3036

Supreet S. Bahga'
Moran Bercovici?
Juan G. Santiago’

"Department of Mechanical
Engineering, Stanford
University, CA, USA

2Faculty of Mechanical
Engineering, Technion-Israel
Institute of Technology, Haifa,
Israel

Received May 10, 2012
Revised June 30, 2012
Accepted July 9, 2012

1 Introduction

Electrophoresis 2012, 33, 3036—3051

Research Article

Robust and high-resolution simulations
of nonlinear electrokinetic processes in
variable cross-section channels

We present a model and an associated numerical scheme to simulate complex electroki-
netic processes in channels with nonuniform cross-sectional area. We develop a quasi-1D
model based on local cross-sectional area averaging of the equations describing unsteady,
multispecies, electromigration-diffusion transport. Our approach uses techniques of lu-
brication theory to approximate electrokinetic flows in channels with arbitrary variations
in cross-section; and we include chemical equilibrium calculations for weak electrolytes,
Taylor—Aris type dispersion due of nonuniform bulk flow, and the effects of ionic strength
on species mobility and on acid-base equilibrium constants. To solve the quasi-1D gov-
erning equations, we provide a dissipative finite volume scheme that adds numerical
dissipation at selective locations to ensure both unconditional stability and high accuracy.
We couple the numerical scheme with a novel adaptive grid refinement algorithm that
further improves the accuracy of simulations by minimizing numerical dissipation. We
benchmark our numerical scheme with existing numerical schemes by simulating non-
linear electrokinetic problems, including ITP and electromigration dispersion in CZE.
Simulation results show that our approach yields fast, stable, and high-resolution solu-
tions using an order of magnitude less grid points compared to the existing dissipative
schemes. To highlight our model’s capabilities, we demonstrate simulations that predict
increase in detection sensitivity of ITP in converging cross-sectional area channels. We
also show that our simulations of ITP in variable cross-sectional area channels have very
good quantitative agreement with published experimental data.

Keywords:
Electrokinetics / High-resolution / Quasi-1D model / Simulation / Variable cross-
section DOI 10.1002/elps.201200264

there has been significant progress in numerical simulations
of electrokinetic techniques, many electrokinetic problems

Electrokinetic techniques such as CZE and ITP are widely
used for separation and preconcentration of chemical and
biological species in a variety of fields including genetics,
food analysis, and pharmacology [1,2]. With ever increasing
demand of improving sensitivity and resolution of electroki-
netic techniques, computer simulations can play a pivotal
role in exploring optimal experimental parameters. While
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are still computationally challenging. These may be opti-
mization problems that may require a large number of so-
lutions. These also include individual solutions of nonlinear
electrokinetic processes, such as ITP, electromigration dis-
persion in CZE, and IEF, which can involve sharp gradients
in ion concentrations. Challenges in simulating such nonlin-
ear processes have further increased with need of simulating
electrokinetic techniques in miniaturized lab-on-a-chip sys-
tems, which can involve high electric fields, sharp concentra-
tion gradients, and complex geometries compared to those of
standard benchtop systems.

Asin the case of other physical phenomena, accurate sim-
ulations of electrokinetic processes require: (i) correct mod-
eling of underlying physics including species transport and
chemical reactions, and (ii) accurate numerical schemes for
solving the governing equations. Over the past three decades,
significant improvements have been made in modeling of
electrokinetic processes, beginning with work of Bier et al. [3]
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and Saville and Palusinski [4]. Bier et al. provided a unified
approach for simulating a variety of electrokinetic techniques
by formulating generalized electromigration-diffusion equa-
tions for weak electrolyte species. Later, in a related publi-
cation, Saville and Palusinski [4] extended the model of Bier
et al. to ampholytes (with univalent ionization states only).
Thereafter, several improvements to models of electrokinetic
flows have been proposed, such as model of protein mobility
by Mosher et al. [5], and model for ionic strength-dependent
EOF by Thormann et al. [6]. More recently, Bercovici et al. [7]
proposed a Taylor—Aris dispersion [8,9] type model to account
for sample dispersion in presence of nonuniform EOF. Also,
Hruska et al. [10] first proposed inclusion of ionic strength ef-
fects on species mobilities and ionic activity in electrophoresis
simulations. They also added models of ionic strength effects
in the SIMUL simulation tool. However, Hruska et al. did not
report simulation results that accounted for ionic strength
effects, and attributed this shortcoming to the high computa-
tional cost of such ionic strength corrections. Subsequently,
Bahga et al. [11] described a faster implementation of ionic
strength models similar to those described by Hruska et al.,
and presented detailed validation of their electrophoresis sim-
ulations (including ionic strength effects) using experimental
data.

The second important issue associated with simulations
of electrokinetic processes is the choice of numerical method,
particularly the spatial discretization scheme. Several spatial
discretization schemes have been proposed, and these can
be roughly categorized as either nondissipative or dissipative
schemes. Most common of all schemes is the second-order
central difference scheme implemented on a uniform grid.
This is a nondissipative approach and has been employed in
well-known simulation tools such as SIMUL [10] and GEN-
TRANS [12]. However, the second-order central difference
scheme which these tools implement requires grid spacing
which strictly meets the requirement of a grid Peclet num-
ber, Pea, = uAx/ D < 2, to avoid unstable solutions [13]. For
practical nonlinear 1D electrokinetic problems, this Peclet
number requirement often translates to (O(10%) or more grid
points. Simulations employing such large grids can take sev-
eral hours to complete on current personal computers. To
reduce the number of grid points and speed-up simulations,
Bercovici et al. [14] presented a nondissipative, sixth-order
compact finite difference scheme coupled with an adaptive
grid refinement algorithm. The grid adaptation scheme of
Bercovici et al. automatically clusters grid points in regions
with large concentration gradients, optimizing computational
time for high accuracy. The numerical scheme of Bercovici
et al. allows for resolution of high wave numbers with lesser
number of grid points, thereby ensuring both good resolu-
tion and stability with only O(10?) grid points. Similar to all
nondissipative schemes, the compact scheme (with or with-
out adaptive grid refinement) does not guarantee monotonic-
ity and may require judicious choice of grid size and adaptive
grid parameters to ensure a nonoscillatory solution.

On the other hand, dissipative schemes result in more
robust simulations by ensuring nonoscillatory solutions, but
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at the significant expense of higher numerical dissipation
and lower accuracy (particularly in regions of high gradi-
ents). The most commonly used and easiest to implement
dissipative scheme is the first-order upwind scheme [15].
Due to its lower accuracy, the upwind scheme when ap-
plied to electrokinetic problems with sharp gradients, such
as ITP, results in low accuracy in the form of overly (ar-
tificially) diffused interfaces. This is true even with adap-
tive grid refinement [7]. Sounart and Baygents [16] improved
the accuracy of dissipative schemes by using the flux cor-
rected transport method [17], wherein numerical dissipation
is added only to regions where solution needs to be stabi-
lized. The numerical scheme of Sounart and Baygents, which
they named phoenical low phase error-1 (PLPE1), results
in second-order accuracy in regions with smooth solution
and automatically switches to first-order accuracy in regions
with local extrema in species concentrations, thereby insur-
ing nonoscillatory solutions. However, the PLPE1 scheme is
based on a uniform grid and the effects of numerical dis-
sipation necessitate a number of grid points similar to that
required by the second-order central scheme to obtain a con-
verged solution. Recently Chou and Yang [18] proposed a
space-time conservation element solution element scheme
with adaptive mesh refinement (AMR-CESE) for simulations
of nonlinear electrokinetic processes at high electric fields.
The AMR-CESE scheme also adds limited numerical dissi-
pation to ensure nonoscillatory behavior and provides more
accurate solutions than the upwind scheme. However, the
simulations of Chou and Yang showed that, even with their
adaptive grid refinement, the AMR-CESE scheme was unable
to capture sharp zone boundaries in ITP. Such comparisons
of dissipative and nondissipative schemes show that existing
numerical schemes for electrophoresis simulations can ei-
ther ensure high resolution or guaranteed stability, but not
both.

We also note that the majority of simulation studies of
electrokinetic techniques, including all of those mentioned
above, are based on 1D formulation of governing equations
for species transport in uniform cross-section channels. Such
simulations only predict streamwise variations in species
concentrations and do not take into account spanwise varia-
tions in concentrations or channel cross section. The natural
way of studying multidimensional effects in electrokinetic
processes is through 2D or 3D simulations. For example,
Choi et al. [19] used 2D simulations to demonstrate the ef-
fect of axially varying channel cross-sectional area on ITP
focusing of proteins. Compared to 1D simulations, multidi-
mensional simulations suffer from much longer computa-
tional time due to large number of grid points required to
resolve spanwise variations in species concentrations. This
limits the use of multidimensional simulations to ad hoc
studies of specific geometries, and cripples their ability to
serve as rapid, routine optimization, or design tools of elec-
trokinetic assays. One approach of avoiding expensive 3D
simulations for electrokinetic processes is to solve quasi-1D
species transport equations based on area averaging of the
corresponding 3D equations. Hruska et al. [20] employed a
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quasi-1D approach in their SIMUL code and used it to sim-
ulate isoelectric trapping in compound channels made up
of sections with different cross-sectional areas (each chan-
nel section having a uniform cross-sectional area). However,
Hruska et al. did not provide details of their model or its nu-
merical implementation. Later, Chou and Yang [21] presented
an approximate analytical treatment describing electromigra-
tion and diffusion of species in variable cross-sectional area
channels, and applied it to simulations of isoelectric focus-
ing. However, the model of Chou and Yang incorrectly ne-
glects diffusive current [7,22], and does not account for ad-
vection and dispersion of species due to nonuniform bulk
flow.

In the current work, we address directly these deficien-
cies in state-of-the-art simulations of electrokinetic processes.
Our goal is to produce simulations which are both accurate
and fast, and which apply to channels with variable cross-
sectional area. The contributions of the current work are
twofold: (i) a generalized model of quasi-1D electrokinetic
processes in variable cross-sectional area channels, and (ii)
a high-resolution and unconditionally stable finite volume
scheme for solving the quasi-1D governing equations. We
present a new quasi-1D formulation of governing equations
which takes into account the effect of nonuniform cross-
sectional area on species concentrations. Our generalized
approach includes multispecies transport, chemical equilib-
rium calculations (for multivalent weak electrolyte species),
nonuniform EOF, Taylor—Aris dispersion [8,9], and the ef-
fect of ionic strength on species mobility and on acid—base
equilibria. To solve the quasi-1D governing equations, we
present a new approach based on a dissipative finite volume
scheme which adds limited, localized numerical dissipation
to guarantee nonoscillatory solutions. We also provide a novel
grid refinement algorithm that improves the accuracy of our
dissipative scheme by dynamically clustering grid points in
regions with relatively high numerical dissipation. Coupled
with adaptive grid refinement, our numerical scheme yields
fast, stable, and high-resolution simulations using an or-
der of magnitude less number of grid points compared to
other dissipative schemes. As a demonstration, we present
detailed simulations using our numerical method for various
nonlinear electrokinetic problems including electromigra-
tion dispersion in CZE and ITP. For the more challeng-
ing ITP simulations, we consider both uniform and ax-
ially varying cross-section channels. For all simulations
involving uniform cross-section channels, we compare our
results with the experimentally validated sixth-order com-
pact scheme of Bercovici et al. [7, 11, 14]. For simulations
of ITP focusing in variable cross-section channels, we pro-
vide detailed comparison and validation with experiments of
Bahga et al. [23]. We have integrated the quasi-1D formula-
tion of species transport equations and the current numer-
ical scheme in our existing electrokinetics solver SPRESSO
[7]. The physical mechanisms addressed by the latest ver-
sion of the code are summarized in Fig. 1. The source code
(and an executable version) can be downloaded for free from
http://microfluidics.stanford.edu/spresso.
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Figure 1. Schematic summarizing various physical features of
the current simulation code. Our simulation code solves area-
averaged electromigration-diffusion equations for nonlinear elec-
trophoresis problems and can handle slow axial variations in
channel cross-section. The code uses a finite volume scheme
with limited numerical dissipation, coupled with an adaptive grid
refinement scheme to ensure accurate and nonoscillatory solu-
tions. We have integrated the quasi-1D formulation of species
transport equations and the numerical scheme presented here
into our open-source electrophoresis solver SPRESSO [7,11, 14].
Other numerical schemes available in SPRESSO include a sixth-
order compact scheme [7, 14], a second-order central difference
scheme, and a first-order upwind scheme. The code also includes
physical modules for calculation of multispecies chemical equi-
librium, correction of electrophoretic mobilities and acid-base
equilibria for finite ionic strength, and estimation of effective dis-
persion coefficients using a model for Taylor-Aris type dispersion
[8,9].

2 Materials and methods

2.1 Mathematical model

2.1.1 Quasi-1D model for electrokinetics

Here we present a quasi-1D model for electrokinetic trans-
port of ionic species in channels with axially varying cross-

sectional area. We begin with 3D advection-diffusion equa-
tions for concentration of each ionic state z within each
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species family 1,
80,'.2
at
i=1, ..., N, z=mn;, ..., pi. (1)

+V. (uci.z + p*i,zci,zE) =V. (Di.zvci.z) + Ri,Za

Here c; , denotes the concentration, ;. the electrophoretic
mobility, D;, the molecular diffusivity, and R;, the rate
of production (or consumption) of the corresponding
species. The valence state, z, of species family i ranges
between n; and p;, which are, respectively, the minimum
and maximum valence states corresponding to that species
family. Here “species family” refers to all ionization states
of a species, so that, for example, i = arginine has four ion-
ization states, z = —1, 0, +1, and +2 and hence n; = —1
and p; = +2. In Eq. (1) vector fieldsu = u, & + u,§ + u,zand
E = E.X+ E,9+ E.z denote the velocity of bulk fluid and
the electric field, respectively. Since the net production rate
of species i is zero, summing Eq. (1) over all its valence
states and assuming each D; , is spatially uniform (but dis-
tinct for different species and their valence states), yields a
conservative set of equations in terms of the total (analytical)
concentration of species, ¢; = Y ¢ .,
z

aCi
ot
Here w; and D; denote the effective mobility and diffusivity
of species family i, respectively, and are defined relative to its
ionization states as:

pi pi
C
i = Zgi.zw.z, D = Zgi,zDi.z, 8iz=

i,z
Ci

+ V- (uc; + wic;E) = V*(Dicy), i=1,..., N. (2

; 3)
z=n; z=n;

where g; , denotes fraction of species i, ionized in valence
state z. That is, the effective mobility and diffusivity of a
particular species is the weighted mean of mobilities and
molecular diffusivities of all its ionization states with weights
gi .- As noted by Saville and Palusinksi [4], in typical elec-
trophoresis experiments migration and diffusion of species
occur at much longer time scales compared to the time scale
of acid-base dissociation reactions. Therefore, knowing the
total concentrations, c;, the concentration of various ioniza-
tion states, ¢; ,, can be obtained by assuming local chemical
equilibrium between different chemical species [7, 14]. Later
in Section 2.1.2, we discuss the chemical equilibrium calcu-
lations in more detail.

To obtain quasi-1D transport equations from the govern-
ing equations in three dimensions, we integrate Eq. (2) over
the channel cross section. Noting that the flux of species into
the channel walls is zero, the area-averaged equations can be
represented as:

S (AG)E) + o (AW T + A WG E)
:;}C(A(x);C(Dici)), i=1,..., N, (4)

where A(x) denotes the cross-sectional area and the over-
bar symbol denotes area-averaged quantities. We note Eq.
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(4) exactly describes the species transport in terms of the
area-averaged quantities. However, to bring closure to these
equations we use the following assumptions: (i) we assume
that the fluid velocity and the electric field are locally axial (ne-
glecting multidimensional effects in the slowly varying cross
section), (ii) we capture the order of magnitude of stream-
wise diffusive fluxes using the axial gradient of area-averaged
species concentrations, ¢;,with diffusivity, D;. These assump-
tions are typical of lubrication theory [24] and hold well when
the characteristic length scale in transverse direction, h, is
much smaller than the characteristic length scale in stream-
wise direction, ¢, thatis, h/¢ << 1. In the present case, h is
the characteristic height (or diameter) of the channel and ¢
is the axial length scale over which gradient in species con-
centration persists. With the aforementioned assumptions,
Eq. (4) can be simplified to:

S ARG+ (ARG + AL E)
a 0
:a(A(x)a(Dlél)>, izl, ey N. (5)

In the Supporting Information, we show by rigorous
asymptotic analysis that, in absence of bulk flow, for rela-
tively narrow channel cross sections (¢ = h/¢ << 1), disper-
sion due to nonaxial electric field in axially varying cross
section is only O (£?). That is, in absence of nonuniform
bulk flow, Eq. (5) gives only O (&%) error in the description of
species transport. Whereas in presence of both nonuniform
bulk flow and electric field, Eq. (5) captures only an order of
magnitude approximation of diffusive fluxes. In the Support-
ing Information, we also show that Taylor—Aris dispersion
[8,9] due to nonuniformity in bulk flow can also be taken
into account approximately by replacing D; with a Taylor—
Aris dispersion coefficient based on the local nonuniform
bulk flow velocity. Besides dispersive effects of nonuniform
bulk flow, the current model also accounts for dispersion due
to axially nonuniform electric field in variable cross-sectional
area channels (see Supporting Information). We note that
our analysis and simulations do neglect secondary effects of
temperature gradients and electrohydrodynamic flows that
may arise and couple with electrokinetic processes associated
with nonuniform cross-sectional area channels.

While the governing equations, Eq. (5), correctly model
species transport in variable cross-section channels when
species concentrations vary over length scales longer than
the characteristic channel thickness, they can also be used
in situations where diffusion is limited to sharp concentra-
tion gradients. This situation is typical of ITP where analyte
zones with locally uniform concentrations are separated by
sharp zone boundaries. For such cases, Eq. (5) can be used to
accurately predict the concentrations, lengths, and migration
velocities of various I'TP zones, and approximately capture the
features of diffusive zone boundaries in variable cross-section
channels. We note that for uniform cross-section channels
with no bulk flow, Eq. (5) exactly describes the species trans-
port, regardless of the length scales over which concentration
gradients persist.
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The governing equations, given by Eq. (5), form a cou-
pled set of N parabolic partial differential equations for total
concentrations of species. The coupling between transport
equations for different species comes from the local stream-
wise electric field, E,, which depends on the concentrations
of all species via local electrical conductivity. The governing
equation for electric field, E,, can be derived by invoking
current conservation and assuming electroneutrality in the
bulk fluid. The latter condition implies that we also neglect
advection currents in current conservation. Accounting for
only electromigration and diffusion currents in current con-
servation, the governing equation for electric field is given
by

a — as

where & denotes the area-averaged conductivity and
9 S/dxdenotes the diffusive current density. Expressions of
G and S are given by

N p N i
6= Z pZZEi‘z“fi.zF7 S = Z pZZ(fiYZDi‘ZF, (7)

i=1 z=n; i=1 z=n;

where F is the Faraday’s constant. By integrating Eq. (6),

streamwise electric field, E,, can be expressed in terms of
applied current, I (), as:

— 1/1@) | 8s
Ewa(m*a)' ®)

Note that the above relation for E, holds irrespective of
the means of applying external electric field (by current or
voltage sourcing). For current sourcing, current! (t)in Eq. (8)
is known a priori. Whereas, for problems where a known po-
tential is applied across the channel (AV), I (t) is obtained by
simply integrating Eq. (8) over the physical domain, x, and
using the fact that [ E,dx = —AV. Note that, even though
we assume bulk electroneutrality to derive Eq. (6), the elec-
tric field can vary in the streamwise direction. See Hickman
[25] for further discussion of the assumption of bulk elec-
troneutrality. Briefly, electroneutrality in these systems holds
in considering species conservation over regions with length
scales significantly greater than the Debye screening length
[26].

2.1.2 Chemical equilibrium and ionic strength effects

Analytes and BGE in electrokinetic experiments are very often
weak electrolytes. To model electromigration and diffusion of
weak electrolyte species, it is necessary to calculate the local
pH of the electrolyte mixture using acid—base equilibrium
theory. This is because effective mobility (w;) and effective
diffusivity (D;) of a species family (as defined in Eq. (3) are
strong functions of the ionization fractions, g; ., which them-
selves depend on the pH of solution. As noted by Saville and
Palusinski [4], time scales at which species migrate and dif-
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fuse are much longer than the time scale at which chemical
equilibrium is established. Therefore, concentrations of each
of various ionic states can be obtained by solving algebraic
chemical equilibrium equations, and these can be used to
calculate effective mobilities and diffusivities using Eq. (3).

Chemical equilibrium calculations for electrolyte solu-
tions containing arbitrary number of ampholytes have been
discussed in detail by Bercovici et al. [7, 14]. Here, we briefly
outline the necessary algebraic equations for calculating the
pH and the ionization fractions. Following Bercovici et al.
[7,14], the fraction of species i in valence state z, g; ,, can be
described in terms of hydronium ion concentration, ¢y, and
equilibrium constants, K; ,, as:

-1
l_[ Kij z< 0,
ci L; ,c? 7=z
gi=—=—F—— L.= 1 z=0 (9
3 -4 z—1
Z;’li bih [1 Kile’ z>0
2=0

The remaining equation required to obtain hydronium
ion concentration, cy, comes from the assumption of elec-
troneutrality of the bulk solution:

N pi K
Y it en— —= =0, (10)

: C
i=1 z=n; H

where K, denotes the equilibrium constant for dissocia-
tion of water. Given the total concentrations of all species,
¢i, i=1, ..., N,Egs.(9) and (10) can be solved iteratively
to obtain the pH (or cp), and the ionization fractions, g; ..
These calculations are performed at every time step of simu-
lation to update the values of effective mobility and diffusivity
of species using Eq. (3).

In general, effective mobility also depends on the ionic
strength of electrolyte solution, albeit weakly compared to its
dependence on pH. Ion mobility decreases below its ideal
value at infinite dilution as ionic strength increases, and
this effect is more pronounced for multivalent species com-
pared to univalent ions [11]. As shown by Bahga et al. [11],
changes in ionic strength can affect the relative magnitude
of species mobility and cause changes of zone order in elec-
trophoresis experiments. To take into account the effect of
ionic strength on effective mobility of species, we correct
the mobilities and the ionic activity for finite ionic strength
using the extended Onsager—Fuoss model [27] and the ex-
tended Debye—Huckel theory [28], respectively. In the cur-
rent work, we use the existing implementation of aforemen-
tioned chemical equilibrium and ionic strength correction
models in the SPRESSO simulation tool [11]. Details of nu-
merical implementation, verification, and experimental vali-
dation of chemical equilibrium and ionic strength correction
models in SPRESSO are presented elsewhere [7,11,14]. The
SPRESSO source code and documentation are available for
free at http://microfluidics.stanford.edu/spresso.

www.electrophoresis-journal.com



Electrophoresis 2012, 33, 3036-3051
2.2 Numerical method

We discretize the governing equations, given by Eq. (5), us-
ing a finite volume method based on the symmetric limited
positive (SLIP) scheme of Jameson [29]. The SLIP scheme pre-
sented here is second-order accurate in regions with smooth
solution and automatically switches to first-order accuracy in
regions with a local extrema or oscillations. This is achieved
by first constructing a stable, globally first-order scheme and
then adding limited “anti-diffusion” terms in regions with
smooth solution to recover second-order accuracy. Thus, nu-
merical dissipation associated with first-order accuracy sta-
bilizes the solution in the regions where it tends to become
oscillatory and anti-diffusion improves the accuracy of nu-
merical scheme to second order in regions where the solu-
tion is smooth. The spatial discretization in the SLIP scheme
insures unconditional stability while maintaining relatively
higher order (second order) accuracy at the majority of lo-
cations. This is in contrast to the nondissipative schemes
such as the second-order central scheme employed by Hruska
et al. [10] and the sixth-order compact scheme of Bercovici
et al. [14], which do not guarantee nonoscillatory solutions on
coarse grids. Another advantage of the current scheme over
previous finite difference-based schemes for simulations of
electrokinetic processes is that, being a finite volume scheme,
our approach explicitly conserves the mass of analytes irre-
spective of the grid density. The latter feature is especially
useful in systems with varying cross-sectional area channels.

Many nonlinear electrokinetic processes such as ITP and
electromigration dispersion in CZE involve sharp gradients
in species concentrations. For such nonlinear electrokinetics
problems, the current scheme adds numerical dissipation to
regions with high gradients, resulting in artificially diffused
interfaces. Therefore, to improve the accuracy of our scheme
while using less grid points, we employ an adaptive grid al-
gorithm that recruits grid points from regions with lower
numerical dissipation (usually regions with smooth solution)
and clusters them in regions with high numerical dissipation.
Our finite volume scheme in conjunction with adaptive grid
refinement yields high accuracy solutions with lower number
of grid points while mathematically guaranteeing nonoscil-
latory solution. In Section 2.2.1, we present a conservative
formulation of governing equations on a uniform computa-
tional grid using a nonlinear mapping between the physical
and the computational domain. In Section 2.2.2, we present
the spatial discretization scheme for the transformed govern-
ing equations in computational domain. In Section 2.2.3, we
also discuss the grid adaptation procedure which determines
the mapping between physical and computational space. In
Section 2.2.4, we present a brief discussion of time integra-
tion scheme and the treatment of boundary conditions.

2.2.1 Governing equations in computational space

As is typical of simulations with dynamically adapting mesh,
we transform the governing equations, Eqgs. (5) and (6), from
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an adapting physical grid to a uniform, stationary computa-
tional grid. After computing the solution on the computa-
tional grid, we map the solution back on to the dynamically
adapting physical grid. We define a smooth nonlinear map-
ping function, x = H (&, t), that relates locations in physical
space, x, to the corresponding locations in computational
space, &, at any particular time, t. The Jacobian and the mesh
velocity corresponding to this mapping are given by

_8x_8H _8x_8H

]_875_875’ =% = (11)

We then express the partial derivatives occurring in the
governing equations, Eq. (5), using the chain rule. For exam-
ple:

dg|  og dg dE dx  dg V og
otf, ot|, odtoxot  ot| ] 9E

dg g5 _19g
dx  dEodx ] o’

(12)

where g is a generic scalar field. Applying the transformations
defined in Eq. (12) to Eq. (5), we obtain quasi-1D advection-
diffusion equations in the computational domain:

) b B _
]5 (Ag;) — VETE (AZ) + P (AiyC; + AwiCi Ey)
_ 2 (éi(nao i=1 N (13)
= ag J 8% iti) ) =1 ... .

In many cases the cross-sectional area, A, is not defined
analytically and is known only at the grid points in physical
space at the beginning of simulation. Therefore, as grid points
adapt in physical space over time, it is necessary to evaluate
cross-sectional area at newly adapted grid points. Noting that
the channel walls are rigid and the cross-sectional area in
physical domain is invariant with time, we solve

dA v A 0 14
I35~ T (14)
to evaluate cross-sectional area at new locations in physical
space. In the physical domain, x, Eq. (14) simply translates
to dA/dt = 0.

In order to construct a conservative numerical scheme,
we reformulate Eqgs. (13) and (14) in a conservative form
using the identity, 3 ] /9t = dV/3E(= 02x/3tE, evident from
Eq. (11)). The conservative form of governing equations in
computational domain is given by

9 of,

2] Ac: -0, i=1,..., N
Bt(] CH_B& i

— 19
i =A(=Vei + 00 + Wil By — —— (Di5i)> .
/ ( SERVET:
(15)

3 3
5(]A)—a—g(VA)=O. (16)
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Similarly, we transform the governing equation for elec-
tric field, Eq. (6), from physical to computational domain to
obtain:

9 [ — AdS

Egs. (15)—(17) can now be discretized on a uniform sta-
tionary computational grid using any finite volume scheme.
However, to close the system, it remains to determine the
mapping between physical and computational domain, x =
H (&, t). In the current work we use an adaptive grid refine-
ment scheme that minimizes numerical dissipation added
by the spatial discretization scheme to stabilize the solution.
Therefore, we first discuss the spatial discretization scheme
in Section 2.2.2 and subsequently derive the necessary time
evolution equation for the mapping function, H(§, t), in Sec-
tion 2.2.3.

2.2.2 Spatial discretization

We use the SLIP scheme of Jameson [29] for spatial discretiza-
tion of the transformed governing equations, Egs. (15) and
(16). Construction of SLIP scheme involves addition of lim-
ited anti-diffusive terms to a low-order (first order in the cur-
rent work) scheme in a way that the anti-diffusive terms can-
cel out low-order numerical diffusion in regions with smooth
solution. The resulting scheme yields second-order accuracy
in regions with smooth solution and reverts to first-order
accuracy in regions with local extrema or oscillations. Lim-
ited anti-diffusion is affected by a flux limiter, which acts as
a switch to turn off the anti-diffusive terms when solution
shows a local extremum or spurious oscillations. As shown
by Jameson [29] the SLIP scheme mathematically guarantees
monotonicity and so ensures nonoscillatory solutions.

We discretize the computational domain of length L into
n number of cells with thickness A = L/ (n— 1) and cell
centersat&; = jAE j =1, ..., N.Thegoverningequations
for species concentration, Eq. (15), spatially discretized using
the SLIP scheme are given by

0
Ag& ((] AC_i)j) + Fijy12— Fij12=0,
j=2 ..., N—-1, (18)

where F; j,1/, is the numerical flux of species i across the
(j 4+ 1/2)-th cell edge that separates cells j and (j + 1) . The
numerical flux F; j 1/, is defined as:

1

5 (fu + fi,j+1) —dij1172, (19)

where f; ; denotes the flux of species i (defined in Eq. (15)
evaluated at cell center, j,and d; j,1/; is the numerical dis-
sipation flux added to stabilize the solution. The numerical
dissipation flux, d; ;11/2, is defined as a combination of diffu-
sive and anti-diffusive fluxes:

Fi i1 =

dij112 = Qj11p (A5i.j+1/z —-L (Afi.j+3/2y Ac_i,j—l/z)) )

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Electrophoresis 2012, 33, 3036-3051

AC; j12 = Cij11 — Cij, (20)

where L (AC_L‘.]'+3/2, Ac',v,j,l/z) is the limited average of AC; 311/,
and AC; j_q/,. Later, we discuss how limited average reg-
ulates the amount of anti-diffusion added to the solution
based on the local smoothness of solution. In Eq. (20),
@jy1/2 is a scalar parameter that regulates the amount of
numerical dissipation. Jameson [29] showed that the SLIP
scheme guarantees nonoscillatory solutions when o1/, >
0.5 max; |)\i, i+1/2| » where \ denotes the characteristic waves
speeds of the system of governing equations. In the Sup-
porting Information, we discuss the choice of a1/, in de-
tail for electrokinetic systems. There we show that choos-
ing ajy12 > 0.5max; |Adly + Wi /6 — VAl is sufficient
to ensure nonoscillatory solutions for nonlinear electrokinet-
ics problems.

Similar to the spatial discretization of species transport
equation, Eq. (15), the equation for evaluating cross-sectional
area at newly adapted grid points, Eq. (16), can be discretized
using the SLIP scheme as:

a
Agg ((JA)}) + FA_)'+]/2 — FA,)’*I/Z — 0' (21)

Here Fj ji1/; is the numerical flux at (j + 1/2)-th cell
edge and is given by

1
Fpjri2= =3 ((VA)j+1 + (VA)j)

_Bj+1/2 (AAj+1/2 —L (AAJ+3/2, AAj_l/z)) . (22)

In Eq. (22), AAj11) = Aj41 — A, and B4 is a factor
analogous to .1, and chosen such that 8,1/, > 0.5 ] Vj+1/2‘
to avoid spurious oscillations.

It remains to define an appropriate limited average, L,
in Egs. (20) and (22) which acts as a switch between first- and
second-order accurate schemes. Following Jameson [29], in
the current work we use a family of limited averages (or flux
limiter), defined by

q
) ; (23)

where q is a positive integer. For g = 1 and 2, L (v, w) re-
duces to the well-known minmod and Van Leer limiters [30],
respectively. Further, as g increases the limited average de-
fined in Eq. (23) approaches the arithmetic mean of v and
w. Note that L (v, w) =0 if v and w have opposite signs;
else L(v, w) > 0. All simulations shown here used a limited
average defined by Eq. (23) and with g = 4. The effect of lim-
ited anti-diffusion, L(AC; 432, ACij—1/2), on the numeri-
cal dissipation flux, d; j.1, in Eq. (20) can be interpreted
as follows: In the regions where concentration profiles, ¢;,
are smooth and have no local extrema A¢; j,3/, and A¢; j_1,
have same signs. In such a case, a limited anti-diffusion
L (ACW-H/L Ac’i‘j,l/z) > 0 is applied and this cancels out the
leading term of A¢; 1, in Eq. (20) to provide O (A£®) numer-
ical dissipation flux. This translates to O (A&?) discretization
error in regions with smooth solution. On the contrary, if

Lw) =2 @tw(1-| 22
v,w)==-@v+w - —
2 o+ w]
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concentration, ¢;, attains a local extremum at j-th grid point,
then Ac; j3/, and A¢; j_,,, have opposite signs, which sets
the anti-diffusive term L (Ac’i,jﬂ/z, Ac‘i,j,l/z) = 0. The ab-
sence of anti-diffusion in regions with local extrema results
in O (A€?) numerical dissipation in Eq. (18) and correspond-
ingly first-order accuracy of spatial discretization. Therefore,
the current numerical scheme selectively adds higher nu-
merical dissipation in regions with steep gradients and local
extrema compared to regions with relatively smooth concen-
tration profiles. This localized switching of accuracy insures
stable solutions without adding excessive numerical dissi-
pation to regions with smooth features. However, relatively
lower accuracy of the current scheme at local extrema and
sharp gradients in species concentrations can result in arti-
ficially diffused concentration peaks and interfaces. To cir-
cumvent this issue, in Section 2.2.3, we present an adaptive
grid refinement scheme which improves the overall accuracy
of our scheme by migrating grid points from regions with
lower to higher numerical dissipation.

2.2.3 Adaptive grid refinement

Adaptive grid refinement can be framed as a calculus of vari-
ations problem of minimizing a known cost functional. We
follow the approach of Bercovici et al. [14] and define our cost
functional as:

L L

K (x) = f w(E) Jdx = f w (§) e, (24)

0 0

where ] is the Jacobian defined in Eq. (11) and w (§) is a
weighting function that regulates grid density at different lo-
cations in the physical domain. When the cost functional,
K, is minimized, the grid density increases (and correspond-
ingly J decreases) in regions where the weighting function
acquires large values. As shown by Jameson [31], the cost
functional in Eq. (24) is minimized when the gradient G = 0,
where G is defined as:

d 0 0x
G=2g i) =25 (w © a—g) 25)

Solving G = 0 requires solution of a boundary value
problem for x (&, t) at every time step, followed by interpo-
lation of solution to the newly adapted grid points in physical
space. To avoid this computationally expensive approach of
computing an absolute minimum of the cost functional at ev-
ery time step, we suffice with time-marching in the direction
of minimum by solving

9
& _ _«G. (26)
ot

Here « is a positive scalar parameter that controls the
migration speed of grid points in physical space. In prac-

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

General 3043

tice the gradient, G, is smoothed before solving Eq. (26).
See Bercovici et al. [14] and Jameson [31] for more details
on smoothing the gradient and choosing appropriate value
of k.

Typically, the weighting function,w (§) , in Eq. (24) is cho-
sen as the local magnitude of concentration gradient so as to
adapt the grid points in regions with large concentration gra-
dients. For example, Bercovici et al. [14] used a weighting
function based on concentration gradient to stabilize their
nondissipative compact scheme, which otherwise becomes
unstable near sharp gradients for coarse grids. In contrast, the
current scheme guarantees unconditional stability, but does
so by adding lower order numerical dissipation. Therefore, to
improve the accuracy of our numerical scheme, we propose a
new weighting function which forces the grid points to clus-
ter in regions where the numerical scheme adds higher nu-
merical dissipation to stabilize the solution. The current grid
refinement scheme therefore not only clusters grid points at
locations with steep gradients, but also does so at extrema
of concentration peaks where our numerical scheme is first-
order accurate. Note that adaptive grid scheme of Bercovici
et al,, in contrast, will not preferentially cluster grid points
at peak extrema, where the gradient is zero but numerical
dissipation is high. Furthermore, for problems with vari-
able cross-sectional area, we augment the weighting function
based on numerical dissipation to simultaneously aggregate
grid points in regions with more rapid cross-sectional area
variation. We define the weighting function at grid point j,
wj (g) , as

max|d; j11/2-d; j-12] 2A/08); I

wj & =v

fflalx|di.j+1/2*di,j—1/2| max Jj ’

(27)

maxaA/Bi‘
J j

dij =A% ;1 — L(ACj130,  ACi 1) -

Here d; ; is proportional to the numerical dissipation
added to discretized transport equation for species i at grid
point j. Here, the first two terms on the right hand side of Eq.
(27) tend to cluster grid points in regions with higher numer-
ical dissipation and variation in cross-sectional area, respec-
tively. Whereas, the third term in the definition of w; (§) in
Eq. (27) scales inversely with grid density and avoids exces-
sive depletion of grid points from a particular region; it also
prevents the weighting function from being zero in case of
a constant solution in a uniform cross-section channel. The
factors y; and vy, in Eq. (27) are scalar constants that can be
tuned to assign relative importance to the aforementioned cri-
teria for clustering grid points. For example, when y; >> vy,
grid points will preferentially adapt in regions with higher
numerical dissipation compared to the regions with nonuni-
form cross-sectional area. In the Supporting Information, we
use scaling analysis to derive simple guidelines for choos-
ing factors y; and v,. For general electrophoresis problems,
we recommend values of order O (10% — 10°) each for v,
and vy,.
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2.2.4 Boundary conditions and time integration

In electrokinetics simulations where species concentration
profiles evolve far from the domain boundaries, it is often suf-
ficient to use fixed concentration values (Dirichlet boundary
conditions) at the boundaries. This approach has been used
in the great majority of previous studies on electrophoresis
simulations, including those by Palusinski etal. [32] and Dose
and Guiochon [13]. However, simulations with fixed bound-
ary conditions require a large computational domain so as
to avoid interaction of propagating concentration waves with
domain boundaries. Significant computational efficiency can
be obtained by employing characteristic boundary conditions,
which allow concentration waves to leave the domain without
reflection from domain boundaries. Such boundary condi-
tions allow use of smaller computational domain for sim-
ulating only the regions of interest. For example, in many
ITP simulations it is computationally efficient to solve the
governing equations in a frame of reference moving with an-
alyte zones. In the current work, we use characteristic bound-
ary conditions for electrokinetics simulations as described by
Bercovidi et al. [14]. We refer interested readers to Section 3.4
of Bercovici et al. for details on formulation and implemen-
tation of these boundary conditions.

Nonlinear electrokinetic processes can exhibit complex
phenomenon involving changes in characteristic speed of
concentration waves over time. For simulations of such pro-
cesses, it is difficult to obtain a priori estimates of time steps
to ensure stable time integration. Furthermore, choosing a
fixed conservative time step for simulating an electrokinetics
problem with multiple temporal scales can lead to wastage
of computational time. Therefore, we use an adaptive time
stepping scheme to integrate spatially discretized govern-
ing equations, Egs. (18) and (21), along with the equation
governing adaptive grid refinement, Eq. (26). In the cur-
rent work, we employ the third-order Runge—Kutta—Bogacki-
Shampine (RK23) time-stepping scheme which uses an em-
bedded second-order scheme to estimate the local truncation
error and adapt the time step.

3 Results and discussion

We implemented the numerical algorithms discussed in Sec-
tion 2.2 in Matlab and integrated them with our existing
open-source electrokinetics solver, SPRESSO [7]. We used
the existing, experimentally validated modules for chemical
equilibrium and ionic strength effects for calculation of pH,
effective mobilities, and diffusivities. The results presented
here were obtained using Matlab release version 2007b run-
ning on 32 bit Windows XP operating system. An AMD 2.3
GHz Athlon 64 X2 4400+ with 2 GB RAM was used as the
computing platform.

In this section, we first present simulations of CZE and
ITP in uniform cross-section channels. We compare our
simulation results with the upwind and sixth-order com-
pact schemes; both previously implemented in SPRESSO.
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We then present simulations of ITP focusing and separa-
tion of analytes in converging cross-section channels and
show the effect of nonuniform cross-sectional area on species
concentration and analyte zone lengths. We also present
validation of our ITP simulations in variable cross-section
channels with detailed experimental data of Bahga et al.
[23]. For simulations other than those shown for validation
against experimental data (in Fig. 6), we neglected the ef-
fect of ionic strength on the mobility and ionic activity of
species.

3.1 Electromigration-dispersion in capillary zone
electrophoresis

We first present simulations of a benchmark problem in-
volving electromigration dispersion in CZE using the SLIP
scheme and compare the computed concentration profiles
with results from the upwind and sixth-order compact
schemes. This benchmark problem was originally proposed
by Ermakov et al. [33] and subsequently adopted by Sounart
and Baygents [16] and Bercovici et al. [7] to test the abil-
ity of their numerical schemes. This test case involves CZE
separation of two high concentration analytes in a uniform
cross-section channel. As high concentration analytes mi-
grate along the channel, they perturb the local conductivity
of the electrolyte solution which is otherwise governed by
uniform BGE in CZE. The nonuniformity in local electric
field associated with variation in conductivity causes sharp-
ening of analyte zone edge on one side and broadening on the
other. Therefore, this model simulation serves as an example
to demonstrate the ability of our numerical scheme to pro-
vide stable and high-resolution solutions in presence of sharp
gradients. For simulations using the SLIP scheme, we used
adaptive grid refinement based on minimizing numerical
dissipation (see Section 2.2.3). On the other hand, for simu-
lations using the upwind and compact sixth-order schemes,
we used the existing implementation in SPRESSO with grid
refinement procedure based on clustering grid points in re-
gions with large concentration gradients.

We performed simulations using the SLIP, upwind and
sixth-order compact schemes in a 200 mm long channel dis-
cretized with 400 grid points. The BGE was 12 mM tris (pK,
=8.076 and p. = 29.5 x 107 m? V! s71) and 20 mM acetic
acid (pK, = 4.75 and p = —42.4 x 107 m? V! s71). The
weak base analytes aniline (pK, = 4.8 and p = 32.5 x 10~°
m? V! s71) and pyridine (pK, = 5.16 and p =30 x 107°
m? V-1 s71) were initially introduced in the channel at a dis-
tance of 30 mm from the left boundary, in form of Gaussian-
shaped zones with 1 mM peak concentration. For each nu-
merical scheme, we performed two sets of simulations corre-
sponding to current densities of 2547 and 10 190 A m~2. We
chose mesh adaptation parameters so as to ensure similar
grid density for the SLIP and compact schemes. Minimum
grid spacing used for simulations with current density of
2547 and 10 190 A m~2 was Ax ~ 30 pmand Ax ~ 15 um,
respectively.
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Figure 2A and B shows concentration profiles of fully
separated analyte peaks at current density of 2547 and 10 190
A m~?, respectively, computed using the upwind, the SLIP
(with parameter g = 4), and the sixth-order compact scheme.
At lower current density, all three schemes yield nonoscilla-
tory solution. Figure 2A shows that both SLIP and compact
schemes accurately resolve the analyte peaks, including the
sharp leading interfaces of analyte zones. In contrast, the
upwind scheme yields overly diffused analyte peaks because
of its lower (first order) accuracy throughout the domain.
Figure 2B shows that at higher current density of 10 190
A m™2, the upwind and the SLIP scheme still produce
nonoscillatory solution as they both ensure monotonicity.
Again, the upwind scheme results in artificially diffused
peaks due to high numerical dissipation associated with its
first-order accuracy. On the other hand, for the simulation
conditions used here, the sixth-order compact scheme of
Bercovici et al. [14] yields spurious oscillations due to unre-
solved wave numbers. Unlike the compact scheme, the SLIP
scheme yields stable solution at current density of 10 190
A m™2 with similar grid density. The SLIP scheme dampens
unresolved wave numbers to ensure nonoscillatory solution.
This dampening of unresolved wave numbers indeed affects
the solution accuracy, but the resulting solution is still a better
representation of the exact solution (with small error) com-
pared to the nonphysical oscillatory solution obtained from
the higher-order compact scheme.

Figure 2A and B also shows preferential distribution of
grid points at sharp interfaces due to adaptive grid refine-
ment. We note that dynamically adapting grid employed here
has significant advantages over fixed uniform grid as the for-
mer helps reduce the number of grid points to obtain a con-
verged solution. As an illustration, for the case shown in
Fig. 2A, simulation using the PLPE1 scheme of Sounart and
Baygents [16] required a uniform grid with 2000 grid points
(Ax =100 wm) for convergence. In comparison, for the same
case we used only 400 grid points and yet obtained three
times higher resolution (Ax = 30 pm). In other words, sim-
ulations using a numerical scheme with uniform grid would
require 16 times more grid points in order to equal the spatial
resolution of our current simulations.

3.2 Resolving sharp gradients in ITP

Next, we demonstrate the ability of our numerical scheme
to accurately resolve sharp zone boundaries in ITP. In ITP,
analytes focus and can separate between zones of high effec-
tive mobility leading electrolyte (LE) ions and low effective
mobility trailing electrolyte (TE) ions. When present in suf-
ficient amount, analytes in ITP focus into distinct, purified
zones with locally uniform zone concentrations. This mode
is termed as “plateau mode ITP” [34] and is characterized
by sharp zone boundaries separating adjacent analyte zones
with locally uniform concentrations. However, when analytes
are present in small amounts, their zone concentrations do
not reach the plateau values. Instead, the analytes focus into
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Figure 2. Simulations of electromigration dispersion in CZE us-
ing the upwind, sixth-order compact, and current SLIP spatial
differencing schemes. Plots (A) and (B) show simulations of CZE
separation of aniline and pyridine at current densities of 2547 and
10190 A m~2, respectively. For both cases, the upwind and the
current SLIP scheme yield nonoscillatory solutions as they both
ensure monotonicity. (A) At relatively lower current density of
2547 A m~2 the sixth-order compact scheme of Bercovici et al.
[14] is stable and accurately resolves the sharp leading interfaces
of analyte peaks. On the other hand, the upwind scheme is overly
diffusive due to its first-order accuracy throughout the domain.
Concentration profiles computed using the SLIP scheme (for g =
4) compare well with the results using the more accurate sixth-
order compact scheme. (B) At higher current density of 10 190
A m~2, the SLIP scheme still yields nonoscillatory and physically
consistent solution. In comparison, for similar grid density, the
compact scheme yields nonphysical oscillations. For these sim-
ulations we used 200 mm long computational domain with 400
grid points. We chose mesh adaptation parameters so as to en-
sure similar grid density for the SLIP and compact schemes. The
minimum grid spacing used for simulations shown in (A) and (B)
are Ax~ 30 pom and Ax~ 15 um, respectively.
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Figure 3. Simulation results of focusing and separation of aniline
and pyridine in plateau mode ITP. The plot shows comparison of
concentration profiles computed using the upwind, sixth-order
compact, and the current SLIP differencing schemes. Simulations
using the upwind and compact finite differencing used adaptive
grid refinement based on clustering grid points in regions with
large concentration gradients, as described by Bercovici et al.
[14]. Whereas simulations with the current SLIP scheme used
adaptive grid refinement procedure to minimize numerical dissi-
pation as described in Section 2.2.3. Concentration profiles com-
puted using the current SLIP scheme compare well with those
obtained using more accurate sixth-order compact scheme. In
particular, plateau concentrations and zone boundary thickness
obtained using the current scheme agree well with the results
from compact scheme. In comparison, the upwind scheme is
more dissipative and so yields a nonconverged solution due to
artificial broadening of zone boundaries. Plot also shows how
the grid refinement procedure adapts the grid points (shown in
circles) from regions of uniform concentrations to sharp zone
boundaries. Our finite volume scheme is based on conservative
formulation of governing equations and conserves mass of fo-
cused analytes with (’)(10‘15) accuracy. The simulations used
15 mm long domain with 300 grid points. We solved the equations
in a frame of reference moving with ITP zones so as to reduce the
number of grid points.

peaks with widths determined by the boundary thickness of
neighboring zones. The latter mode is termed “peak mode
ITP” [34].

To test our numerical scheme for simulating I'TP prob-
lems, we consider the benchmark case of plateau mode ITP,
originally proposed by Ermakov [33]. This test case involves
cationic ITP focusing of two weak base analytes (aniline and
pyridine). This test case is particularly interesting as it has
been used previously to compare the performance of sev-
eral numerical schemes, including those by Martens et al.
[15], Sounart and Baygents [16], Yu et al. [35], Bercovici
et al. [7], and Chou and Yang [18].

We performed two sets of simulations, each using the
SLIP, the upwind and the compact scheme, at current den-
sities of 509 and 2260 A m~2. For these simulations the
LE was 18 mM sodium hydroxide (pK, = 13.7, w = 51.9 x
10°m? V7! s71) and 20 mM acetic acid, and the TE was
40 mM B-alanine (pK, = 3.3, . = 36 x 107°m? V! s71) and
20 mM acetic acid. Figure 3 shows comparison of concentra-
tion profiles computed using the upwind, the SLIP, and the
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sixth-order compact scheme at current density of 509 A m~—2.
For this set of simulations, we used a frame of reference mov-
ing with ITP zone to minimize the number of grid points.
The computational domain was 15 mm long and we used
300 grid points for spatial discretization. Simulations using
the upwind and the compact scheme used adaptive grid re-
finement scheme of Bercovici et al. [14] wherein grid points
cluster in regions with large concentration gradients. For the
current SLIP scheme, we used an adaptive grid refinement
procedure to minimize numerical dissipation (see Section
2.2.3). As shown in Fig. 3, concentration profiles computed
using the SLIP scheme compare well with those obtained
using the more accurate and previously verified sixth-order
compact scheme. The current scheme is able to predict cor-
rectly the plateau concentrations and the thickness of diffu-
sive zone boundaries. In comparison, the upwind scheme is
only first-order accurate throughout the domain and yields a
nonconverged solution marred with artificial broadening of
zone boundaries.

The distribution of grid points in Fig. 3 illustrates how
our adaptive grid algorithm preferentially clusters grid points
atsharp interfaces. At these sharp interfaces, the SLIP scheme
adds higher numerical diffusion to suppress spurious oscil-
lations. The reduction in numerical dissipation due to adap-
tive grid refinement enables our dissipative SLIP scheme to
predict thickness of sharp zone boundaries with a resolu-
tion comparable with the nondissipative compact scheme.
We note that besides the advantage of unconditional stability,
the current scheme conserves mass significantly more pre-
cisely than the finite difference schemes (both compact and
upwind) discussed by Bercovici et al. [7, 14]. This is because
our numerical scheme is based on a finite volume method for
conservative formulation of governing equations, and hence
conserves mass irrespective of the grid size. For example, for
simulations shown in Fig. 3, the current scheme conserves
mass with O (10~"°) accuracy, while the upwind and the com-
pact scheme (previously implemented in SPRESSO) conserve
mass with relatively lower accuracy of O (107%) .

In Fig. 4, we show the zone boundary thickness predicted
by our numerical scheme at current density of 2260 Am~2 ver-
sus the number of grid points, and compare it with simulation
results of Sounart and Baygents [16], Yu et al. [35], Bercovici
et al. [7], and Chou and Yang [18]. We used the same simu-
lation conditions as those in the aforementioned numerical
studies. Briefly, the analytes (aniline and pyridine) were in-
jected as 1 mm plugs at a concentration of 10 mM in a 40 mm
long capillary, and subsequently allowed to migrate for 42 s.
As a fair comparison, we performed each of these simulations
in a stationary frame of reference and varied the number of
grid points from 200 to 4000. As shown in Fig. 4, the com-
pact scheme of Bercovici et al. provides a converged solution
with grid independent zone boundary thickness when more
than 400 grid points are used. Below 400 grid points, the
compact scheme shows nonphysical oscillations due to un-
resolved wave numbers [7]. Due to its nondissipative nature
and high accuracy, we here use predictions from the sixth-
order compact scheme as baseline for comparison of other
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Figure 4. Comparison of six numerical schemes in predicting
zone boundary thickness between aniline and pyridine zones
in ITP. Here zone boundary thickness is defined as the length
over which species concentration changes from 1% to 99% of its
plateau value. Electrolyte chemistry and simulation parameters
are the same as that for simulation shown in Fig. 3, except for
a higher current density of 2260 A m~2 in this case. The upwind
scheme is highly dissipative and does not show convergence
of boundary thickness even when (9(104) grid points are used.
The conservation element solution element (CESE) scheme of Yu
et al. [35] and the PLPE1 scheme of Sounart and Baygents [16] are
less dissipative than the upwind scheme. The CESE scheme with
adaptive grid refinement (AMR-CESE scheme of Chou and Yang
[18]) shows improved accuracy compared to the CESE scheme
and follows a convergence trend similar to the PLPE1 scheme.
The high resolution adaptive grid (HIRAG) scheme of Bercovici
et al. [7,14] is nondissipative and coupled with adaptive grid
shows convergence for all grids on which it produces a nonoscil-
latory solution. Note that the HIRAG scheme does not ensure
monotonicity and results in oscillatory solutions for <400 grid
points. The current SLIP scheme, which preserves monotonicity
and minimizes numerical dissipation using adaptive grid refine-
ment, provides essentially grid independent prediction of inter-
face thickness. Compared with other schemes, the SLIP scheme
provides relatively accurate nonoscillatory solution with only 200
grid points. The data for the upwind and PLPE1 schemes was dig-
itized from Sounart and Baygents et al. [16], and data for CESE
and AMR-CESE schemes was digitized from Chou and Yang [18].

numerical schemes. Figure 4 shows that zone boundary thick-
ness computed using dissipative schemes of Sounartand Bay-
gents [16], Yuetal. [35], and Chou and Yang [18] shows strong
dependence on grid size. For a higher number of grid points,
the numerical dissipation in dissipative schemes decreases
and improves the prediction of zone boundary thickness.

In comparison, the current numerical scheme is able
to predict the interface thickness with reasonable accuracy.
Compared to equivalent uniform grid schemes, such as
PLPE1 of Sounart and Baygents [16] which takes ~2500
grid points to converge, the current scheme converges to
the solution of the higher accuracy compact scheme in 400
grid points. The improved grid convergence behavior of our
scheme compared to other dissipative schemes is due to the
adaptive grid refinement procedure, which minimizes nu-
merical dissipation. We note that, unlike the compact scheme
of Bercovici et al. [7] which results in spurious oscillations be-
low 400 grid points, our scheme yields stable solution with
even 200 grid points. This stability with just 200 grid points is
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possible due to the numerical dissipation; however, it comes
at a cost of ~15% error in computed interface thickness.
Users of this scheme should, of course, verify grid conver-
gence of predicted solutions for simulations that require high
accuracy.

3.3 Effect of variable channel cross section
on plateau mode ITP

In Section 3.2, we benchmarked our numerical scheme with
the previously verified and experimentally validated sixth-
order compact scheme of Bercovici et al. [7, 11, 14] for ITP
problems in uniform cross-section channel. We now exam-
ine the effect of axially varying cross-sectional area on analyte
focusing in ITP. Using variable cross-sectional area channels
is a common and effective way of increasing sample load-
ing and hence detection sensitivity in ITP [23, 36]. In this
technique, analytes are first allowed to focus in a large cross-
section region and subsequently analytes are detected after
they migrate into a narrow cross-section region. The large
volume of the large cross-sectional area region increases the
amount of analytes focused prior to their detection. Later,
when the analyte zones transition from the large to small
cross-section region, their zone lengths increase to conserve
mass, providing higher detection sensitivity.

While ITP in variable cross-section channels has been
used in several experimental studies for high-sensitivity de-
tection of ionic species, there has been limited work on simu-
lations of this process. The majority of electrophoresis solvers,
including SIMUL [10], GENTRANS [12], and older versions
of SPRESSO [7], are based on 1D formulation of advection-
diffusion equations applicable in uniform cross-sectional area
channels. Bahga et al. [23] presented a 1D model for ITP
in variable cross-sectional area channels based on the as-
sumption of negligible diffusion. However, the diffusion-free
model of Bahga et al. is well suited for predicting analyte zone
concentrations and zone lengths only when analyte zones
are significantly longer than diffusive zone boundaries. To
the best of our knowledge, simulations of ITP in variable
cross-section geometry including both advective and diffu-
sive fluxes have been limited to computationally expensive
multidimensional numerical studies [19]. Here we present
first-of-their-kind quasi-1D simulations which account for ad-
vection and diffusion of species in ITP along with variation
in channel cross section.

We first examine the problem of plateau mode ITP
focusing of two analytes in a channel with axially vary-
ing cross-section. The channel geometry, shown in Fig. 5,
consists of fivefold reduction in cross-sectional area. The
electrolyte chemistry was the same as that in ITP simu-
lations shown in Figs. 3 and 4. Simulation results pre-
sented in Fig. 5 show analyte zones at three locations as
they migrate along the channel. Analytes first focus in the
large cross-section region in the form of thin plateau zones.
As the analyte zones transition from large to small cross-
section region, their zone lengths increase inversely with
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Figure 5. Simulation showing focusing and separation of pyri-
dine and aniline in plateau mode ITP as it approaches and trav-
els through a converging channel with fivefold cross-sectional
area reduction. Initially, at t = 0, pyridine (S1) and aniline (S2)
are injected as overlapping, diffuse Gaussian peaks between the
leading electrolyte (LE) and trailing electrolyte (TE) zones. Upon
application of an electric field, analytes (S1 and S2) focus between
LE and TE zones (t = 27 s). Due to high initial amount of analytes
and relatively high current densities, both S1 and S2 quickly form
plateau-like zones in the large cross-section region. As the ana-
lyte zones transition from the large to small cross-section region
(t = 46 s), their zone lengths increase inversely with decrease in
cross-sectional area. Note that the plateau concentration of ana-
lytes does not depend on channel cross section as this is simply
set by the area-independent Jovin-Alberty regulating functions
[37,38]. Later at t = 53 s, when analyte zones fully migrate into
the narrow cross-section region, their zone lengths reach new
steady values. Analyte zones elongate five times due to a five-
fold reduction in cross-sectional area. Electrolyte chemistry is the
same as that for simulations in Fig. 3. Simulations used a 60 mm
long computational domain with 450 grid points and a constant
applied current of 1 pA.

decreasing cross-sectional area. After the analyte zones com-
pletely transition to the small cross-section region, their zone
lengths attain steady values, which are about five times larger
than the corresponding zone lengths in the large cross-
sectional area region. However, variation in cross-sectional
area does not affect the plateau concentration of analyte
zones. This is because the maximum concentration of each
analyte zone (the plateau concentration) is set by the reg-
ulating function established by the LE mixture (here, the
appropriate regulating functions are the Jovin and Alberty
functions [37, 38]) which does not depend on the chan-
nel cross-section. We note that non-uniform electric fields
resulting from variation in channel cross-sectional area can
lead to temporary dispersion of ITP zone boundaries. Our
quasi-1D model correctly accounts for dispersive effect of
nonuniform electric field in variable crosssectional area chan-
nels, and we provide simulations results in the Supporting
Information to demonstrate this.

Next, we verify and validate our quasi-1D simulations of
ITP in converging cross-section channels, respectively, with
the diffusion-free model predictions and experimental data
of Bahga et al. [23]. Bahga et al. presented a detailed experi-
mental study on increasing the analyte zone length by varying
the channel geometry. Their channels consisted of a loading
section of length L; and large cross-sectional area, A, fol-
lowed by a detection section with small cross-sectional area
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(Ap << Ap). The LE ion was 10 mM sodium, the TE ion
was 10 mM pyridine, and the background counter-ion was
20 mM Hepes (pK, =7.5, . = —23.5x 10 m?* V! s7!). In
the experiments of Bahga et al., the model analyte (bistris,
pK, = 6.4, . =26 x 107° m? V! s71) was injected using a
semi-infinite injection scheme where analyte was mixed with
TE and allowed to focus continuously over time. The initial
concentration of analyte in TE, ¢?, varied from 1 to 4 uM.
Based on the experiments and a diffusion-free model, Bahga
et al. [23] showed that, for a semi-infinite injection (where
analyte is mixed homogenously with the TE), analyte zone
length (A,) in variable cross-section channel is proportional
to Legc? = (A L/ Ap)cl. Here Leg is the “effective length”
of variable cross-section channel. It is defined as the total
length of a uniform cross-section channel required to obtain
the same amount of sample accumulation as the large-then-
small cross-section channel system. Physically, L. is also
equal to the length of channel of the smaller cross-section
(with area Ap) which would have a volume equal to that swept
by the ITP zone as it migrates through the large-then-small
cross-sectional area channel system. Figure 6 shows a plot of
the physical analyte zone length versus Legc? as predicted by
our quasi-1D simulations, together with predictions from the
diffusion-free model and experiments of Bahga et al. [23].
The quasi-1D simulations were performed for two differ-
ent channel geometries with L.g = 100 and 150 mm, each
with six different initial analyte concentrations (c?) ranging
from 1 to 6 WM. The experiments were performed with four
variable-area channel geometries, and geometric parameters
are summarized in the figure. Analyte zone lengths obtained
from the quasi-1D simulations show good agreement with
the zone length predictions of the diffusion-free model. The
diffusion-free model is in good agreement with the exper-
iments as the conditions are such that the analyte zones
are well into plateau mode (with diffusive zone boundaries
significantly smaller than the plateau length) in the small
cross-sectional area channel. Our simulations correctly pre-
dict experimentally observed increase in physical zone length
of analyte zone versus Lerc®. As with the diffusion-free
model of Bahga et al., the quasi-1D simulations presented
in Fig. 6 used an experimentally estimated EOF mobility of
2 x 1079m? V=1 s71 [23] to account for EOF in experiments.

3.4 Effect of variable channel cross-section on peak
mode ITP

Lastly, we present a simulation wherein analyze zones in
peak mode ITP are migrated into a converging cross-section
channel to transition them into plateau mode. In ITP, an-
alytes focus in peak mode when the analytes zones do not
reach their respective plateau concentrations. Peak mode ITP
tends to occur when analytes are present in trace quantities
or the zone boundaries are excessively diffused due to low
electric field. Direct detection of analytes focused in peak
mode ITP is typically limited by their peak concentrations rel-
ative to the signal noise and background. Bottenus et al. [39]
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Figure 6. Comparison of experimentally observed analyte zone
length in ITP in variable cross-section channels with predictions
using a diffusion-free model and the current quasi-1D model.
Open data points and solid line, respectively, show experimen-
tal data and results from the diffusion-free model of Bahga et al.
[23]; solid data points show zone length predictions using the
current simulations. Experiments and simulations involved semi-
infinite injection of analyte, wherein analyte was initially mixed
with TE and allowed to focus continuously over time. The chan-
nels consist of a loading section with large cross-sectional area
A; and length L, followed by a detection section with small cross-
sectional area Ap and fixed length of 7.5 mm. The plot shows an-
alyte zone length plotted against the theoretical scaling of Legc)
(equal to A, Lch/AD). The analyte is focused in plateau mode
after the convergence in the channel, so the predictions using
quasi-1D model are in fairly good agreement with the diffusion-
free model. Further, analyte zone lengths computed using the
quasi-1D model agree very well with experimentally observed
linear variation of analyte zone length with Lekc. Both experi-
ments and simulations used 350 V applied (constant) voltage.
LE ion is 10 mM sodium, TE ion is 10 mM pyridine, background
counterion is 20 mM Hepes, and analyte is bistris. To account
for EOF in the simulations, we used experimentally an estimated
EOF mobility of 2 x 107°m? V- s~ [23].

experimentally demonstrated that the concentration of ana-
Iytes peaks (and therefore detection sensitivity) in peak mode
ITP can be increased using converging cross-sectional area
channels. As analyte zones migrate from large to small cross-
section region, both the local electric field and the amount of
analytes focused per unit length of channel increase. Each of
these effects promotes transition of peak mode focusing into
plateau mode.

To illustrate the effect of variable cross-sectional area on
peak mode ITP, we performed simulation of ITP focusing of
two analytes (again, aniline, and pyridine for ease of compar-
ison) in a channel with fivefold reduction in cross-sectional
area. The channel geometry, analytes, and electrolyte chem-
istry were the same as those used for the (initially) plateau-
mode ITP simulation shown in Fig. 5 and discussed above.
However, to ensure peak mode focusing of analytes, we here
used 20-fold less initial amount of analytes and 10-fold lower
current density compared to the plateau mode ITP simulation
in Fig. 5. Simulation results presented in Fig. 7 show analyte
zones at three locations along the converging cross-section
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Figure 7. Simulation showing effect of variable channel cross
section on peak-mode ITP. Plots (A to C) show focusing of
two analytes, pyridine (S1) and aniline (S2), at three locations
along a converging channel with fivefold reduction in cross-
sectional area. (A) Due to their low initial concentrations, ana-
lytes S1 and S2 focus in peak mode in the large cross-section
region. Peak mode focusing of analytes is characterized by
largely overlapping analyte peaks with thickness comparable
to the LE/TE zone boundary. (B) As the analyte zones transi-
tion from large to small cross-section region the analyte peak
concentrations increase. This is in part due to relatively larger
amount of sample focused per unit length of the channel, and
to sharper zone boundaries associated with the higher local
electric field. (C) In this particular case, when analyte zones
fully migrate into the small cross-section region their zone con-
centrations nearly reach the plateau values determined by the
Jovin and Alberty regulating functions [37,38]. Electrolyte chem-
istry and channel geometry used in this simulation are the
same as that in Fig. 5. Compared to the simulations shown in
Fig. 5, here we used 20-fold lower amount of analytes and ten-
fold lower applied current (0.1 pA) to ensure peak mode focusing
of analytes in the larger cross-section channel.

channel. The lower initial analyte concentrations and lower
current density result in analytes focusing in peak mode in
the larger cross-section region. Peak mode results in over-
lapping peaks focused between the TE and LE zones. As the
analyte zones transition to the smaller cross-section region,
their peak concentrations increase (see Fig. 7B). In this par-
ticular case, when analyte zones fully migrate into the small
cross-section region (Fig. 7C) the analyte zone concentrations
reach their maximum possible values determined by the Jovin
and Alberty regulating functions [37, 38]. The constriction in
channel cross section therefore transforms peak mode ITP to
plateau mode ITP.

We note that simulations of peak mode ITP can comple-
ment experimental observations as overlapping analyte peaks
are hard to identify in experiments. Also, simulations of ITP
in variable cross-sectional area channels can be used to op-
timize the channel geometry. For example, in such systems,
for constant applied current, variation of the large-to-small-
channel-area ratio results in a trade off between assay time
and sensitivity of plateau mode detection (see Bahga et al.
[23]). Fast, high accuracy simulations of such systems can
significantly reduce design and optimization time and make
prototyping efforts more efficient.
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4 Concluding remarks

We have developed a generalized approach for modeling and
simulation of quasi-1D nonlinear electrokinetic processes in
channels with axially varying cross section. Starting with 3D
advection-diffusion equations, we derived quasi-1D equations
for multispecies transport in terms of area-averaged quan-
tities (species concentrations and axial electric field). Our
formulation is based on typical assumptions of lubrication
theory [24], including long, thin channels with slowly varying
channel cross-sectional area. Our approach includes arbitrary
variation in channel cross section, chemical equilibrium cal-
culations for multivalent weak electrolytes, ionic strength ef-
fects on species mobility [11] and acid-base equilibria, and
Taylor—Aris dispersion [8, 9] due to nonuniform bulk flow
(due to either externally or internally generated pressure-
driven flow components).

To solve the quasi-1D governing equations, we have de-
veloped a dissipative finite volume scheme which selectively
adds numerical dissipation at locations with sharp gradients
and oscillations. This ensures unconditional stability of the
scheme, regardless of the grid size. We have also provided
a novel adaptive grid refinement algorithm which improves
the accuracy of our scheme by migrating grid points from re-
gions with low numerical dissipation to regions with higher
numerical dissipation. We have benchmarked our numerical
method with existing numerical schemes by simulating chal-
lenging electrokinetics problems (in uniform cross-section
channels) involving sharp concentration gradients. These in-
clude simulations of ITP and electromigration dispersion in
CZE. Numerical experiments presented here show that the
current approach yields robust and high-resolution solutions
using an order of magnitude less grid points compared to
existing dissipative schemes [16, 18, 35]. Also, our simula-
tion results show reasonable agreement with nonoscillatory
solutions computed using nondissipative schemes, such as
the (experimentally validated) sixth-order compact scheme of
Bercovici et al. [7, 14]. Unlike nondissipative schemes, the
current numerical scheme is very robust as it is uncondi-
tionally stable. This feature makes our scheme advantageous
for routine analysis and optimization of electrokinetic pro-
cesses by researchers with little or no experience in computa-
tional methods. By comparison, nondissipative schemes may
be better suited for more detailed, fundamental electrokinet-
ics studies where accuracy is preferred over computational
efficiency.

We have also demonstrated first-of-their-kind quasi-1D
simulations of ITP in nonuniform cross-sectional area chan-
nels, and validated these with published experimental data.
In particular, we leveraged quasi-1D simulations to predict
the efficacy of converging cross-section channels in increas-
ing detection sensitivity of both peak- and plateau-mode ITP.
Until the current model, such studies have been limited
to computationally expensive multidimensional simulations.
The quasi-1D approach presented here is computationally
efficient and hence provides new possibilities for optimiza-
tion of electrokinetic systems based on shape, chemistry, or
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electrical control schemes to achieve high-detection sensitiv-
ity and rapid analysis. For example, simulations of ITP in
converging cross-section channels can be used to determine
the required amount of contraction in cross-sectional area so
as to ensure complete transition from peak to plateau mode
ITP. Such simulations can complement empirical designs of
channel geometry and minimize trials involved in fabricating
channels and performing experiments.
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