STANFORD UNIVERSITY

Standing Ballistocardiography Measurements in Microgravity

IEEE EMBC 2014 Chicago, Illinois

Corey McCall

Zachary Stuart; Richard M. Wiard, PhD; Omer T. Inan, PhD; Laurent Giovangrandi, PhD; C. Marsh Cuttino, MD; Gregory Kovacs, MD/PhD

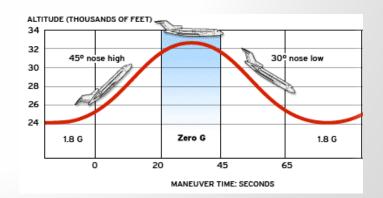
August 29, 2014

Overview

Aim: A compact self-use medical device for astronauts to monitor cardiovascular deconditioning in **multi-g environments**.

- Earth (baseline)
- Interstellar space stations
- Smaller shuttles and capsules
- Lunar or Martian bases

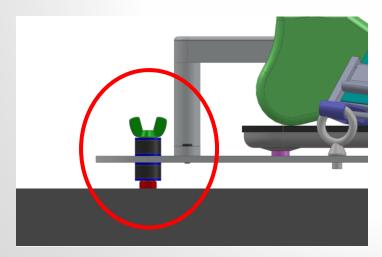
Experiment: Compare BCG weighing scale in microgravity to ground and free-floating measurements.


- Scale-based BCG is well characterized clinically on Earth for cardiac output change, cardiac contractility, heart failure, and athletic performance.
- Longitudinal BCG using a scale with foot bindings is easier to measure than free-floating methods in multig environments.

Parabolic Flight Testing

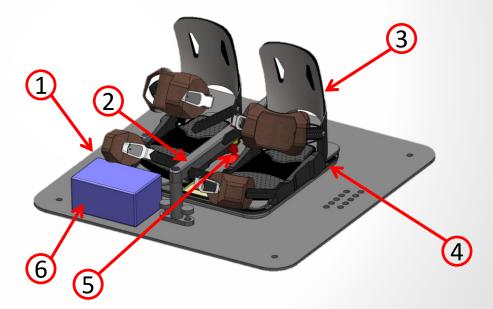
- Phase 1: Hardware proof of concept, 2012.
- Phase 2: Multi-subject characterization, 2013. (Today's talk)
- Phase 3: Addition of PWV (arterial stiffness), 2014.

Scale-based BCG in Microgravity



Scale-based BCG

Scale preloaded and attached to mounting plate


Mounting plate attached to aircraft with vibration-isolating viscoelastic washers

Scale-based BCG in Microgravity

- 1) ¹/₄-inch aluminum plate (24" x 24")
- 2) Bolted stanchions with crossbar
- 3) Foot strap assembly w/quick release
- 4) BCG scale (preloaded 10-20 lbs)
- 5) Threaded swivel leveling mount w/tightening nut
- 6) Electronics enclosure

Foot binding assembly

Complete BCG scale assembly adapted for microgravity

Experiment

Equipment:

- BCG scale assembly
- Wearable 3D accelerometer taped to lower lumbar region of back
- Custom analog electronics (ECG, scale BCG, accelerometer BCG)
- Wearable data acquisition unit with real-time Bluetooth streaming to laptop
- Boeing 727-200 aircraft (Zero-G Corp.)

Protocol:

- Lay down on floor during hypergravity transitions.
- Float up to standing position for scale-based BCG (~17 sec).
- Controlled free-floating accelerometer-based BCG captured for reference (~17 sec).
- Ground BCG recordings for baseline (~20 sec).

Population:

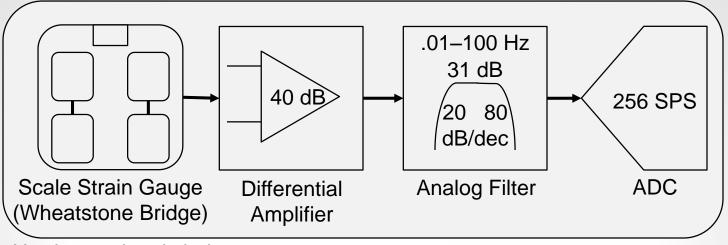
- 6 healthy males (ages 20-56, mean 38)
- 4 healthy females (ages 19-40, mean 27)

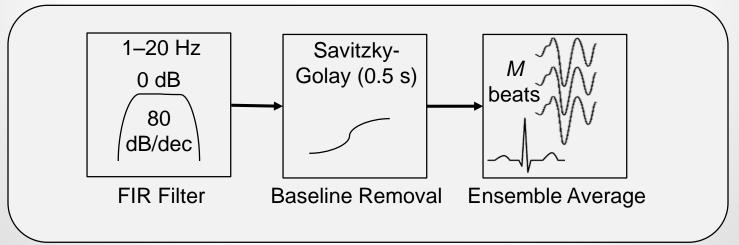
Wearable Electronics Box

STANFORD

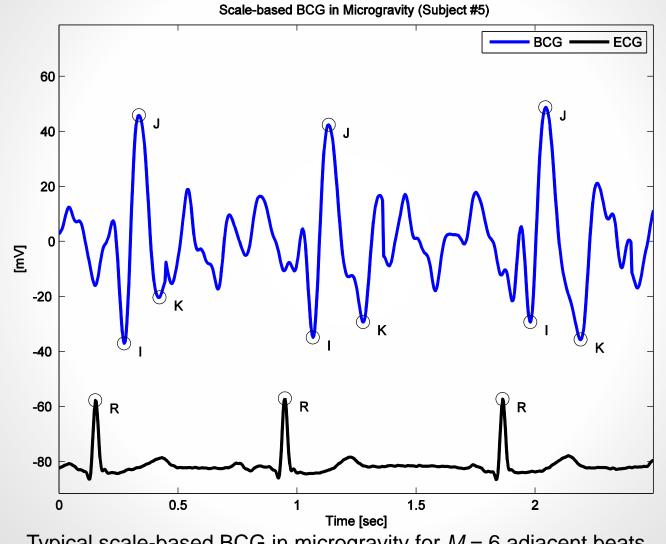
Accel

Transitioning to zero-G for scale-based BCG measurement

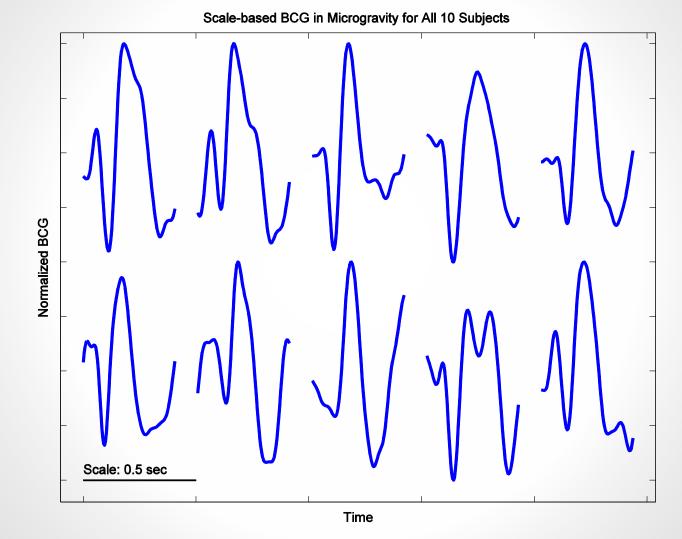

Measurement position



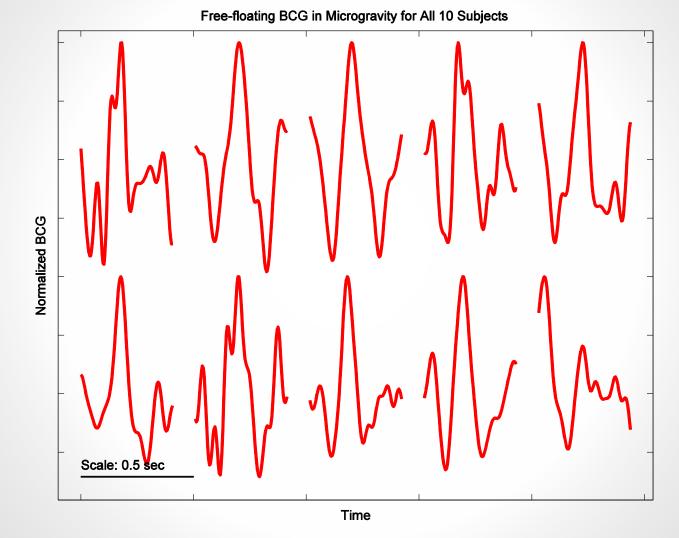
Controlled free-floating for accelerometer-based BCG measurement



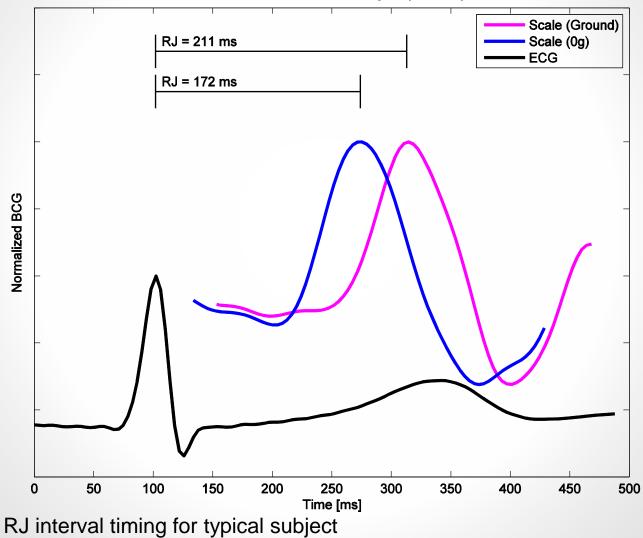
Hardware signal chain



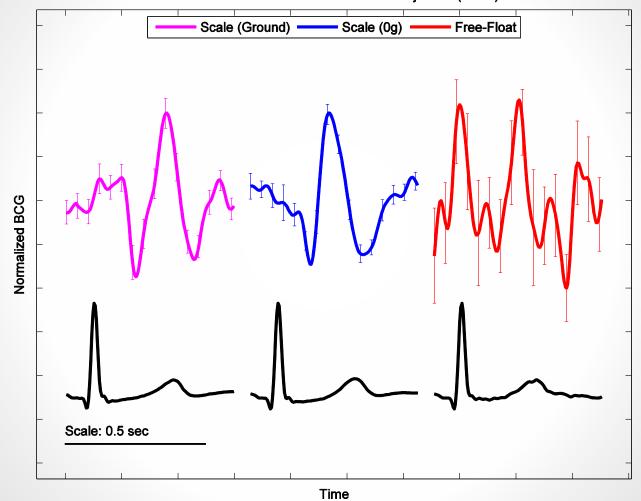
Post-processing signal chain



Typical scale-based BCG in microgravity for M = 6 adjacent beats



Scale-based BCG dataset (Mean M = 148 beats)



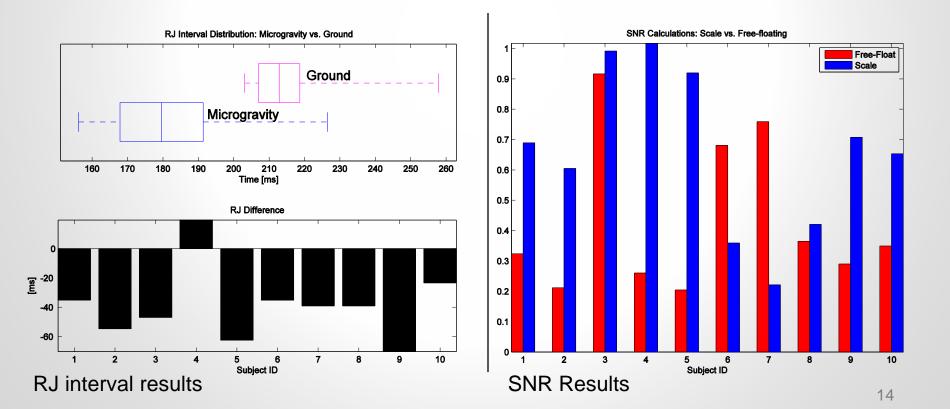
Free-floating BCG dataset (Mean M = 40 beats)

Scale-based BCG: Ground vs. Microgravity for Subject #8

Standard Error of BCG Modalities for Subject #5 (M=37)

Standard error of BCG ensemble average for typical subject

Key Findings


RJ Interval:

Average of **38.7 ms RJ interval decrease** from ground to microgravity scale-based BCG measurements (P < 0.001). This is consistent across 9 of 10 test subjects.

STANFORD

SNR (sample correlation coefficient method):

Average of **2.08 (6.34 dB) SNR increase** from free-floating to scale-based microgravity BCG measurements. This is consistent across 8 of 10 test subjects.

Conclusions

- Multi-g BCG measurement was demonstrated in microgravity and on the ground with a modified BCG weighing scale.
- BCG scale design eliminates the need to free-float without disturbance, enabling measurements in smaller cabin volumes like space capsules.
- In 9 of 10 subjects, the RJ interval was shown to decrease significantly in microgravity vs. ground measurements, possibly due to the transient increase in venous return, and consequent decrease in pre-ejection period, experienced during microgravity.
- In 8 of 10 subjects, the SNR of scale-based measurements in microgravity was higher than free-floating measurements, indicating that a scale-based approach may be a quality alternative to accelerometer-based free-floating BCG.

Thank You!

Flight Opportunities, Solicitation NOCT-110

Reduced Gravity Office, Johnson Space Center

Flight Service Provider, Zero Gravity Corp.

C. Marsh Cuttino, MD, FAAEM FACEP

the weightless experience

Questions?

Corey McCall <u>cmccall@stanford.edu</u> <u>http://transducers.stanford.edu</u>

Back-up Slides

	RJ Interval [ms]		
Subject ID	Ground	Microgravity	Difference
1	215	180	35
2	211	156	55
3	203	156	47
4	207	227	-20
5	258	195	63
6	203	168	35
7	219	180	39
8	211	172	39
9	250	180	70
10	215	191	23
Mean	219.11	180.43	38.68
S.Dev.	19.10	20.74	24.80
Coeff. of Var.	8.72%	11.49%	64.11%

SNR Results

		SNR _r Estimate		
Subject ID	M	Scale	Free-Floating	Difference Factor
1 3	34	0.69	0.32	2.13
2 1	16	0.60	0.21	2.86
3 5	56	0.99	0.92	1.08
4 7	72	1.02	0.26	3.91
5 6	56	0.92	0.20	4.50
6 2	28	0.36	0.68	0.53
7 1	18	0.22	0.76	0.29
8 2	26	0.42	0.36	1.15
9 6	50	0.71	0.29	2.44
10 2	22	0.65	0.35	1.87
Mean		0.66	0.44	2.08
S.Dev.		0.27	0.25	1.39
Coeff. of Var.		40.87%	58.04%	67.07%

STANFORD UNIVERSITY

$$X[n] = \begin{bmatrix} x_1[n] \\ x_2[n] \\ \vdots \\ x_M[n] \end{bmatrix}, \quad n = 1, ..., L$$
$$SNR_r = A \frac{r}{1 - r} + B$$
$$r = \frac{\frac{1}{L} \sum_{n=1}^{L} (x_j[n] - \overline{x_j}) (x_k[n] - \overline{x_k})}{\sqrt{\frac{1}{L} \sum_{n=1}^{L} (x_j[n] - \overline{x_j})^2 \frac{1}{L} \sum_{n=1}^{L} (x_k[n] - \overline{x_k})^2}}$$
$$A = \exp\left(\frac{-2}{L - 3}\right) \quad B = -\frac{1}{2} \left(1 - \exp\left(\frac{-2}{L - 3}\right)\right)$$