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Data analysis 
Below we give algorithms for analyzing and interpreting DNA conformational 
fluctuations.  Throughout, we index quantities both by their time of measurement, t, and 
their measurement number, k.

Expression of the dynamics in the PC basis 
Let Up be the pth eigenvector, and represent each image Si(t) as a vector, S(t), of length 
1024.  Then the time-dependent amplitude in Up is given by the dot product, 

( ) ( )p pa t tS U .  By construction 0pa , so each ap describes deviations from the 

average conformation.  The eigenvalues are given by 2
p pa ; i.e. each eigenvalue is 

proportional to the fraction of the variance of the entire data set that falls along its 
corresponding eigenvector.

The overall sign of each eigenvector is arbitrary: if Up is an eigenvector, so too is 
–Up.  This sign ambiguity implies that the time-dependent amplitudes, ap(t) have an 
arbitrary sign.  Thus in the time-dependent covariance matrix ( ) , one may arbitrarily 
switch the sign of the pth row (for all ), provided one also switches the sign of the pth

column (leaving the diagonal element positive). 

Calculation of the linear and nonlinear dynamics
In both the Rouse and Zimm models, one expects the vector of amplitudes a(k) in the 
principal components to evolve linearly subject to a transition matrix M and white noise 
:

( 1) ( ) ( )k k ka Ma . (0.1) 
The challenge is to extract a best-fit M from the record of a(k), and then to determine 
whether Eq. (0.1) adequately describes the dynamics.  Multiplying Eq. (0.1) on the right 
by aT(h) (with h < k) and taking a time average yields 

( 1 ) ( )k h k hM , (0.2) 
i.e. the covariance matrix of the vector a evolves deterministically under M, and so in 
principle M can be extracted from any pair of samples of .  In practice, (0)  is 
contaminated by measurement noise, so we calculated M from 1(2) (1)M .  To 
verify the stability of the matrix inversion, we calculated the condition number of the first 
j×j sub-matrices of (1) , for j between 1 and 25.  Fig. S3 shows that the matrix has small 
condition number for j < 15.  The Brownian contributions to a are obtained from 

( ) ( 1) ( )k k ka Ma .



Fig. S3 Condition number of the first j×j
submatrices of the covariance matrix at lag = 1.  
For j < 15, the sub-matrix is well-conditioned, 
validating the procedure used for calculating the 
transition matrix, M.

To check the validity of the estimate of  we first calculated the linear, time-
dependent correlation

1/ 2 1/ 2

( ) ( )
var( ) var( )

p q

p q

t a t
a

. (0.3) 

This second-order correlation differs from Eq. 9 in the Text because p(t) is not squared 
in (0.3).  Only the diagonal terms of (0.3) are nonzero, as shown in Figure S4a.  The 
unusual time-dependence of the diagonal elements can be understood from a scalar 
analogue of Eq. (0.1) with noisy observations.  The governing equations are: 

( 1) ( ) ( )a k Ma k k  (0.4) 
( ) ( ) ( )b k a k k , (0.5) 

where b is the observed variable and is independent identically distributed Gaussian 
measurement noise.  After subtracting off the linear dynamics, the residuals are: 

( ) ( 1) ( )
      ( ) ( 1) ( )
q k b k Mb k

k k M k
. (0.6) 

Apart from a constant factor, our estimate of the diagonal elements of (0.3) in this scalar 
analogue is given by ( ) ( )q k h b k .  Several special cases need to be considered to 
calculate this quantity. 

a) h = 0 

2

( ) ( ) ( ) ( 1) ( ) ( ) ( )q k b k k k M k a k k

M
 (0.7) 

b) h = -1 

2 2

( 1) ( ) ( 1) ( ) ( 1) ( 1) ( 1) ( )q k b k k k M k Ma k k k
 (0.8) 

c) h  -2 
1 2( ) ( ) hq k h b k M  (0.9) 

d) h  1 
( ) ( ) 0q k h b k . (0.10) 
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The four regimes embodied in Eqs. (0.7)-(0.10) are clearly seen in Fig. S4a.  The 
correlation grows exponentially at negative times, jumps positive at h = -1, jumps 
negative at h = 0, and is zero for positive times.   

Importantly, there is no indication from Fig. S4a that anything unusual is going on 
in the off-diagonal elements.  Only when p is squared do the nonlinear couplings appear.
The overall sign of each column of (3)  is arbitrary because the sign of each component 
of a is arbitrary. 

Fig. S4 Statistical properties of the residuals after fitting to the linear model of Eq. (0.1). 
a) Cross-correlation of the Brownian displacements and the measured mode amplitudes 
in the first 5 eigenstates (Eq. (0.3)).  The black lines show the calculation for individual 
molecules of DNA and the red lines are the average.  The unusual time-dependence of the 
diagonal elements is explained by a model of a linear autoregressive process with 
measurement noise. Each box has a time axis of  = (– 450, 450 ms), and a vertical axis 
of (-0.6, 0.6).  b) Table of numerical values at  = 0 of the third-order cross-correlation in 
the text, (3) ( ) .  Statistical errors on all elements are approximately ±0.006.  These are 
the peak-heights of the plot in Fig. 2c. 

(2, 1) 0.19 0.004 0.021  0.018 -0.004 
(2, 1) 0.19 -0.006 0.020  0.014  -0.009 
(1, 2) 0.065 0.010 -0.021  -0.011 -0.043
(1, 2) 0.049 -0.007 0.003  -0.016 -0.039
(1, 0) 0.14 -0.002 0.027  -0.007 -0.000 
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