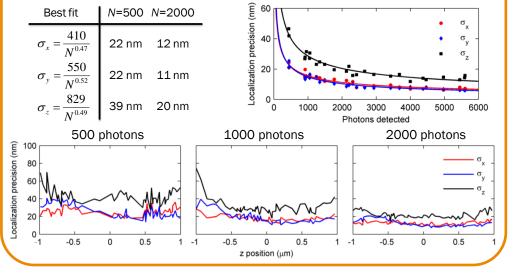


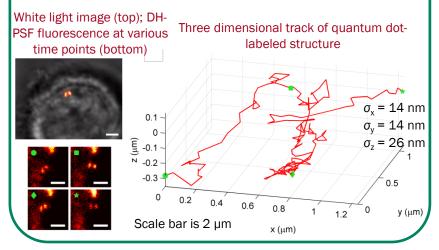
Localizing and Tracking Single Nanoscale Emitters in Three Dimensions with High Spatiotemporal Resolution Using a Double-Helix Point Spread Function


Michael A. Thompson^{a,*}, Matthew D. Lew^{a,b,*}, Majid Badieirostami^a, and W. E. Moerner^a

Departments of ^aChemistry and ^bElectrical Engineering, Stanford University, Stanford, CA 94305 *Equal contributions, contact: wmoerner@stanford.edu


Expanding to Three Dimensions

The standard PSF of a microscope can be convolved with the DH-PSF by using a 4f optical system with a spatial light modulator (SLM) in the Fourier plane. A specially designed phase mask on the SLM creates the DH-PSF. The DH-PSF rotates as a function of the z position of the emitter, yielding a $2~\mu m$ depth of field.


Localization Precision of the DH-PSF as a Function of Photons Detected and *z* Position of the Emitter

Measurements of the localization precision show that the DH-PSF can obtain 12 nm precision in x-y and 20 nm precision in z with 2000 photons detected. The localization precision stays relatively constant over a wide range of z values.

Tracking a Quantum Dot-Labeled Structure in a Live Cell in Three Dimensions

The DH-PSF successfully tracked the movement of a quantum dot-labeled structure in three dimensions inside a live COLO205 cell (\sim 8-10 μm in diameter). This shows that the DH-PSF is excellent for *in vivo* tracking and robust against imaging aberrations associated with thick live cells.

