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 We explore the response of collusive prices to changing demand conditions when firms operate
 under capacity constraints in the presence of demand uncertainty. We find support for the
 conventional view that periods of low demand lead, through the emergence of excess capacity,

 to a breakdown of collusive pricing. We also find that the nature of price wars depends on
 the degree of excess capacity in the industry; while small amounts of excess capacity can

 lead firms to engage in "mild" price wars, characterized by uniform price reductions and
 market share stability, more "severe" price wars, characterized by price undercutting and
 market share instability, can emerge if excess capacity is sufficiently great. Finally, our
 results lend support to the view that market share instability is a symptom of ineffective

 collusion.

 1. Introduction

 * The impact of unexpected shifts in market demand on the ability of firms to maintain

 tacit collusion is tied fundamentally to the dynamic interaction between business conditions
 and cost structures. It is on the basis of this observation, and the prevailing evidence on the

 shape of short-run cost functions, that Scherer and Ross ( 1990) give theoretical motivation
 for the conventional empirical wisdom that tacit collusion tends to break down when business
 conditions turn sour. Focusing on industries characterized by high fixed costs, with marginal
 cost initially constant but rising steeply as production approaches 100% of capacity, Scherer
 and Ross argue that the incentive to cut prices is most likely to lead to the breakdown of
 collusive price agreements and the outbreak of "price wars" when market demand, and
 thus capacity utilization at the collusive price, is low. As they note, a large body of empirical
 evidence supports this view.'
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 The notion that unexpectedly low demand leads to price wars has been formalized by

 Green and Porter (1984) in the setting of an infinitely repeated game. However, capacity

 utilization in general and capacity constraints in particular play no role in the Green and
 Porter analysis. Rather, their work is closer in spirit to the earlier work of Stigler (1964),

 where imperfect observability of demand is the crucial ingredient; firms "agree" to switch

 to noncooperative Cournot behavior (engage in price wars) when demand is unexpectedly

 low as a way of mitigating any firm's incentives to secretly defect from collusive quantity

 choices.

 More recently, Rotemberg and Saloner (1986) have explored the relationship between

 collusive prices and business conditions under the assumption of perfect observability in a
 a setting in which firms collude tacitly in an infinitely repeated (super) game. They establish

 that, when firms set prices under conditions of constant marginal cost (and no capacity
 constraints), a reversal of the logic underlying the conventional wisdom applies; periods of

 unusually high demand present firms with an unusually large gain from shaving price and
 "taking the market," and this undermines their ability to maintain tacit collusion. The most
 collusive equilibrium sustainable during "booms" then involves less than fully collusive
 prices, behavior that Rotemberg and Saloner interpret as "price wars." These price wars

 are not periods of reversion to noncooperative behavior, like the price wars of Green and
 Porter (1984), but they do represent periods of less effective collusion.

 While Rotemberg and Saloner's (1986) finding of "price wars during booms" goes

 against the conventional wisdom, it fits well with anecdotal evidence on the pricing behavior
 of industries in which orders are lumpy and infrequent.2 In such industries, "booms" are
 synonymous with large orders, and by definition are thus of a winner-take-all nature. When
 this is the case, the notion that booms present firms with an unusually strong temptation
 to shave price clearly applies. This notion may also apply more generally in industries with

 chronic excess capacity, and Rotemberg and Saloner do present more general empirical
 evidence in support of their theory. Nevertheless, whatever the scope of the empirical rel-
 evance of the Rotemberg and Saloner result, it is clear that their constant-marginal-cost
 model does not capture the role of capacity constraints that is central to the conventional

 view of the relationship between collusive prices and business conditions.

 In fact, although the conventional view-that periods of low demand lead, through

 the emergence of excess capacity, to the breakdown of collusive pricing-is anchored in a
 large body of empirical work, the associated theoretical problem has never been formalized

 as a problem of tacit collusion.3 The aim of this article is to do just that.
 We adopt the basic setting of an infinitely repeated game in which firms face stochastic

 market demand and must choose each period's capacity before the market demand for the

 period is realized. Once market demand for the period has been observed, and with their
 capacities for the period fixed, firms then simultaneously choose prices. Within this setting,
 firms attempt to enforce collusion over capacity and price with credible (subgame perfect)

 threats to punish defections from the collusive agreement. As punishments, we consider
 the threat of infinite Nash reversion. Our model can be viewed essentially either as an
 infinitely repeated version of Kreps and Scheinkman (1983), with firms facing stochastic

 2 See, for example, the discussion of pricing behavior in the market for antibiotic tetracycline in Scherer and
 Ross (1990).

 In this regard, Rotemberg and Saloner ( 1986) do note the potential importance of capacity constraints or,

 more generally, increasing marginal costs, in affecting the relationship between collusive prices and business conditions.

 In the case where demand and marginal costs are linear, they show that the flavor of their result is preserved.

 However, as they note, in this linear-demand and linear-marginal-cost example, a favorable demand shock is

 formally equivalent to a favorable marginal-cost shock. Hence it is not surprising that favorable demand shocks

 (favorable marginal-cost shocks) lead to a greater incentive to cut prices and capture the market, and lead therefore

 to less effective collusion. But it is equally apparent that the logic of the conventional wisdom, with its focus on
 the emergence of excess capacity in times of demand slumps, is not captured by the linear-marginal-cost example.
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 market demand that is realized only after capacity is set for the period, or as a variation on

 the Rotemberg and Saloner ( 1986) model, with the introduction of a capacity-setting stage

 at the start of each period.4

 Within this basic model we establish three main results. First, in the presence of capacity

 constraints, we find support for the relationship between collusive prices and business con-

 ditions described by Rotemberg and Saloner ( 1986) and also for the relationship that con-

 forms to conventional wisdom. Intuitively, when demand is sufficiently weak and excess

 capacity sufficiently large that capacity constraints do not bind even for defecting firms,

 small improvements in demand can lead to less effective collusion, as in the "price wars

 during booms" result of Rotemberg and Saloner. However, as demand strengthens further,
 capacity constraints begin to play a role; over this range, the stronger demand is, the closer
 colluding firms will operate to capacity and the smaller the current gain from defection will

 be, strengthening the ability to maintain a higher collusive price in such periods. We show

 that the conventional wisdom of slack demand implying a greater likelihood of price wars

 applies best in precisely those industries where capacity costs are high and capacity constraints
 most important. Thus, the importance of capacity constraints is a crucial determinant of

 the relationship between collusive prices and business conditions across industries.
 Second, our equilibrium price wars can take either of two qualitatively distinct forms,

 depending on the state of demand for the period. One form of price war is analogous in

 character to the price wars of Rotemberg and Saloner (1986), in which firms temporarily
 collude less effectively and adopt a uniform price below the joint monopoly level. We also

 establish the existence of states of demand in which a second kind of price war arises,

 characterized by mixed-strategy pricing. As we discuss below, these mixed-strategy price
 wars may, if firms cannot cooperate in mixed strategies, reflect temporary reversion to

 noncooperative behavior, as in the price wars of Green and Porter ( 1984). In any event,

 these mixed-strategy price wars differ from those of both Green and Porter and Rotemberg

 and Saloner in that they correspond to periods in which one firm's price actually undercuts
 the other's in equilibrium, with the low-price firm temporarily stealing market share from
 the high-price firm. Finally, the changing nature of our price wars as the state of demand
 changes has a strong intuitive appeal; for moderately bad demand realizations, firms simply
 initiate a uniform price reduction below the joint monopoly price, but if demand conditions

 turn sufficiently sour, firms will escalate the price war and undercut one another in equi-
 librium. Only with a virtual collapse of demand will capacity constraints become irrelevant

 and uniform pricing reemerge.
 Third, we find the possibility that firms will undercut one another's prices in equilibrium

 arises only if firms are achieving a relatively low level of collusion overall. Since it is only
 when firms pursue such mixed-strategy pricing that relative market shares across colluding

 firms differ markedly from one period to the next, our results suggest that, in industries

 where capacity constraints are important, intertemporal instability in relative market shares

 across oligopolistic firms is evidence of an inability to collude effectively.5
 To parameterize the importance of capacity constraints, we also consider an intermediate

 case, between our rigid capacity constraints and none at all, where firms can make costly
 additions to capacity after demand is realized. We find that, depending on the unit cost of

 4 Related work on price-setting supergames with capacity constraints but without stochastic demand can be

 found in Brock and Scheinkman ( 1985), Benoit and Krishna ( 1987), and Davidson and Deneckere ( 1990), among

 others. See also Rotemberg and Saloner ( 1989a) for an analysis of the impact of import quotas on collusive

 behavior, and Rotemberg and Saloner ( 1989b) on the use of inventories to support collusion.

 5 A referee has noted that this idea would also emerge from a comparison of the results of Osborne and Pitchik

 ( 1986), who characterize the noncooperative Nash equilibrium of a capacity-constrained price game in the presence

 of variable demands, to the pricing behavior of a monopolist in this environment, under the assumption that

 "effective collusion" would mimic the monopoly price.
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 additions to capacity relative to the unit cost of initial capacity, equilibria can emerge ranging

 from the conventional view to those exhibiting price wars during booms.

 The remainder of the article is devoted to establishing these points. The next section

 sets forth the basic model and solves for the static Nash and joint monopoly equilibria.

 Section 3 considers the dynamic game and establishes our main results. Section 4 extends

 the model to allow for costly additions to capacity once the state of demand is revealed.

 Section 5 concludes.

 2. The basic model

 * In this section we present the basic model and describe two equilibria: the static Nash

 equilibrium and the joint monopoly outcome. The latter serves as the collusive ideal toward

 which the two firms will strive in the repeated game. The former serves both as a benchmark

 from which to measure collusive gains and as a credible (though not optimal) threat with

 which to sustain collusion.

 0 Assumptions. We consider an infinitely repeated game between two firms, labelled 1

 and 2, selling in a market where demand is stochastic. At the beginning of any period, firms

 first must simultaneously set capacity K, and K2, facing per-unit capacity costs r > 0. Once
 capacity choices for the period are made, the state of demand for the period is revealed.6

 We assume for simplicity that demand takes the linear form

 D = a -P. (1)

 The parameter a is determined each period by an independent draw from a distribution

 with full support on the interval a E [0, ar] and (commonly known) distribution function

 F( a).' After observing the demand realization for the period, the two firms then simulta-
 neously set prices facing zero marginal costs of production (up to capacity).

 D The static Nash equilibrium. We first characterize the unique symmetric static Nash

 equilibrium of this game. We rely heavily on Kreps and Scheinkman ( 1983) and therefore
 on the particular (efficient) rationing rule underlying their results. Specifically, consumers
 buy first from the cheapest supplier, and income effects from price changes are absent.8

 In Appendix A we show that there exists a unique symmetric Nash equilibrium for the

 static game, with symmetric capacity choice characterized by

 K' = E[a] -G(3K')-r (2)
 3 [ -F(3K 1)] (2)

 6 We model capacity choices as being made anew at the beginning of each period, with the period's prices
 then set after the state of demand is revealed. The assumption that capacity is variable across periods might be

 appropriate in a setting such as the automobile, computer, or appliance industries, where product life-cycles are

 relatively short and production capacity is variable with each model year. In fact, since each period looks the same

 at the time capacity choices are made, equilibrium capacity choices will be constant over time. If we were to adopt

 the approach of Brock and Scheinkman ( 1985) and fix capacity exogenously at the outset of the game, or follow

 the approach of Davidson and Deneckere (1990), also considered by Benoit and Krishna ( 1987), and have firms

 make once-for-all capacity choices at the start of the game, the sustainable level of collusion would be altered, since

 firms could not change capacity levels in the event of a defection from the collusive agreement; but the general

 properties of our results would remain.

 7Setting the lower bound on a at zero rather than some a > 0 reduces the number of cases we must consider
 but does not alter the flavor of our results in any way. The assumption that demand shocks are independently

 distributed is potentially important, as Haltiwanger and Harrington ( 1991 ) have shown in the context of the model

 of Rotemberg and Saloner ( 1986).

 8 See Davidson and Deneckere ( 1986) for results from a static two-stage game under different rationing rules.
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 where Et[ a] is the expected value of a and G( a) fa sdF(s). The Nash equilibrium pricing
 behavior as a function of the realization of a can be characterized as follows. There are

 three distinct pricing patterns, corresponding to realizations of a E [0, K"] (Region I),
 a E (Kr, 3Kv) (Region II), and a E [3Kv, a-] (Region III). For realizations of a in Re-
 gion III, capacity constraints bind, and both firms will sell their entire capacity at market-

 clearing prices P( a; 2Kb) a - 2Kv. For realizations of a in Region I, either firm has

 sufficient capacity to supply the entire market at a price equal to marginal cost (zero), so

 that capacity constraints do not bind in the standard Bertrand equilibrium and the equilib-
 rium price is driven to zero. Finally, for realizations of a in Region II, pure-strategy equilibria

 to the capacity-constrained price game do not exist, and firms play mixed strategies.
 Thus the unique symmetric static Nash equilibrium has each firm setting capacity K'

 (in every period) and making expected profits of Eirn (defined in Appendix A), with both

 firms selling their entire capacity under high demand realizations in the range

 a E [3Kv, a], both firms randomizing over price and each having excess capacity with
 positive probability under medium demand realizations in the range a E (Kr, 3Kv), and
 both firms selling at marginal cost (zero) and each having excess capacity with certainty

 under low demand realizations in the range a E [0, Kr].

 D The joint monopoly solution. Before turning to the dynamic game, we consider the

 monopoly solution to the static game. This provides the collusive ideal toward which the
 two firms will strive in the repeated setting.

 Consider first the monopolist's profit-maximizing choice of output for a period in
 which capacity is already in place and does not pose a binding constraint. Here the optimal

 output choice is simply a/2. Thus, for any choice of capacity K, the monopolist sells its

 unconstrained optimum output level a/2 over the range of a given by a E [0, 2K]. For
 a E [2K, a-], the monopolist simply sells its capacity at the market-clearing price

 P( a; K). Thus, expected monopoly profits are given by

 ra rK
 E-nrm(K)= fP(a; K) KdF(a) + P(a; a/2).(a/2)dF(a)-rK. (3)

 2K

 The first-order condition for (3) yields the monopoly capacity choice

 Km = E[a] -G(2Km) - r
 2[1 - F(2Km)] (

 with second-order conditions met globally. Using (2) and (4), it follows that K'" = 3K'/2.
 Thus, market capacity is smaller under the monopoly solution than in the static Nash

 equilibrium. Finally, monopoly pricing has

 {P(a; Km) for a E [2Km, a-]
 Pm(at) = (5 Pa/2 for a E [0, 2Km].

 Thus, for a E [0, 2Km], profit-maximizing pricing involves excess capacity. We define
 Er'" Exm(Km).

 3. The dynamic game

 * We are now ready to characterize the dynamic game. We explore an infinitely repeated
 version of the static game described above. The two firms achieve the most collusive (sym-
 metric) outcome sustainable by the credible (subgame perfect) threat to punish defectors.
 In our working paper (Staiger and Wolak, 1990) we considered two forms of punishment.
 The first is a threat to revert forever to the static Nash equilibrium characterized above in
 the event that either firm defects. Although reverting to noncooperative behavior has the
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 advantage of simplicity and intuitive appeal (as well as conformity with Rotemberg and

 Saloner ( 1986) and Green and Porter ( 1984), with which we compare our results), Abreu

 (1986, 1988) has shown that credible punishments are generally available that sustain a

 greater degree of collusion. Hence, in our working paper we also considered symmetric

 punishments that are optimal in the sense of Abreu ( 1986). But since our results are not

 affected by the form of punishment adopted, provided only that perfect collusion (the mo-

 nopoly outcome) is not sustainable in all states of demand under either punishment, here

 we present only our results under Nash reversion.

 In the collusive equilibrium, neither firm can have any incentive to defect unilaterally

 from the collusive agreement. Because both firms are completely symmetric, we characterize

 the "no defection" condition suppressing firm subscripts. A firm may defect from the collusive

 agreement either in its price choice or in its capacity choice. The latter defection cannot be

 conditioned on the state of demand (which is unknown at the time), while the former

 defection can be conditioned on the demand realization for the period. We consider each

 in turn.

 0 Collusive pricing behavior. We begin by fixing a (symmetric) collusive capacity level

 Kc for each firm, defining P ( a; KC) as the fully collusive price given Kc (as a function of
 a) and treating the present discounted value of maintaining the most-collusive arrangement,

 W, as a parameter. In analogy with (5),

 K P(a;KC) for a E [4Kc, a]
 P'n( a; J(C) = (6)

 L a/2 for a E [ O, 4Kc].

 The price war region. Now consider a defection from the collusive price P"( a; KC). For

 a E [4Kc, a-], both firms sell their entire capacity at the market-clearing (monopoly) price,

 so neither firm has any incentive to alter its price from PP7(a; KC). For a E [0, 4Kc),
 however, neither firm is selling its entire capacity at the collusive price P'n( a; KC) and

 thus either could generate a one-time profit gain by shaving its price below P't( a; KC) and
 selling min(KC, D(a; Pm(a; KC))). Finally, noting that D(a; P'"(a; KC)) = a/2 for

 a E [0, 4KC] allows the current payoff from defection, Fr'(a; KC), to be written as

 10 for a E [4Kc, -]

 rnF(a; KC) = Pm(a; KC) [KC - 1/2D(a; P`n(a; KC))] for a E [2Kc, 4KC] (7)

 P Pm(a; Kc). 1/2D(a; Pn7(a; KC)) for a E [0, 2Kc],
 which is continuous in a E [0, a-], increasing in a for a E [0, 2KC), and decreasing in a
 for a E (2Kc, a-]. Pm( a; KC) will be sustainable if and only if the incentive constraint is
 met:

 rFn (a; KC) ? w for a E [O, -]. (8)

 Figure 1 illustrates the range of a over which fully collusive prices are unsustain-

 able, for given Kc and w. As pictured, F (aa; KC) is a concave function of a over the
 range a E [0, 4KC], which is zero at a = 0 and for a > 4KC, and which reaches its
 maximum value of (KC)2/2 at a = 2Kc. For any w E [0, (KC)2/2), there exists an

 a(KC w) E [0, 2Kc) such that Fm(q; KC) = w and an a&(KC, w) E (2Kc, 4KC] such that
 rF'(a; KC) = w, with Fm(a; KC) > w in the range a E (q(KC, w), 'a(KC, co)).

 We denote as the "price war region" the range of demand states

 a E (q(KC, w), a(KC, c)),

 since the fully collusive price P"1( a; KC) is unsustainable if and only if the realization of a
 falls in this range. To see how capacity constraints affect the relationship between the state
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 FIGURE 1
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 of demand and the likelihood of price wars, consider first a E [0, 2KC]. Over this range of
 demand states, the perfectly collusive price is a /2, leading to market sales of a /2, which
 range from zero to Kc as a ranges from zero to 2Kc. For a E [0, 2KC], then, capacity

 constraints are nonbinding whether a firm colludes and sells a /4 or defects, captures the
 entire market, and sells a/2. Thus, as in Rotemberg and Saloner (1986), where capacity
 constraints are absent, the incentive to defect from the perfectly collusive price is rising in
 a for a E [0, 2KC], preserving the price-wars-during-booms relationship in this range.

 However, for a E [2KC, a-], capacity constraints play a role; when they do, there is an
 inverse relationship between the state of demand and the likelihood of price wars. Over this
 range, stronger demand leads monotonically to a weaker incentive to defect from the perfectly

 collusive price (see (7)), so it is in periods of relatively soft demand that price wars break

 out. The reason is that, starting from a = 2KC, a strengthening of demand conditions (a
 rising a) will, at a fixed price, leave defection profits unaltered (capacity constraints already

 bind under a defection) but increase collusive profits through a rise in collusive capacity
 utilization. Thus, at fixed prices the improvement in demand conditions directly reduces
 the incentive to defect through the accompanying improvement in collusive capacity uti-
 lization. The increase in the collusive price that accompanies the rise in a reduces this direct

 effect, but it is not sufficient to reverse it.9 Hence, for demand states characterized by
 a E [2KC, a-], capacity constraints are relevant, and the relationship between the state of
 demand and the likelihood of price wars corresponds to conventional wisdom; collusion
 becomes increasingly difficult as the state of demand worsens.

 The nature of price wars. While we have established that perfectly collusive prices are un-

 sustainable in the region a E (q(KC, c), a'(KC, w)), we have not yet characterized the
 nature of the price wars that occur within the region. We now show that firms may choose

 The linear demand setup we have adopted here leads to falling demand elasticities at a given price with
 each rise in a, which is why the perfectly collusive price is rising in a. However, the rate at which collusive prices
 increase with a is not sufficient to offset the direct impact of a rising a on collusive demand, so that collusive
 capacity utilization is monotonically increasing in a. More generally, provided that improvements in the state of
 demand are not associated with too rapid a fall in demand elasticities, the perfectly collusive quantity will still rise
 with improvements in the state of demand, eventually causing capacity constraints to bind and driving the incentive

 to defect from the collusive price to zero. Thus our basic finding that, past some level of demand, further improvements
 in the state of demand lead through increasing collusive capacity utilization to a fall in the incentive to defect from
 the collusive price, is much more general than the linear demand setup we have used to illustrate it.
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 to adopt pure-strategy pricing over some ranges of demand and mixed-strategy pricing over

 others, so that the price wars that occur within this region may involve a uniform reduction
 in price below the monopoly level, or they may lead one firm to undercut another and steal

 market share.

 For a in the price war region, sustainable price collusion requires that price be lowered

 below Pf( a; KC) in order to reduce the current incentive to defect from the collusive
 price. Once prices below the perfectly collusive price are being considered, however, a new

 form of defection arises. In addition to shaving price and stealing market share from its

 competitor, a firm might also consider defecting to a higher price, allowing its competitor

 to sell at capacity, and setting a monopoly price for the residual market demand. We focus,
 for the moment, on prices that keep the former incentive to defect in check: then we consider

 the implications of the latter defection incentive on the nature of collusive pricing behavior.
 It is readily shown that for prices below the perfectly collusive price, the incentive to

 shave price and steal market share is increasing in P. Thus, Pc( a; KC, W), the most collusive
 price that keeps in check the incentive to shave price, will have the relevant incentive

 constraint just bind for each a E (q(KC, w), a'(KC, w)). Defining a'(KC, c) as the value of
 a at which a single firm's collusive capacity is just sufficient to supply the entire market at

 the most collusive price, it follows that, for a > a&(KC, w), a firm that defects by shaving its
 price below the collusive price will be capacity constrained. With this we can now implicitly

 define Pc(a; Kc, w) by equating the one-time payoff from shaving price with the discounted

 value of maintaining collusion:

 PC(a; Kc, w). 112D (a; PC(a; Kc, w)) = w for a E (q(KC, w), &(KC, w)]
 PC(a; Kc, w) [KC - /2D (a; PC(a; Kc, w))) = w for a E [&a(KC, w), a&(KC, w)).

 Explicit calculation yields

 [a - Va2 - 8w]/2 for a E (q(KC, w), a&(KC, w)] PC(a; KC, w) =
 [(Ra-2Kc) + V(a - 2Kc)2 +8w]/2 for a& E [&a(KC, w), a&(KC, w)).

 However, we have not yet checked to see whether Pc(aa; Kc, w) keeps in

 check the incentive to defect to a high price for all a in this range. In fact, for

 a E (q(KC, w), a&(KC, w)), defecting to a high price would leave one's rival with sufficient
 capacity to capture the entire market at PC(a; Kc, w), and such defections would never be
 worthwhile. However, for a E (a&(KC, w), a&(KC, w)), the one-time gain to raising price,
 allowing one's competitor to sell at capacity, and setting a monopoly price for the resid-

 ual market demand is given by a(a; Kc, PC) =( 2K) - PCD(a; PC)/2, which is the

 firm's residual market monopoly revenues less its share of total revenues under the col-

 lusive price Pc. It is easily checked that 7y( a; Kc, Pc) is decreasing in pc. Thus, if
 7y(a; Kc, PC(a; Kc, w)) > w for any a E (a&(KC, w), a&(KC, w)), then Pc would have to be
 raised above PC(a; Kc, w) to keep firms from defecting to a higher price for such demand

 realizations. But PC(a; Kc, w) is already the highest price that keeps in check the incentive

 to shave price, so for such demand realizations, there is no pure-strategy collusive price that

 simultaneously keeps in check the incentives to shave price and to raise price. For such
 demand realizations, colluding firms must adopt mixed strategies.

 In fact, firms will choose mixed-strategy prices whenever -y( a; Kc, PC(a; Kc, w)) > 0,

 even if 7y(a; Kc, PC(a; Kc, w)) < w and pure-strategy prices can be supported. This is so
 because whenever 0 < y( a; Kc, PC(a; Kc, w)) < w, the incentive to defect to a higher price
 can be used to raise the expected price under mixing up above the sustainable pure-strat-
 egy price.

 We now characterize the range of demand realizations for a given W over which mixing
 is preferred under the assumption that only noncooperative mixed strategies are feasible,
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 and simply note that any ability to collude over mixed strategies will only widen
 this range.10

 Under the assumption that firms are unable to collude in mixed strategies, mixed-

 strategy pricing will be undertaken in the range a E (a (Kr, c), ' (KC, w)), with the critical
 a (Kr, w) and ' (KC, w) defined implicitly by two of the four solutions to

 l/2PC(a; Kc, w)- D(a; pC(a; Kc, w)) = Ai(a; KC, KC),

 where Ai(a; KC, KC), the expected firm profit under mixing, is defined in Appendix A and
 is equal to the Stackelberg follower profits in the symmetric capacity case. Explicit calculation
 yields

 [ 3 - 21i
 { 2Kc - V(Kc)2 -4(w + KCVw) for W E [O 4 (Kc)2

 cy(KC, a) = l3-21

 2K C ~~for W > (Kc) 2

 [ 3 -21/i
 { 2Kc + V(Kc) 2 -4(w,, + KcVe,,) for w E [ 4 (Kc 2

 Yx(KC, ) = 3-21/i

 2Kc ~~~for W ? V (Kc )2.

 Hence, for w below 3 - 2 r (Kc )2, the price war region can be decomposed into two

 qualitatively different regions. For a in a range that lies at either extreme of the price war

 region- a E (q(Kc, w), ay(KC, w)] U [ 'a(KC, w), '(KC, w)) -the nature of pricing behavior
 has firms choosing a common collusive price that lies below the joint monopoly price
 and earning profits that are less than the joint monopoly profit level as a result. Hence, as
 in Rotemberg and Saloner ( 1986 ), these price wars are in fact simply episodes of less effective
 collusion over a common price.

 However, for a in a range that lies symmetrically around a = 2Kc-
 a E (a (KC, w), ' (Kc, w)) -the pricing behavior is qualitatively quite different. Specifically,
 since firms pursue mixed strategies in this region, there will be undercutting in equilibrium,
 with market share temporarily expanding for the low-price firm and contracting for the
 high-price firm. As such, these price wars differ from those of Rotemberg and Saloner ( 1986)
 and Green and Porter ( 1984). Moreover, unless firms can collude in mixed strategies, these
 episodic price wars will represent temporary reversions to noncooperative behavior triggered
 not by imperfect observability, as in Green and Porter, but rather by emerging excess capacity,
 and they are resolved naturally by higher rates of capacity utilization that come with the
 recovery of demand, not simply by the passage of a prespecified length of time, as in Green
 and Porter.

 Finally, the nature of price wars that emerges from this analysis has a strong intuitive
 appeal. As long as demand is not too depressed (a E ['a(KC, w), a'(KC, w))), price wars
 take the relatively mild form of a uniform reduction in price below the joint monopoly
 level. But when demand conditions turn sufficiently sour (a E (a(Kc, w), 'a (KC, w))), the
 nature of price wars changes, with firms undercutting each other in equilibrium. Finally,
 for a virtual collapse of demand (a E [0, a (KC, w)]) that leaves either firm with sufficient

 '1 In general, collusion in mixed strategies is possible if the outcomes of firms' randomizing devices are jointly
 observable ex post. Collusion in mixed strategies is also possible when firms can only observe each others' past

 actions, provided that the collusive agreement concerns the support of the mixed strategies (see Fudenberg and

 Maskin, 1986).
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 capacity to supply the entire market, capacity constraints become completely irrelevant,

 and firms return to a uniform pricing policy.

 It should be noted that throughout we have considered how the sustainable price com-

 pares to the fully collusive price as demand conditions vary. As suggested by a referee, one

 can also examine how price compares to marginal cost as demand conditions vary. Marginal

 costs are undefined over a E [4KC, -a], because firms are capacity constrained over
 this range of demand. For a E [0, 4K'), however, marginal costs are well defined,

 and the behavior of the difference of price and marginal cost can be described. For

 a E [0, q(KC, w)), the incentive to defect is sufficiently weak, given the weak state of
 demand, that the monopoly price can be sustained, and the difference of price and
 marginal cost rises as demand conditions improve in this range. Over the range

 a E (a(KC, c), a&(KC, w)), however, the behavior of the price-marginal cost difference is

 consistent with the notion of price wars during booms, and it implies that the amount by
 which price exceeds marginal cost falls as demand conditions improve. Finally, over the

 rest of the range of demand conditions for which marginal cost is well defined, the price-

 marginal cost difference can once again be expected to rise as demand conditions improve. 1

 The relationship between price wars and the ability to collude. We now have defined five

 critical values for a as a function of Kc and w that define pricing regions in the collusive
 play. Using these results, Figures 2a through 2c depict the evolution of the various pricing

 regions as w is increased from zero. Figure 2a corresponds to the case where W = 0. As

 depicted, q(KC, 0) = 0; a&(KC, 0) = ca(KC, 0) = KC; a&(KC, 0) = 3Kc; and a&(KC, 0) = 4Kc.
 This corresponds to the static Nash equilibrium. Thus, firms price at cost for a E [0, KC],

 pursue mixed strategies for a E (KC, 3K'), and sell all capacity at market-clearing prices
 [ 3 - 2l2

 for a E [3Kc, a-]. For w &E[0 4 (K')2J we have

 0 < a(Kc, w) < a4(KC, w) < a (KC, w) < 2KC < 'E(Kc, w) < a'(KC, w) < 4Kc.

 Figure 2b depicts the pricing regions when w = 3 (Kc)2. Here,
 4

 ay(KC, w) = 2KC = 'a(KC, w),

 so that firms now choose to play pure-strategy prices over all a E [0, a-]. Thus, firms

 sustain monopoly pricing for a E [0, q(KC, w)], collude as best they can for
 a E (q(KC, w), a&(KC, w)), sustain monopoly pricing for a E [&a(KC, w), 4Kc], and set

 market-clearing prices for a E [4Kc, a-]. Finally, as X rises from 3 (Kc)2 to
 4

 (Kc)2/2, a'(KC, w) is falling continuously while a(KC, w) and a&(Kc, w) continue to rise.
 Figure 2c depicts the pricing regions when w = (KC)2/2. Here,

 q(KC, w ) = &(Kc, w) = 2Kc = a&(Kc, w)

 so that firms now sustain the monopoly-pricing outcome. Thus, monopoly prices are
 sustained over the range a E [0, 4KC], with market-clearing prices charged for
 a E [4Kc, a-].

 Observe that when collusion is completely ineffective (w = 0), price wars that lead to
 equilibrium undercutting and market-share volatility will occur over a broad range of demand
 states (a E (KC, 3KC)). In general, the more effectively firms are able to collude overall (the
 higher is w), the narrower will be the range of demand realizations giving rise to price wars

 of this nature; in particular, for w ? 2 (Kc)2, the occurrence of such price wars

 The relationship between price-marginal cost differences and demand conditions holds only in an expected
 sense over this range, due to the possibility of mixed-strategy pricing discussed above.
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 disappears. These results provide theoretical justification for the belief that frequent episodes
 of price cutting and market-share volatility are characteristic of an industry that is relatively
 ineffective in maintaining collusion.12

 While conforming to common sense, this result does not in fact emerge from other
 attempts to model price wars, where undercutting is never an equilibrium phenomenon. It
 arises in the present model only because changing demand conditions interact with capacity
 constraints in a way that can move collusive firms naturally into mixed-strategy regions,
 with undercutting and "business stealing" occurring in equilibrium as a result.

 We summarize the discussion thus far by defining the most-collusive revenue function
 as

 P(a; 2KC)KC for a& E [4KC, a-]

 '/2P"(a) - D(a; P`n(a)) for a E [oa(KC, w), 4KC]

 l/2Pc(a; Kc, w)- D(a; pc(a; KC, w)) for a E [&(Kc, w), a(KC, w)]

 RC(a; KC, w) = R(a; KC) for a E [ a(KC, w), Y&(KC, co)]

 l/2Pc(a; KC, w)- D(a; PC(a; KC, w)) for a E [ &(Kc, co), ae(KC, w)]

 l/2Pc(a; KC, w)- D(a; PC(a; KC, w)) for a E [ q(KC, a), &(KC, W)]

 '/2P"7(a)- D(a; P"7(a)) for a E [0, a(KC, o)],

 12 Note that we are not claiming that undercutting and market-share instability necessarily correspond to
 episodes of noncooperative behavior, but rather that the frequency of such episodes is directly related to the overall

 success with which firms collude (as measured by the magnitude of av).
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 and we note that RC( a; KC, w) is continuous in a, KC, and w. Most-collusive expected profits

 are then given by

 ErC(KC, w) = RC(a; Kc, w)dF(a) - rKc. (9)

 0 The collusive capacity choice. Having defined most-collusive profits for any Kc as a

 function of w in (9), we next describe the most-collusive capacity choice Kc as a function

 of W, which for now we still take as a parameter. (See Staiger and Wolak ( 1990) for a formal
 derivation of KC.) We first describe the optimal collusive capacity choice that maximizes
 Er C(KC, w), ignoring for the moment whether it can in fact be sustained. The first-order

 condition of (9) is

 C~~~~~~~
 ErC(KC w) = f RK(a;KC, w)dF(a) - r= 0. (10)

 Provided that capacity costs (r) are sufficiently high, second-order conditions will hold at

 KC(w), the solution to (10), for w E [0, oo ]. 13
 However, collusive capacity KC(w) will be sustainable if and only if Q(KC(W), W), the

 current incentive to defect from KC, satisfies

 Q(Kc(w), am)--E~rd (K d(Kc(()), KC(^)) - E~rc(KC(A), w) < ( 11
 where Kd(KC(w)) is the optimal defection capacity, Eird(Kd(KC(w)), KC(w)) is current

 defection profits of a defecting firm, and it is assumed that firms play noncooperative Nash
 prices immediately following a capacity defection. When ( 11) holds, the (sustainable) col-
 lusive capacity choice is defined implicitly by ( 10 ). When ( 11 ) is violated under the optimal

 choice, then capacity must be increased beyond the optimal capacity choice. The most-
 collusive choice KC(w) will then have ( 11) bind, and it is defined implicitly by

 Q(KC 5W) E1d(Kd(KC), KC) - ErC(KC, w) = w. (12)

 It can be shown that there exists a unique X E (0, (K' )2/ 8) such that the optimal capacity

 KC ( w) is sustainable for w E [, oo ] and unsustainable for w E [0, Xa ). We can now write
 the most-collusive capacity choice as a function of w as

 A KC(@) for W E [0, W)
 Kc(w) = ' (13)

 K a for X E[@,oXo].

 By substituting ( 13) into (9), we now have most-collusive expected profits as a function of

 Erc(Kc(w), w) = RC(a; KC(w), w)dF(a) - rKC(w). (14)

 0 Completing the characterization of equilibrium. While ( 14) gives most-collusive profits
 as a function of w, the present discounted gain from maintaining the collusive arrangement
 into the infinite future, w is in fact itself a function of the most-collusive profits, and it is
 defined in the case of infinite Nash reversion by

 W(W) = [Eirc(Kc(w), w) - Er-'], (15)

 where 5 E (0, 1 ) is the discount factor. Thus, the last step is to solve for a fixed point W to
 (1 5) such that w( X ) = a^. This is contained in Appendix B. Since our primary focus is on

 13 Intuitively, this restriction ensures that the optimum capacity choice will bind with sufficient frequency to
 make Elrc(Kc, r ) concave in KC.
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 characterizing the behavior of imperfectly colluding firms, we simply establish in Appendix

 B that for 5 sufficiently small, a unique positive fixed point X2 exists with X2 E (0, Wa). For
 X in this range, firms imperfectly collude in both capacity and price.

 Figure 3 illustrates the determination of X E (0, X ). For w E [0, a], Appendix B
 establishes that w(w) rises with infinite slope out of the origin and is strictly concave. The

 value of w(w) is highest at (K'")2/8, where perfectly collusive price and capacity choices
 are supported; provided 5 is sufficiently small, w((K')2/8) < W-. As depicted, the unique

 positive fixed point under Nash reversion is X E (0, W-), with the relationship between
 demand conditions (a) and collusive pricing as described above.14

 4. Adding to capacity

 * Thus far we have ruled out the possibility of adding to capacity once the state of demand
 for the period has been observed. While modelling capacity constraints as an absolute has
 served as a useful benchmark, few industries are likely to face such inflexible constraints.15
 Rather, a more plausible scenario would allow firms to make additions to capacity after

 observing demand, but at a higher per-unit cost than capacity that is installed well in advance

 of sales."6 In this section, we extend the model to capture this scenario and show that the

 14 Additional conditions must be imposed to ensure the concavity of v(v) over the range w E (a, (Km)218 ],
 since over this range capacity is being chosen optimally without a binding incentive constraint. For our focus,
 however, concavity of c(w) over this range is not required.

 15However, as discussed in footnote 1, Suslow (1986) and Bresnahan and Suslow (1989, 1990) provide
 evidence that the primary aluminum and ammonia fertilizer industries might face such capacity constraints. In
 addition, there are instances in which firms have sold out of a product line for an entire model year; e.g., the RISC
 System/6000, IBM's initial entry into the workstation market, sold out during its first year of production.

 16 Rotemberg and Saloner ( 1989b) allow costly additions to capacity after demand is revealed in a model of
 strategic inventories, and they note that this additional freedom makes collusion more difficult to sustain in periods
 of strong demand.
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 character of collusive pricing behavior approaches that depicted by Rotemberg and Saloner
 (1986) as the importance of capacity constraints declines.

 To this end, we suppose that capacity can be added after observing the state of demand
 a (but before setting price) at a per-unit cost of R 2 r. Note that prior commitments to
 capacity made in advance of the observation of demand cannot be undone once the state
 of demand is observed. Thus, it is only the expansion of capacity that is feasible (at a per-

 unit cost R) at this later stage, not a capacity-cost-saving reduction.
 Consider first the monopolist's behavior given this additional flexibility. Calculations

 similar to those above establish that the initial monopoly capacity choice Km(R) is given
 by the maximum of zero and the solution to

 p2K+R

 adF(a) - [r - [1 - F(2KIn + R)]R]
 2Km

 Kn? = 2[F(2K2 + R)-F(2Kn,)] , (16)

 while additions to monopoly capacity are given by

 Q' (a; R) = 2 - K'n. (17)

 In the collusive ideal, waiting to build capacity until demand is revealed in an effort to avoid

 excessive capacity installation carries with it the risk of eventually having to add capacity
 when the costs of doing so are higher. Clearly, for R above a critical level R, the ability to
 add capacity after observing demand will not be exercised even for the strongest of demand
 realizations a , and Km'(R) in ( 16) will coincide with Km' defined by (4). Calculations yield

 R = a- 2K"'(R). On the other hand, for R below a critical level R, all capacity will be
 built after observing demand. Calculations yield

 R = [r-f adF(a)] [I -F(R)],

 with R> r. Finally, we define A R - r, A R-= R and A R- r. The parameter A
 can be used to capture the importance of capacity constraints, with higher A corresponding
 to the increased importance of capacity constraints. That is, a "flexible" supply response to

 changing demand conditions becomes increasingly costly as A rises.
 It is now straightforward to establish that with capacity constraints sufficiently unim-

 portant-for A < A-all capacity in the most-collusive equilibrium is installed after observing
 demand. In this case, the repeated capacity-constrained price game collapses to a repeated
 Cournot game, and the results of Rotemberg and Saloner ( 1986) apply directly; with linear
 demand and constant marginal costs, firms engage in price wars during booms, a charac-
 terization that applies over all a. Alternatively, when capacity constraints are sufficiently
 important-for A ? A-all capacity in the most-collusive equilibrium is installed prior to
 the realization of demand. In this case, the repeated capacity-constrained price game is
 exactly as modelled in the previous sections. Finally, for A < A < A, it can be shown that
 the pricing behavior described in the previous sections is preserved over the range

 a E [0, 3KC + R ], while pricing for a E [ 3KC + R, -a ] corresponds to the repeated Cournot
 game studied by Rotemberg and Saloner and thus exhibits price wars during booms over
 this range.

 So as A increases from A, firms become increasingly constrained by their initial capacity
 decisions, and most-collusive pricing behavior looks increasingly like that characterized in
 the previous sections. In this sense, we have now established that the conventional view-
 that periods of low demand lead to the breakdown of collusive pricing-applies best in
 precisely those industries where incremental additions to capacity are most costly and capacity
 constraints are most important.
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 5. Conclusion

 * We have presented a model that attempts to capture the role of capacity constraints in

 determining the relationship between demand conditions and the ability of firms to maintain

 tacit collusion. Our findings lend support to the conventional view of the relationship between

 the ability to maintain collusion and demand conditions. In particular, the presence of
 capacity constraints sets up a range of demand conditions over which the ability to maintain
 collusive prices weakens as business conditions turn sour. We have shown that the conven-

 tional wisdom is most relevant in precisely those industries where capacity costs are high
 and capacity constraints most important. Thus, the importance of capacity constraints is a

 crucial determinant of the relationship between collusive prices and business conditions
 across industries.

 Moreover, we find that when capacity constraints are present, the nature of equilibrium

 price wars can be affected in interesting ways. Specifically, emerging excess capacity associated

 with unexpectedly low demand can turn mild price wars, consisting of a uniform reduction

 in price below the joint monopoly level and the maintenance of stable market shares, into

 episodes of price undercutting and market-share instability.
 Finally, we find that this latter form of pricing behavior arises only if firms are relatively

 ineffective in their attempts to collude; that is, if in equilibrium the discounted gains from

 maintaining collusion are low. Hence, in this sense, our results suggest that intertemporal
 instability in market shares is a signal of relatively unsuccessful collusion.

 Appendix A

 * In this appendix, we characterize the unique symmetric Nash equilibrium to the static game of Section 2.

 Following Kreps and Scheinkman (1983), we begin by defining q1 (a; q2) and q2(a; qI) as the Cournot duopoly
 best (output) response functions for firms 1 and 2, respectively, facing the linear demand function given
 in ( 1 ) and zero marginal costs. It is straightforward to show that these best response functions are given by

 q, (a; q2) = (a - q2)/2 and q2(a; qI) = (a - ql)/2. For any ql and q2, we next define a, and a2 implicitly by
 q, = qI(qI; q2) and q2 = q2(q2; q, ), which yield explicit expressions for a1(ql, q2) and a2(ql, q2) of
 ql(ql, q2) = 2q, + q2 and a2(ql, q2) = 2q2 + qI. For any q, and q2, a1(.) gives the value of a above which
 q, < q, (a; q2) and below which q, > ql (a; q2), and similarly for a2(*). With this, we now define
 &(ql, q2) by &(ql, q2) =max (ql(ql, q2), q2(ql, q2)), or

 2q, + q2 if ql 1 q2
 &(ql, q2) = (Al)

 12q2 + q, if q, < q2

 Finally, we define

 a(ql, q2) min (qI, q2). (A2)

 The critical values of a(ql, q2) defined in (A l ) and (A2) allow us to employ the results of Kreps and Scheinkman
 (1983) and characterize Nash equilibrium profits for each firm in the final (price-setting) stage of the game for

 given capacity choices. In particular, fix KI and K2 at any value such that

 o&(KI, K2) E (?, a-), (A3)

 and consider the price-setting subgame that ensues. If the realization of a falls in the range a E [ &(KI, K2), a-],
 then we have KI < qI (a; K2) and K2 < q2(a; K1). Appealing to Proposition I(a) of Kreps and Scheinkman
 (1983), we then have that realizations of a E [&(KI, K2), a-] result in revenues for the two firms of
 RI (a; K1, K2) = KI -P(a; K1 + K2) and R2 (a; K1, K2) = K2 P(a; K1 + K2). That is, each firm sells
 its entire capacity at the market-clearing price. Alternatively, if the realization of a falls in the range
 a E (& (KI, K2), & (K1, K2)], then we have K1 > ql (a; K2) and/or K2 > q2 (a; K1 ). Appealing to Proposition I(b)
 and I(c) of Kreps and Scheinkman (1983), we then have that firms play mixed strategies in the final

 (price-setting) stage of the game, but that revenues for each firm are given by the functions Rl(a; K1, K2) and
 R2(a; K1, K2), where these functions are continuous in K1 and K2 and satisfy

 Rl(&(K1, K2); K1, K2) = RI1(&(K1, K2); K1, K2)

 R2(o&(K1, K2); K1, K2) = R2(o&(K1, K2); K1, K2) (A4)

This content downloaded from 171.64.240.93 on Mon, 27 Nov 2017 16:55:14 UTC
All use subject to http://about.jstor.org/terms



 218 / THE RAND JOURNAL OF ECONOMICS

 RA(a(K1, K2); K1, K2) = O; R2(a(KI, K2); Kj, K2) = O (A5)

 R1(a; K1 > K2, K2) = RX (a; K1 = K2, K2) = P(a; q1(a; K2), K2)- q1(a; K2)

 R2(a; K1, K2> K1) = A2 (a; K, K2= K) = P(a; K, q2(a;K))q2(a; K'). (A6)

 Finally, for realizations of a in the range a E [0, a(KI, K2)], we have that K, 2 D(a; P 2 0) and
 K2 > D (a; P 2 0). Thus, either firm can satisfy the entire market for any nonnegative price. In this range, capacity

 constraints do not upset the standard Bertrand equilibrium in which price equals marginal cost (which is zero), so

 that revenues for each firm will be zero.

 We are now in a position to write down expected profits for each firm as a function of K1 and K2 in the range

 of K1 and K2 satisfying (A3):

 Ew1(K1,K2) =( R1(a;K1,K2)dF~a (A7)KIK2)
 EwrI(KI, K2) = RI(a; K1, K2)dF(a) + IR(a; K1, K2)dF(a) - rKI (A7)

 ( KI . K2) ( KI . K2)

 Ce a~~~~~~~~(KI .K2)

 E7r2(KI, K2) = , R2(ae; KI, K2) dF(ae) + J R2(ae; KI, K2)dF(e) - rK2. (A8)
 (K,,K2) (KI ,K2)

 Assuming for the moment that all relevant capacity choices satisfy (A3), and using (A4) and (A5), the first- and

 second-order conditions of (A7) and (A8) are

 re ra(Kl , K2)

 EwIKI(KI, K2) = J RIKI(a; Kl, K2)dF(a) + J RIKI(a; Kl, K2)dF(a)- r = 0 (A9)
 (K,,K2) (KIK2)

 re &(KiK2)
 ETIKIKI(KI, K2) = J RIKIKI(a; Kl, K2)dF(a) + J RIKIKI(a; Kl, K2)dF(a) < 0

 J(K, ,K2) (K, ,K2)

 re r&(KI,K2)
 Ew2K2(KI, K2) = I R2K2(a; KI, K2)dF(a) + I R2K2(a; KI, K2)dF(a) - r = 0 (A10)

 J(K,,K2) J(KI,K2)

 '&(KhK2)

 Ew2K2K2(KI, K2) = R2K2K2(a; K1, K2)dF(a) +J R2K2K2(a; K1, K2)dF(a) < 0,
 (KIK2) (KI,K2)

 where subscripts denote partial derivatives.

 Provided that second-order conditions hold at the optimum, expressions (A9) and (Al 0) implicitly define

 the best capacity response functions K1 (K2) and K2(KI ). The symmetric static Nash equilibrium capacity choice
 K' will satisfy K1(K') = Kn = K2(K'). However, from (A6), RIKI(a; K1, K2) = RIKIKI(a; K1, K2) = 0 for any
 K1 = K2. With this, and using (A9) and (Al0), we have

 Kn= E[a] -G(3K)n r (Al-l)
 3[I -F(3K n)](Al

 where E[a] is the expected value of a and G(a) ftc' sdF(s). Note also that second-order conditions are met:

 EWIKIKI (K1 = K , K2 = Kn) = E7r2K2K2 (K1 = Kn, K2 = Kn) = -2[I - F(3K)] < 0.
 Finally, recall that to derive (A 11 ) we have restricted the set of capacity choices to those satisfying (A3). We

 must now establish conditions under which this restricted set of capacity choices is indeed the relevant set from

 which firms will make their Nash equilibrium choices. It is straightforward to establish by contradiction that com-

 binations of K1 and K2 that lead to &(KI, K2) = -a imply that at least one firm must be off its best capacity response

 function, and can thus be ruled out. For example, suppose that &(Kl, K2) = -a for some K1 and K2. Then we must
 have K1 > q(a; K2) Va E [0, a-] and/or K2 > q2(a; Kj) Va E [0, a], which violates optimality provided that
 r > 0. To rule out &(KI, K2) = 0, we simply note that this would imply K1 = K2 = 0. However, under these capacity
 choices, both firms must be off their best capacity response functions provided only that

 E[a] - r> 0. (A12)

 The left-hand side of condition (A12) is expected market demand at a price (r) that reflects long-run production

 costs. Thus, according to (A12), combinations of K1 and K2 that imply &(KI, K2) = 0, i.e., K1 = K2 = 0, can be
 ruled out provided that expected market demand is strictly positive at a price reflecting long-run costs. We assume
 that (A 12) is met. Using (A7), (A8), and (Al 1), we define Ewr E7r(K , Ku).

 Appendix B

 * In this appendix, we solve for a fixed point w to ( 15) such that w(co) = &. We note first that w((O) = 0, so that
 one fixed point involves continual play of the static Nash capacity and prices. This can be verified by noting that
 for w E [0, WI ), ( 12) must hold, so substitution into ( 15 ) and simplifying yields

 wo(w) = 3[Ewrd(Kd(KC(cw)), KC(w>)) -Ewrn] for wo & [0, o). (B1)
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 But at co = 0, collusive pricing is identical to noncooperative pricing for a given capacity choice, so that ( 12) implies
 Kc (w = 0) = Kn. With this, (Bi ) implies w (w = 0) = 0.

 We turn next to the existence of a positive fixed point co > 0. Since our primary focus is on characterizing

 the behavior of imperfectly colluding firms, we simply establish that for 6 sufficiently small, a unique positive fixed

 point co exists with co E (0, Wc), that is, with firms imperfectly colluding in capacity and price.
 To establish the existence of a collusive fixed point co E (0, O. ), we note, using (B I ) and the envelope theorem,

 that

 cw@(Co) = 6Ewr (KdKc(w))dKc/dw for W [O,(). (B2)

 It can be shown that Ewr d(. ) < 0. Moreover, totally differentiating ( 12), using the envelope theorem, and solving
 for dKC/dco yields

 dKC/dw = 1I + Ewr'(kc, co)
 [Erd,(Kd, KC) - EK(Kc, w)] (B3)

 It can be verified that the denominator of (B3) is negative for w E (0, co) and zero at w = 0, while the numerator
 is strictly positive for w E [0, co ). Thus, dKC/dw = -oo at w = 0, implying through (B2) that Wco (w = 0) = on.
 Finally, differentiating (1B2) with respect to w establishes that o,( c) < 0 for w E [0, Oc) provided that, as noted in
 Section 3, capacity costs are sufficiently high.

 Note that w(w) reaches its maximum value when evaluated at (Km)2/8, the value of w that supports full

 collusion in price and capacity. Since w = (Km)2/8 supports the joint monopoly outcome, this maximum value is

 co((Km)2/8) = [Em/2 - Ewr]. (B4)

 The properties of w(w) for w E [0, co] established above assure that a unique positive fixed point co exists, with
 co E (0, Wo), provided that w((Km)2/8) < Wo. Using (B4), this condition reduces to

 l < /[Ewr"/2 - Ewr]. (B5)

 Since the right-hand side of (1B5) is independent of 6, (1B5) amounts to a condition that 6 is sufficiently small.
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