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▪ No natural radiation protection

▪ Longer exposure to microgravity

▪ Smaller habitable volume (~3x)

▪ No resupply or return to Earth

▪ No low-latency ground support

`

Deep Space – The Next Frontier

Low Earth Orbit (LEO) Transport Deep Space Transport (DST)
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Cardiovascular Dangers of Deep Space

1R.L. Hughson, et al. “Heart in space: effect of the extraterrestrial environment on the cardiovascular system.” Nature Reviews Cardiology, 15(3), 2018.

0.43 mm 0.51 mm

Carotid Artery Wall Thickness1Extended Microgravity

Hydrostatic pressure gradient

Tissue loading on heart

Exercise of muscles and baroreflex

Deep Space Radiation

Inflammation

Endothelial damage

Oxidative stress
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Cardiovascular Deconditioning

Preload and stroke volume

Cardiac muscle mass

Vascular muscle mass (below heart)

Vascular muscle mass (above heart)

Cardiovascular Tissue Damage

Consequences

Arterial stiffening activity

Baroreflex effectiveness

Cardiorespiratory fitness

Risk for Ischemic heart disease

Risk for radiation induced cardiovascular 

disease and other vascular diseases

6 months in flight =  

20 years on Earth!

Preflight Postflight
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Cardiovascular Monitoring In Space Today



Fixed-

Platform

BCG

PPG

(toe)

Hemodynamic Monitoring:
Fixed-Platform Ballistocardiography + Photoplethysmography

Clinically verified for monitoring 

trending of:

▪ Arterial stiffness

▪ Cardiac output and stroke volume

▪ Pre-ejection period and contractility

▪ Heart rate and variability

▪ Blood pressure 
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1. Atrio-ventricular valves close

2. Aortic valve opens 

3. Aortic valve closes

4. Pulse wave reaches toe

Fixed-Platform BCG

(Bandwidth: 20 Hz)

ECG

(Bandwidth: 40 Hz)

Phonocardiogram
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2R.M. Wiard. “Validation of Non-Invasive Standing Arterial Stiffness Measurements Using Ballistocardiography

and Photoplethysmography.” Doctoral Dissertation, Stanford University, United States, 2012. 

2



Bringing Fixed-Platform BCG to Microgravity
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Objectives:

Measurement of Relevant 

Hemodynamic Changes

Signal Quality Comparison with 

Accel-based BCG

Real-World Measurement in a 

DST-Like Environment1

2

3

Our Device in 

Microgravity

3W.C. Hixson and D.E. Beischer. “Biotelemetry of the Triaxial Ballistocardiogram and Electrocardiogram in a Weightless

Environment.”U.S. Naval School of Aviation Medicine, U.S. Naval Aviation Medical Center, Technical Report, 1964. 

Original Zero-G BCG 

Experiment (1964)3
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Core Requirements:

1. Fixed-Platform BCG: Functional 

without gravity in a small space

Able to detect “I” and “J” waveform 

features, at minimum, for a diverse 

population on a powered vehicle

2. PPG: Easily adjustable to different 

skin tones and toe sizes

Needs to detect pulse arrival timing at 

the toe for a diverse population

Research and Experiment Requirements:

1. Data Capture: Reliable real-time transmission

2. Hardware: Strong enough to withstand impact

3. ECG: Reliable detection of R-waves

4. Accel-based BCG: Replicate existing systems

5. Accelerometer: Detect microgravity segments
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System Architecture
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10 4Design collaboration with Dr. R.M. Wiard (Stanford Biomedical Engineering) and Z. Stuart (Stanford Mechanical Engineering)

Foot 

Binding

Crossbar and Rubber 

Stanchion Pre-load

Mounting Plate
Stationary 

Electronics Box

System Architecture: Mechanical Design

Tuned Vibration 

Isolation Material

Vehicle Frame
Vehicle 

Vibration

BCG 

Displacement



System Architecture: Mechanical Design
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System Architecture: Fixed-Platform BCG Electronics

12
5O.T. Inan. “Novel Technologies for Cardiovascular Monitoring Using Ballistocardiography and Electrocardiography.” Doctoral Dissertation,

Stanford University, United States, 2009. 

Power Management and BCG Amplifier Circuit

1 in

Scale Connector

Conditioned

Output to ADC

Battery

31 dB

.01–100 Hz

256 SPS40 dB

Scale Strain Gauges

(Configured in 

Wheatstone Bridge)

Differential 

Amplifier

Bandpass 

Filter

ADC

Standard BCG Signal 

Conditioning Circuit5

Core Requirement:

Sensitivity of tens of 

millinewtons



System Architecture: PPG Electronics
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PPG Amplifier Circuit
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Accelerometer

+/- 2G

System Architecture: ECG and Accel-based BCG Electronics
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Power Management, Standard ECG, and 

Accel-BCG Circuit
Accelerometer and 

ECG Connectors

Analog Input

ShimmerTM ADC, 

Accelerometer,

and Bluetooth 

Transmitter

Accelerometry-based 

BCG Signal 

Conditioning Circuit 
256 SPS

Bandpass Filter ADC

Accel-BCG

Sensor Position

1 in

31 dB

.01–100 Hz

6Enclosure modeling collaboration with Dr. R.M. Wiard (Stanford Biomedical Engineering)



System Architecture: Post Processing

Digital Post Processing Filtering Chain

Linear FIR 

Filter

Moving 

Polynomial Fit 

Subtraction

Ensemble 

Average

Savitzky-

Golay (0.5 s)
M

beats

1–20 HzFixed-Platform BCG Output

Accel-based BCG Output

PPG Output

1–40 Hz

ECG Output
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Introduction to Parabolic Flight

▪ Population: 15 subjects (9 Male, 6 Female) ages 19-56 years (μ = 33.5)

▪ 3 separate campaigns of 4 flight days each, in 2012, 2013, and 2014

▪ Each subject participated in 10-80 of these parabolas17

Test Subjects Parabolic Flight Trajectory

Parabolic Flight Aircraft



Introduction to Parabolic Flight: Human Testing
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Accel-based BCG Reference Measurement Position

Introduction to Parabolic Flight: Reference Measurements

Ground BCG Reference

Measurement Position
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Real-World Measurement in a DST-Like Environment
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Example Subject Timing Measurements in Zero-G
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Real-World Measurement in a DST-Like Environment
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RJ Interval Difference Distribution

Time [ms]
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Measurement of Relevant Hemodynamic Changes:
RJ Interval

Exemplary RJ Interval Change for Individual Subject
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In 15 subjects, RJ Interval decreases by μ = 38 ms (σ = 18 ms, p = 0.000006)

7C. McCall, Z. Stuart, R. M. Wiard, O. T. Inan, L. Giovangrandi, C. M. Cuttino, G. T. A. Kovacs "Standing Ballistocardiography Measurements in 

Microgravity," Proc. of IEEE Engineering in Medicine and Biology Conference, Chicaco, IL, 2014.



Measurement of Relevant Hemodynamic Changes:
Pulse Transit Time
In 9 subjects, PTT increases by μ = 60 ms (σ = 33 ms, p = 0.0003) 
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Exemplary PTT Change for Individual Subject

PTT = 181 ms
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8C. McCall, R. Rostosky, R. M. Wiard, O. T. Inan, L. Giovangrandi, C. M. Cuttino, G. T. A. Kovacs "Noninvasive Pulse

Transit Time Measurement for Arterial Stiffness Monitoring in Microgravity," Milan, 2015.
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Signal Quality Comparison with Accel-based BCG
In 10 subjects, SNR is higher using the fixed-platform vs. longitudinal 

Accelerometry-based BCG by a factor of μ = 2.1 (σ = 1.39, p = 0.06)

27

Standard Error of Fixed-Platform BCG

for Example Subject 
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7C. McCall, Z. Stuart, R. M. Wiard, O. T. Inan, L. Giovangrandi, C. M. Cuttino, G. T. A. Kovacs "Standing Ballistocardiography Measurements in 

Microgravity," Proc. of IEEE Engineering in Medicine and Biology Conference, Chicaco, IL, 2014.
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Conclusion and Suggested Future Work

A step toward safer human deep space travel:

• Introduction of a new clinically validated technology to help monitor 

cardiovascular deconditioning in a practical way aboard DSTs.

• The first successful use of fixed-platform BCG in zero-g

Suggested Future Work:

• Validate in actual space environment (e.g., ISS)

• Multi-G/Partial-G experiments 

• Hardware improvements
29


