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Calculation of species concentrations in ITP zones using diffusion-free model 
  

In Section 1.3 of the paper, we presented an unsteady, diffusion-free model to calculate 
species concentrations and shock speeds in ITP. We also showed (in Figure 2 of paper) comparison 
of our model with detailed 1-dimensional simulations using SPRESSO [1,2]. Here we describe the 
numerical procedure to calculate species concentrations in different ITP zones using our diffusion-
free model. In Section 1.3 we derived Hugoniot jump conditions relating concentrations of each 
species across ITP shocks,    
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where ,ic iµ denote the concentration and effective mobility of species ,i and σ  denotes the 
electrical conductivity. Here J denotes the current, A the cross-sectional area and /dx dt the shock 
speed. In Eq. (1) −  and +  denote the evaluation of a property behind and in front of a shock, 
respectively. 

Here we consider an ITP experiment with a leading electrolyte (LE), a trailing electrolyte 
(TE), an analyte (initially mixed with the TE) and a background electrolyte. In this case, two 
propagating shocks form corresponding to the adjusted-TE-to-analyte interface and the analyte-to-LE 
interface. Whereas the interface between the TE well and the adjusted TE zone remains stationary. 
See Zhukov [3] for more discussion on existence of propagating and stationary interfaces. The 
concentrations of species in the LE zone and the TE well are set by the initial conditions (when 
samples are loaded onto the chip). Whereas the species concentrations in the (plateau mode) analyte 
and the adjusted-TE zones matches the Jovin and Alberty functions [4,5] established by the LE. We 
therefore solve for the species concentrations in the analyte and the adjusted-TE zones. 

First we solve for the species concentrations in the analyte zone by applying jump 
conditions (1) across the analyte-to-LE interface. Since analyte ions are not present in the LE zone 
(neglecting diffusion), the jump condition (1) for analyte concentration across the analyte-to-LE 
interface yields, 
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where Aσ denotes the conductivity of analyte zone, and ,a Ac and ,a Aµ denote, respectively, the 
concentration and effective mobility of analyte in analyte zone. Recall that in our notation, the first 
small-case subscript identifies the ion, and the second capitalized subscript identifies the zone of 
interest. Similarly jump condition (1) for LE ions across the LE side of the analyte-to-LE interface 
gives,  
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From Eqs. (1) and (2) we obtain the speed of analyte-to-LE interface, 
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The concentration of the background electrolyte (that is, the counter ion) in LE zone, , ,b Lc is set by 

the initial conditions. Knowing , ,b Lc we calculate the concentration of background electrolyte in the 

analyte zone, , ,b Ac  using jump condition (1) for background electrolyte across the analyte-to-LE 
interface, 
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Substituting the value of /dx dt from Eq. (2) in Eq. (4), we obtain a simplified relation between 
concentrations of background electrolyte in the analyte and the LE zone, 
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In the equations above, effective mobilities ,a Aµ  and ,b Aµ depend on the pH of analyte zone. To 
calculate pH, we perform chemical equilibrium calculations based on the procedure described by 
Bercovici et al. [1]. In short, knowing the concentrations of analyte and background electrolyte we 
calculate the pH using using acid-base equilibria and electroneutrality assumption. Equations (3) and 
(5), along with the electroneutrality assumption, form a set of three coupled non-linear algebraic 
equations in terms of , ,a Ac ,b Ac  and the pH of analyte zone. We solve this set of equations 
numerically using  fsolve routine of MATLAB to obtain the pH and the concentrations of analyte and 
background electrolyte in the analyte zone.  We note that, for simplicity, we here neglected the 
effects of ionic strength on ion mobility and the acid-base equilibria.  However, a process similar to 
that described above can be used to include these effects.  See for example Bahga et al. [6] for a 
description of such a model. Also, Bahga et al. [6] showed that for univalent ions, calculated sample 
accumulation does not depend strongly on ionic strength effects on electrophoretic mobility. 

Next, we solve for the remaining unknowns, namely the concentrations of analyte, TE and 
background electrolyte in the adjusted-TE zone. We apply jump conditions (1) across the adjusted-
TE-to-analyte and the TE well-to-adjusted-TE interface to solve for the concentrations of analyte, TE 
and background electrolyte in the adjusted TE zone. Using the jump conditions (1) across the 
adjusted-TE-to-analyte interface (which moves at a speed of ( ), /t T TJ Aµ σ ) we obtain, 
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Further, using the jump condition across the stationary interface between the TE well and the 
adjusted TE zone we obtain a relation between the concentration of TE in the adjusted-TE zone and 
the TE well, 
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Here the species concentrations in the TE well are known from the initial conditions. Equations (6), 
(7) and (8) along with the electroneutrality assumption then form a set of four coupled algebraic 
equations in , ,b Tc  , ,a Tc  ,t Tc and the pH of adjusted-TE zone, which we solve numerically. Knowing 
the species concentrations in all ITP zones, we then evaluate the speeds of propagating interfaces. 



Lastly, the analyte-to-LE interface propagates at a speed of ( ) ( ), ,/ /l L L Aa AJA AJµ σ µ σ= while the 

adjusted-TE-to-analyte interface propagates at a speed of ( ), / .t T TJ Aµ σ  
 
 
Dependence of SNR and assay time on channel geometry 
 

In Section 2.2 of the paper, we showed that the plateau zone length of an analyte, ,P∆  is 

proportional to both the concentration of the analyte in the well, 0
ac , and to the geometric parameter 

,/L L DA L A   
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Recall that LA  and LL  are the cross-sectional area and length of the loading (larger cross-section) 
region of the channel, and DA  is the cross-sectional area of the detection (smaller cross-section) 
region. We see the theoretical plateau zone length is independent of the applied voltage or current.  
We here derive analytical relations for the dependence of SNR and assay time on channel geometry. 
SNR and assay time have different functional dependences for the cases of fixed current and fixed 
voltage. We therefore derive the analytical expressions for SNR and assay time separately for fixed 
voltage and fixed current operation. 
 
Fixed Voltage  
 

To estimate the assay time for fixed voltage operation, we calculate the time taken by the 
analyte zone to travel from the trailing electrolyte (TE) well to the detection section. Let x denote the 
coordinate of the interface between the analyte and leading electrolyte (LE). In the absence of 
electroosmotic flow (EOF), the speed of the analyte-to-LE interface in the loading section is given by 
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where LA is the cross-sectional area of the loading section, ,l Lµ is the effective mobility of LE in the 

LE zone, Lσ is the conductivity of the LE zone and ( )J x is the current through the channel when the 
analyte-to-LE  interface is at location .x  We can approximately relate total current in the system to 
the applied voltage, ,V∆  using Ohm’s law, 
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where Tσ is the conductivity of TE zone and DA is the cross-sectional area of detection section. In 
Eq. (11) we have neglected the contribution of analyte zone to the electrical resistance of the channel.  
This is a reasonable approximation because the analyte zone length is much smaller than the LE and 
the TE zones. Also, within interfaces between zones, the diffusive current is non-negligible and so 
Ohm’s law does not apply locally. However, we also assume these interfaces also contribute 
negligible resistance to the total axial-length-averaged resistance in the channel. Combining Eqs. (10) 
and (11) we obtain a differential equation relating time and the location of analyte-to-LE interface, 
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To calculate the assay time, T, we integrate Eq. (12) up to Lx L= (where the detection section begins) 
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Evaluating the integral above, we obtain an algebraic expression for the assay time for fixed voltage 
operation, 
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Next, we derive the dependence of SNR on geometric parameters. SNR is given by the length 
of the analyte plateau zone normalized by the characteristic length of diffused zone boundaries [7], 
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Here ,te anδ  and ,an leδ  are, respectively, the characteristic widths of adjusted TE-to-analyte and 
analyte-to-LE interfaces in the detection section. For the characteristic width of an ITP interface, we 
use the analytical expression provided by Saville and Palusinski [8], 
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where subscripts 1 and 2 denote lower and higher mobility species corresponding to the zones 
adjoining a particular interface (e.g., for analyte-to-LE zone subscript 1 refers to the analyte and 2 
refers to the LE). Here Bk is the Boltzmann constant, T the temperature, e the unit elementary charge 

and j  ( )/ DJ A=  the current density. To estimate the current, for Eq. (16), we substitute Lx L= in 
Eq. (11). The corresponding current density is given by, 
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This is the current density in the detector section, when the analyte-to-LE interface is at the junction 
of loading and detection section. Combining Eqs. (15), (16) and (17) we obtain the dependence of 
SNR on geometric parameters, ,LA  ,DA LL and ,DL  
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 Figure 1 shows the dependence of zone length (dashed contours) and interface thickness 
(solid line contours) on LL  and /L DA A , for fixed voltage. Here, we choose values of DL = 5 mm and 
an applied potential of 350 V as typical values of interest. We note that smaller DL values are often 
impractical as the channel can then become overly sensitive to pressure differences due to small 
differences in chip well liquid levels. From Eq. (9) zone length increases by increasing /L DA A  and 

.LL  This is because, for larger cross-sectional area ratios and loading lengths, larger amounts of 
sample accumulates in the loading section. As a result, the zone length in the detection section 
increases. Additionally, Figure 1 shows that the interface thickness decreases by increasing 



/L DA A and decreasing .LL  From Eq. (17), we see that current density in the detection section 
increases on increasing the cross-section ratio and decreasing loading length. Therefore the interface 
thickness, which is inversely proportional to current density, decreases by using higher cross-
sectional area ratio and smaller loading length (since each of these increase electric field in the 
detector region). 
 Figure 2 shows the dependence of SNR (dashed contours) and assay time (solid line 
contours) on cross-sectional area ratio and the length of the loading section, for fixed voltage 
operation. SNR increases by increasing both the cross-section ratio and the length of loading section. 
On increasing ,/L DA A  the zone length increases (more accumulation) and the interface length 
decreases (more field in the detection region, as per Figure 1). Therefore SNR, which we define as 
the ratio of plateau zone length and characteristic interface thickness, increases for larger cross-
sectional area ratios. However, for a fixed cross-section ratio, increasing the loading length increases 
both the zone length and the interface thickness. Hence in Figure 2, we observe a weak dependence 
of SNR on ,LL  particularly at high /L DA A . Further, Figure 2 shows that, using larger cross-section 
ratio and loading length leads to longer assay time. For larger /L DA A , smaller voltage is dropped 
across the loading section. As a result, by increasing the cross-sectional area ratio, electric field in the 
loading section decreases. At lower electric field, ITP zones propagate slower and take longer time to 
reach the detection section, thereby increasing the assay time. Also, the assay time increases for 
longer loading section, as ITP zones have to travel a longer distance to reach the detection section. 
 For fixed voltage and SNR, increase in cross-sectional area ratio decreases the required 
channel length and also reduces the assay time. However, for a fixed loading length, larger cross-
sectional area ratio yields higher SNR, but at the expense of longer assay time. Thus for a fixed 
voltage operation, there is a trade-off between SNR and assay time. 

 
Figure 1: Effect of cross-sectional area ratio ( /L DA A ) and the length of loading section ( LL ) on 
plateau zone length and interface thickness for fixed voltage operation. Dashed lines show contours 
of constant zone length for varying /L DA A  and .LL  Zone length increases by increasing both, 



/L DA A  and LL , since the amount of sample accumulated increases for larger /L DA A  and .LL  Solid 
lines show the variation of diffusion-limited interface thickness (in the detection section) as a 
function of cross-section ratio and the length of loading section. Interface thickness decreases by 
increasing the cross-sectional area ratio and decreasing the loading length. For these calculations, we 
used a fixed voltage of 350 V and a detection section of length 5 mm. We calculated the values of 
conductivity of  the LE and the adjusted TE zones, using our diffusion-free model, for ITP focusing 
of 2 µM Bistris (initially mixed with TE), with 10 mM NaOH as the LE, 10 mM Pyridine as the TE 
and 20 mM Hepes as the background counter-ion. The calculated conductivity of the LE zone is 
7.28x10-2 S.m-1 and the conductivity of the adjusted TE zone is 4.7x10-3 S.m-1. 

 
Figure 2: Effect of cross-sectional area ratio ( /L DA A ) and length of loading section ( LL ) on signal-
to-noise ratio (SNR) and assay time, for fixed voltage operation. Dotted lines show the variation of 
SNR as a function of /L DA A  and .LL  SNR increases by increasing both the cross-sectional area 
ratio and the loading length. However, increasing /L DA A  yields greater improvements in SNR as 
compared to that only increasing .LL  This is because increasing /L DA A  results in longer zone length 
and sharper interfaces; while increasing LL  yields longer zone length but thicker zone boundaries. 
Solid lines show the contours of constant assay time for different cross-sectional area ratios and 
loading lengths. The assay time increases by increasing the cross-sectional area ratio as well as the 
loading length. Therefore, for fixed voltage operation, higher SNR can be achieved with the same 
physical length of channel but this is accompanied by longer assay time. All calculations here are 
based on the parameters used in Figure 1.   
 
 



Fixed Current 
 
We here estimate the dependence of assay time, interface thickness and SNR on channel 

geometry, for fixed current operation. To calculate the assay time, we integrate Eq. (10) to obtain an 
analytical expression for assay time. 
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In this case, the calculation of assay time is straightforward because the current is fixed and the 
shocks move at constant speeds in the loading section. To obtain the interface thickness we substitute 
current density / Dj J A= in Eq. (16) to obtain, 
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Using Eq. (15) and (20) we see that when fixed current is applied across a varying cross-section 
channel,  
 2SNR / .L L DA L A∝  (21) 

Figure 3, shows the contours of constant zone length, assay time and SNR for varying 
/L DA A  and .LL  For a  fixed cross-sectional area of the detection section, zone length, assay time 

and SNR are all proportional to .L LA L  Therefore in Figure 3, the contours of constant zone length, 
assay time and SNR, are the same except for a multiplicative constant. Unlike the case of fixed 
voltage, SNR for fixed current operation increases significantly by increasing the loading length. 
This is because zone length increases for large ,LL while the interface thickness remains unaffected 
by changing .LL  Thus, SNR (which is the ratio of zone length and characteristic interface thickness) 
increases by using longer ,LL  for fixed current systems. 
 Further, by using Eqs. (15), (19) and (20) we note that, 
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The relation above shows that for a fixed assay time, ,T  we can obtain very high SNR by decreasing 
.DA  We note that such behavior is not observed for fixed voltage operation, where higher SNR is 

accompanied by longer assay time.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3: Variation of zone length, SNR and assay time with cross-sectional area ratio ( /L DA A ) and 
loading length ( LL ), for fixed current operation. Solid lines show the contours of constant zone 
length for varying cross-sectional area ratio and loading length. The contours of zone length are the 
same as those shown in Figure 1, as zone length is independent of the applied voltage or current. For 
a fixed cross-section of the detection section, variation of SNR and assay time with LA  and LL  is 
similar to that of the zone length. Therefore, the contours of SNR and detection time have the same 
shape as those of zone length, except for a multiplicative constant. As an example, 50 µm zone 
length is equivalent to SNR = 450 and assay time of 66 s. For these calculations we used a fixed 
current of 0.1 µA and a detection section with 100 µm2 cross-sectional area. ITP buffer chemistry for 
these calculations is the same as that used in Figure 1.  
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