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High Frequency Evidence on the Demand for Gasoline†

By Laurence Levin, Matthew S. Lewis, and Frank A. Wolak*

Daily city-level expenditures and prices are used to estimate the price 
responsiveness of gasoline demand in the United States. Using a fre-
quency of purchase model that explicitly acknowledges the distinc-
tion between gasoline demand and gasoline expenditures, the price 
elasticity of demand is consistently found to be an order of magni-
tude larger than estimates from recent studies using more aggregated 
data. Estimating demand using higher levels of spatial and temporal 
aggregation is shown to produce increasingly inelastic estimates. 
A decomposition is then developed and implemented to understand 
the relative importance of several different factors in explaining this 
result. (JEL C51, L71, Q35)

The price elasticity of demand for gasoline has been extensively studied over the 
last 40 years, and for good reason. Understanding gasoline demand responsive-

ness is critical in determining gasoline tax rates and evaluating alternative policies 
that target the negative externalities associated with automobile use (pollution, road 
congestion, etc.). In the United States, continuing pressure to address climate change 
has prompted a variety of policy proposals at the national level as well as legisla-
tive action at the state level. Starting in 2015, California extended its cap-and-trade 
program for greenhouse gas emissions to cover transportation fuels, and a number 
of other states have significantly increased their gasoline tax rates. Gasoline prices 
have also become increasingly volatile as a result of periodic shortages in available 
refining capacity and increased uncertainty in world oil markets. Understanding 
consumers’ ability to respond to such price fluctuations is crucial for predicting the 
potential macroeconomic impacts of future petroleum supply disruptions and for 
evaluating the benefits of policy measures intended to mitigate these effects, such as 
the maintenance and use of the US Strategic Petroleum Reserve or the use of tem-
porary gasoline tax suspensions.

While empirical studies of gasoline demand have adopted a variety of different 
estimation strategies, nearly all of them face the challenge of having to work with 
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imperfect and often highly aggregated data.1 Many utilize monthly, quarterly, or 
even annual aggregate proxies of gasoline usage and average prices, often from 
a single national time series.2 Others rely on cross-sectional data in an attempt to 
identify demand elasticities based on price variation across regions or countries. In 
reality, individuals make gasoline consumption decisions on a daily basis, respond-
ing directly to the gasoline prices observed in their local area on that day. Empirical 
models relating monthly or annual gasoline volumes to average prices across broad 
geographic areas necessarily aggregate these different consumption decisions and 
are likely to mask a significant share of the response by consumers to a local price 
change. Moreover, the use of highly aggregated data generally requires strong 
assumptions that restrict the demand relationship from varying across locations 
or over time. As a result, unobserved heterogeneity in underlying demand has the 
potential to bias elasticity estimates. Perhaps not surprisingly given such challenges, 
these aggregate studies have produced a wide range of different estimates of demand 
elasticity. Academic and government studies evaluating potential policy interven-
tions in gasoline markets frequently rely on estimates from this literature or adopt 
the same problematic methods to obtain estimates despite the fact that the elasticity 
values can often substantially impact predicted policy outcomes.

Our study uses daily gasoline prices and citywide gasoline expenditures for 
243 US cities from 2006 through 2009 to analyze the impact of daily prices on daily 
gasoline demand. These high-frequency panel data have several important advan-
tages. First, the expenditure information comes from credit card transactions at the 
point of sale and, therefore, offers a much more direct measure of consumer pur-
chases. Second, observing sales and prices daily at the city-level allows us to model 
demand at the level that purchase decisions actually occur, rather than by relating 
average consumption across cities over some time period to a corresponding average 
price. Finally, our panel data can be exploited by including extensive fixed effects 
to better control for persistent differences in gasoline demand over time and across 
locations.

Our approach yields robust estimates of the own-price elasticity of demand for 
gasoline by utilizing a more accurate point-of-sale measure of consumption and 
adopting an empirical strategy that leverages the higher frequency and greater geo-
graphic detail of our consumption and price data to avoid the biases potentially 
impacting the estimates and policy conclusions of previous studies employing 
aggregate data. Second, we derive a decomposition identifying the different sources 
of bias that arise in more aggregate models and then examine the relative magni-
tudes of these different biases by estimating demand models at varying levels of 
data aggregation. The results of the decomposition help to clarify why the different 
empirical approaches utilized in the literature tend to generate such different esti-
mates of the demand elasticity.

1 There are a number of survey articles and meta-analyses available (including Dahl and Sterner 1991, Goodwin 
1992, Espey 1998, Basso and Oum 2007, and Brons et al. 2008) that summarize and analyze the literature on gas-
oline demand estimation. 

2 The most commonly used proxy for gasoline consumption from the US Energy Information Administration 
measures the volume of gasoline disappearing from refineries or pipelines minus the estimated volume of gasoline 
exported. 
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Unlike the existing literature our analysis also directly addresses the fundamen-
tal difference between gasoline demand (or usage) and gasoline expenditures—a 
difference that becomes even more pronounced when using daily data. The price of 
gasoline on a particular day can influence both how much gasoline a consumer uses 
in that day as well as whether they decide to make a gasoline purchase. Our approach 
more accurately models the demand for gasoline in a manner that recognizes the dis-
tinction between expenditure and consumption. We specify a two-equation model of 
the consumer’s probability of gasoline purchase and daily gasoline demand that sep-
arates the demand decision from the purchase decision in the most flexible manner 
possible given our city-level expenditure data. Because we observe both the number 
of gasoline transactions and the total expenditures on gasoline, we are able to sepa-
rately identify changes in consumers’ probability of purchase from changes in con-
sumers’ underlying demand for gasoline. Aggregating our  two-equation model of 
individual gasoline purchase and demand over all individuals in a metropolitan area 
yields a model of daily aggregate gasoline expenditures that we can use to recover a 
price elasticity of demand for the metropolitan area.

Using this model, we obtain estimates of gasoline demand elasticity ranging from 
−0.27 to −0.35. These responses are nearly an order of magnitude more elastic than 
some recent (and commonly cited) estimates from comparable studies (Hughes, 
Knittel, and Sperling 2008; Small and Van Dender 2007; Park and Zhao 2010), 
implying that changes in gasoline prices or taxes may have a much larger impact 
on gasoline usage or greenhouse gas emissions than one might otherwise predict. 
Recent events seem to reflect this substantial responsiveness in gasoline demand. 
Declining gas prices during 2015 and 2016 have reportedly resulted in dramatic 
reductions in public transit ridership, increases in vehicle miles traveled, and surge 
in sales of vehicles with lower fuel economy (Morath 2016; Sommer 2015). While 
studies using aggregate data from the 1970s and 1980s commonly reported gasoline 
demand elasticity estimates around −0.25 to −0.30,3 our aggregation results sug-
gest that many of these estimates were also likely to have been biased and that actual 
demand response in earlier decades may have been substantially more elastic than 
previously thought.

Like other studies using similar static models of gasoline demand, our estimates 
should be interpreted to reflect the short-run demand response that occurs over a 
period of months rather than the long-run demand responses that occur over many 
years (potentially capturing expansions in public transit or the development of more 
efficient cars).4 However, our daily data also allow us to investigate whether demand 
or consumer purchase decisions respond differently in the very short run. We con-
sider a dynamic two-equation frequency of purchase model that incorporates lagged 
prices, allowing the immediate response of demand to a price change to differ from 
the overall short-run demand response. We find evidence that gasoline expendi-
tures respond even more strongly in the days immediately following a price change 

3 Surveys of these earlier results include Dahl and Sterner (1991), Goodwin (1992), Espey (1998), and Basso 
and Oum (2007). 

4 See Section IA for a more complete discussion of the relevant response time horizons captured by different 
demand specifications. 
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(mainly due to a response in the probability of purchase), but this temporary addi-
tional response largely dissipates after four to five days. The response that remains 
is nearly identical to the overall short-run elasticity estimate obtained in our main 
(static) analysis. This further supports the argument that the estimates from our 
baseline static model accurately reflect the same short-run response that previous 
studies attempt to estimate using monthly or annual data, rather than the very-short 
run response that occurs in the days immediately following the shock.

In the second part of our analysis, we investigate the consequences of estimating 
demand using more highly aggregated data, as is common in previous studies. As 
a first step, we use our data to estimate a standard demand model aggregated over 
time and across cities to varying degrees. The resulting estimates become increas-
ingly less elastic as the level of data aggregation increases. Estimating the model 
using our data aggregated to a national time series of monthly total expenditures and 
average prices results in elasticities that are indistinguishable from zero, suggest-
ing that studies using aggregated data may substantially underestimate consumers’ 
price responsiveness.

Next, to better understand the impacts of data aggregation, we derive a decom-
position identifying three distinct components of bias that arise in more aggregate 
demand models. First, demand models that assume a common price coefficient are 
often estimated even though the underlying coefficients have the potential to differ 
across cities. While the coefficient obtained from this restricted model does estimate 
a weighted average of these coefficients, the weighting applied to each individual 
coefficient will generally change when the model is estimated at a more spatially 
and temporally aggregated level. A second possible source of bias arises from cor-
relation between the aggregated prices and the aggregated day-of-sample and city 
fixed effects that appear in the disaggregated model. While this bias will not occur 
in panel data models that retain a complete set of two-way fixed effects, many of 
the studies in the existing literature estimating time-series or cross-sectional models 
or panel models with incomplete fixed effects may be subject to this form of bias. 
The final source of potential bias arises when correlation between the average prices 
and error term is created as a result of aggregation. The typical OLS identification 
assumptions for a disaggregate demand model would require the price in a given 
city on a given day to be uncorrelated with the unobserved demand shock in that city 
on that day. However, correlation between prices and demand shocks on other days 
or in other cities can cause the prices and errors in the aggregated panel data to be 
correlated, resulting in biased estimates.

Comparing our daily city-level estimates with those obtained using aggregated 
data, we are able to estimate the magnitude of the bias resulting from each of these 
three components. The results reveal how the primary source of bias differs depend-
ing on the dimension and degree of aggregation. Observed biases are largest in time 
series models where time-period fixed effects can no longer be used to control for 
demand differences over time.

The sources of bias identified in our decomposition and the magnitudes suggested 
in our aggregated regressions help to provide a more systematic explanation of why 
studies using different methodologies have obtained different elasticity estimates. 
Consistent with our findings, recent time-series studies including Hughes, Knittel, 
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and Sperling (2008) and Park and Zhao (2010) tend to produce very inelastic esti-
mates, potentially caused by significant positive bias. Studies estimating panel 
regressions (though at a more aggregated level than ours) including Davis and Kilian 
(2011) and Li, Linn, and Muehlegger (2014) are not subject to the most significant 
source of bias and report more elastic estimates. However, these panel estimates are 
still lower than those obtained in our daily city-level regressions. Our decomposition 
provides guidance to researchers in evaluating whether particular market environ-
ments or data sources may be more susceptible to the forms of correlation that are 
likely to result in bias when estimating demand models using aggregate data and is 
sufficiently general that it can be used to evaluate almost any form of aggregation.

Accurate estimates of gasoline demand elasticity are crucial to making effective 
public policy decisions. As we discuss in Section VI, the stronger demand response 
revealed in our analysis suggests, for example, that supply restrictions, such as a 
refinery or pipeline outages, are likely to have a significantly smaller impact on 
gasoline prices than might otherwise be concluded based on estimates from earlier 
studies. Consequently, one might conclude that policies used to reduce fuel price 
volatility, such as the management of the US Strategic Petroleum Reserve, may be 
both less necessary and less effective than previously thought.

Like other recent studies of gasoline demand, our empirical approach obtains 
estimates of the short-run elasticity of gasoline demand and is not ideally suited 
for evaluating the long-run response to sustained changes in gasoline prices or tax 
levels. However, the channels through which gasoline usage responds to prices in 
the short run (reduced miles driven, increased public transit usage, heavier usage 
of more fuel-efficient vehicles in multi-vehicle households, etc.) remain important 
components of demand response in the longer run. Moreover, because robust esti-
mates of long-run gasoline demand elasticity are difficult to identify empirically, 
many of these policy analyses still rely partially or entirely on short-run elasticity 
estimates. The long-run estimates that do exist may also be subject to many of the 
same sources of potential aggregation bias we demonstrate here. As a result, we 
believe that the more responsive gasoline demand revealed in our analysis also has 
important implications regarding the effectiveness of long-term policies such as car-
bon taxes and fuel taxes or cap-and-trade programs aimed at reducing greenhouse 
gas emissions.

I. Approaches to Estimating Gasoline Demand

A. model Specification

There are a number of survey articles available (including Dahl and Sterner 1991, 
Goodwin 1992, Espey 1998, and Basso and Oum 2007) that summarize and analyze 
the literature on gasoline demand estimation. Nevertheless, it is helpful to provide 
a brief overview of some of the benefits and limitations of a number of commonly 
used empirical approaches in order to motivate our analysis and highlight the con-
tribution of our study.

Most studies of aggregate gasoline demand estimate a simple log-linear model 
of quantity as a function of the gasoline price and other variables, such as average 
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income to control for shifts in demand. This specification is chosen mostly for con-
venience, so that the coefficient on price represents an estimate of demand elasticity. 
A number of studies have investigated alternative functional forms, and some find 
alternative forms to have a better fit (e.g., Hsing 1990), but generally the resulting 
elasticity estimates are not substantially impacted by specification (see Sterner and 
Dahl 1992, and Espey 1998).

Such “static” demand models can be appropriate as long as the researcher 
believes that the price and quantity data in the sample represent observations from 
a stable relationship. In situations where it is thought that gasoline demand may 
take multiple periods to adjust to price changes, researchers often adopt a more 
“dynamic” approach by including a lagged dependent variable (the parsimonious 
partial adjustment model approach) or specifying a distributed lag model (the more 
flexible approach) in which lagged values of prices and other control variables are 
also included in the demand equation. Coefficients on lagged prices capture how 
demand temporarily deviates from the longer run equilibrium relationship as adjust-
ment occurs, allowing the sum of the coefficients on current and lagged prices to 
more accurately capture the overall elasticity of demand in the longer run.

When estimated using more aggregate (e.g., quarterly or annual) data, these 
dynamic models are typically used to separately identify the short-run demand 
response and long-run demand response (which would include adjustments made 
to where people live and work or what cars are purchased). In Section IVB, we also 
adopt a dynamic distributed lag model in order to estimate response over different 
time horizons. However, given our daily data, the lagged prices serve to separate 
the response in the days immediately following the price change from the more 
persistent response that remains weeks or months after the price change. In static 
models (like our baseline specification), the single price coefficient captures an 
average demand response over the entire duration of the price change. Estimating 
the dynamic model allows us to both examine immediate demand responses that 
are not identified in more highly-aggregated studies and confirm that the elasticity 
estimates obtained in our static model accurately reflect the same more persistent 
short-run demand responses that previous studies have attempted to investigate.

B. identification

Regardless of functional form, demand specifications are most typically esti-
mated using OLS. As a result, if sufficient controls cannot be included in the 
demand equation, endogeneity of the price variable can arise as a result of supply 
side responses to unobserved demand shifts. The instrumental variables approaches 
often adopted in other contexts are rarely used in studies of gasoline demand due to 
a lack of credible instruments. Time-series studies and even some panel-data studies 
rely almost exclusively on macroeconomic control variables, like average income 
and seasonal dummy variables (when relevant), which are certainly jointly deter-
mined with aggregate gasoline demand but do not perfectly predict fluctuations in 
gasoline usage. In this case, it is reasonable to expect this endogeneity bias to make 
price elasticity estimates more inelastic than they should be. Higher levels of data 
aggregation tend to exacerbate this problem, making it difficult to include sufficient 
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control variables and still have enough variation left in the data to identify demand. 
Our identification strategy leverages the availability of high-frequency panel data to 
include extensive sets of time and cross-sectional fixed effects in order to eliminate 
potential sources of endogeneity.

Two main factors determine the severity of bias that will result from price endog-
eneity in OLS estimates of demand: the prevalence and magnitude of unobserved 
demand shocks relative to unobserved supply shocks and the elasticity of the supply 
curve. If demand shifts are relatively small or the relevant supply curve is fairly flat, 
then observed variation in price will mainly be the result of upward and downward 
shifts in the supply curve. Correspondingly, our empirical specifications attempt to 
include fixed effects that will remove most of the unobserved variation in demand 
while leaving a sufficient level of supply variation to accurately identify the demand 
elasticity. Moreover, given the nature of the gasoline storage and distribution infra-
structure, the daily supply of gasoline is likely to respond very elastically to any 
remaining daily demand shocks that are not absorbed by the included fixed effects.5

Most of the variation in daily city-level gasoline demand is likely to come from 
persistent differences across cities in per capita gasoline consumption and from eco-
nomic changes that influence gasoline demand over time nationwide. These demand 
shifts represent the primary sources of potential endogeneity, and so our baseline 
demand specification controls for these by including both city and day-of-sample 
fixed effects. The fixed effects also remove a significant amount of supply variation 
including that generated by fluctuations in crude oil prices over time or by persistent 
regional differences in costs, competition, environmental restrictions, or gasoline tax 
levels. However, temporary regional gasoline supply shocks resulting from refinery 
outages or pipeline disruptions or regional variation in seasonal gasoline content 
restrictions can create significant variation in the relative price levels across cities 
that will not be absorbed by fixed effects. Our identification of demand relies largely 
on these periodic shifts in local supply. While it is possible that demand shifts remain 
even with city and day-of-sample fixed effects included in the model, these will 
mostly come from predictable seasonal patterns or  day-of-week purchase patterns, 
which can be adequately planned for through adjustments to inventories, refinery 
production, or pipeline delivery schedules. Any additional idiosyncratic day-to-day 
fluctuations in local purchasing are likely small enough to be easily accommodated 
using local terminal inventories, so that relative price fluctuations not absorbed by 
city and day-of-sample fixed effects should entirely reflect localized supply-side 
cost shocks. In other words, within the context of our model, the relevant daily sup-
ply curve is likely to be almost perfectly elastic, minimizing any potential for endog-
eneity bias in our OLS estimates. For robustness, however, we also estimate and 
obtain similar results from alternative specifications that include city-specific sets 
of month-of-year and day-of-week fixed effects to control for potential differences 

5 Based on average inventory levels and daily consumption, there is typically enough gasoline stored at local dis-
tribution terminals and refineries to supply four weeks worth of demand (for more information see the US Energy 
Information Administration’s Petroleum Supply Monthly). In addition, gas stations often have several days of 
inventory in their underground tanks. Day-to-day fluctuations in demand can easily be supplied from a combination 
of these sources, allowing intertemporal arbitrage that minimizes the likelihood of any substantial price response. 
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across cities in seasonal or weekly demand patterns, yet still preserve the supply 
variation resulting from unexpected refinery or pipeline disruptions.

While studies using aggregate data generally must resort to controlling for 
demand shocks with observable controls and/or a more limited set of fixed effects, 
several recent papers have attempted to identify and utilize instrumental variables 
to more accurately model demand. Hughes, Knittel, and Sperling (2008) estimate 
a specification of nationwide monthly gasoline demand using crude oil production 
disruptions as instruments for monthly gasoline prices but find the resulting elas-
ticity estimates to be nearly indistinguishable from those obtained in their baseline 
OLS specifications. Davis and Kilian (2011) utilize monthly state-level aggregate 
gasoline consumption and average prices to estimate a first-differenced model in 
which changes in state gasoline tax rates serve as instrumental variables for changes 
in gasoline price. Their preferred IV estimate suggests a demand elasticity of −0.46 
(s.e. = 0.23), while the corresponding OLS monthly state-level panel regression 
produces a substantially less elastic estimate of −0.19 (s.e. = 0.04), and an esti-
mation using data aggregated to the national monthly time-series level produces an 
even smaller elasticity of −0.09 (s.e. = 0.04).6 Davis and Kilian’s IV estimate is 
much closer to our disaggregated elasticity estimates, suggesting that both their IV 
approach and our disaggregated panel fixed effects approach may be overcoming 
the potential simultaneity bias caused by baseline demand differences over time.7 
While we don’t observe enough state tax changes during our sample to consider 
such an instrument, as another robustness check we do estimate an IV specification 
(described in online Appendix D) using regional wholesale spot gasoline prices as 
an instrument for local retail prices and obtain results similar to our OLS regressions.

II. Retail Gasoline Price and Expenditure Data

Our data contains daily gasoline price and expenditure data for 243 metropolitan 
areas throughout the United States from February 1, 2006 to December 31, 2009. 
For each city, average daily retail prices of unleaded regular gasoline are obtained 
from the American Automobile Association’s (AAA) Daily Fuel Gauge Report. The 
prices reported by AAA are provided by the Oil Price Information Service (OPIS), 
which constructs the city average prices using station-level prices collected from 
fleet credit card transactions and direct feeds from gas stations.8

Our expenditure data were obtained from the financial services company Visa 
Inc. The data reflect the total dollar amount of purchases by all Visa debit and credit 
card users at gas stations within a city on a given day. As with the price data, cit-
ies are defined based on the geographic definition of the associated Metropolitan 

6 Coglianese et al. (2015) point out that the IV estimate of Davis and Kilian (2011) may be biased as a result 
of consumers anticipating the tax change and buying more gas in the month before the tax increase than in the  
month after. When one month leads and lags are included to control for this, the elasticity estimate falls to −0.36 
(s.e. = 0.24), nearly identical to the estimate we obtain from our frequency of purchase model. 

7 An important caveat is that their measure differs from ours in that it focuses on the demand response occur-
ring during the month in which the corresponding state gasoline tax rate change occurs, which is likely to reflect a 
shorter run elasticity than is captured in our baseline model. 

8 The OPIS price survey is the most comprehensive in the industry and is commonly used in research on gaso-
line pricing. 
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Statistical Area (MSA). In addition to total citywide expenditures, the Visa data 
also include the number of gasoline transactions or purchases taking place at gas 
stations in each city during each day. This allows us to separate the daily probability 
of purchase from the daily demand for gasoline. We also observe the total number of 
Visa cards that are actively purchasing (any product) within the current month. We 
use this as a measure of the total population of cards at risk of recording a gasoline 
purchase during each day of that month.9

Although the data has many advantages, Visa does not directly observe the price 
paid at the pump or the quantity of gasoline purchased by the customer. Instead, we 
construct a measure of the total quantity of gasoline purchased in a particular MSA 
on a particular day by dividing the total expenditures of Visa card customers at gas 
stations by the average regular unleaded gasoline price in the city on that day. This 
approximation raises several potential issues which we explore and address below.

First, in dividing total gas station expenditures by the regular gasoline price, we 
are ignoring the fact that around 15 percent of gas purchases are for mid-grade or 
premium gasoline, which sell at higher prices. If the fraction of regular-grade pur-
chases were fairly constant over time, we would not expect this unobserved price dif-
ference to impact our demand elasticity estimates. However, the results of Hastings 
and Shapiro (2013) suggest that some consumers may substitute from premium to 
regular grade gasoline when prices increase. In online Appendix B, we discuss this 
possibility in more detail, derive an expression for the potential bias, and use the 
estimates of Hastings and Shapiro (2013) to show that any such bias is very likely 
to be negligible in our context.

A second and potentially more important source of bias arises from the fact that 
total gas station expenditures also include some non-gasoline purchases. Simply 
dividing total expenditure by the gasoline price to produce a measure of quantity 
ignores this possibility, causing expenditures to appear more elastic to gasoline price 
changes. Even if the prices and demand for non-gasoline items are not correlated 
with the price of gasoline, dividing these expenditures by the price of gasoline will 
mechanically generate an elasticity of −1 for the non-gasoline portion of the trans-
action.10 In general, the share of revenues generated by non-gasoline items is small 
but nontrivial. According to the 2007 US Economic Census, gasoline stations in 
the United States receive just over 21 percent of their total revenues from nonfuel 
sales.11 Fortunately, biases from nonfuel purchases are only a concern for in-store 
transactions, and our data includes the daily city-level expenditures and number 
of transactions separately for pay-at-pump and in-store purchases. Pay-at-pump 
purchases represent over 76 percent of total expenditures and over 64 percent of 
all transactions in our data.12 Estimating gasoline demand using only pay-at-pump 

9 At two points during the sample period (August 1, 2006 and August 1, 2007), Visa made small adjustments to 
their merchant classification methodology, which produce discrete jumps in our measure of gas station expenditures 
in some cities. To correct for this, we estimate all models with additional city-specific data-period fixed effects 
allowing the average expenditures and transaction counts to differ before, between, and after these two dates. 

10 See online Appendix C for a more complete discussion of the resulting bias. 
11 Most of these nonfuel revenues come from food, cigarettes, and alcohol. Fuel sales often generate less than 

half of a station’s profits, but given the high volume sold, it still represents the vast majority of station revenues. 
12 On average, pay-at-pump transactions are larger (in dollar value) than in-store transactions. The most likely 

explanation is that some in-store transactions include only nonfuel items, which tend to be less expensive than the 
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transactions gives an alternative estimate of elasticity that is not subject to this bias 
and may give some indication of the magnitude of the bias for in-store transactions. 
In addition, in online Appendix C, we derive the magnitude of the bias that would 
be expected when non-gasoline expenditures are present in the data, and use outside 
estimates of non-gasoline expenditures to construct bias-corrected elasticity esti-
mates. The results are consistent with the notion that estimating elasticities using 
pay-at-pump purchases fully eliminates (or perhaps even overcompensates for) any 
bias resulting from non-gasoline expenditures.

A third and related concern involves the possibility that the gasoline price level 
may influence consumers’ decision of whether to purchase with cash or credit, 
which, consequently, may also influence whether they purchase in the store or at 
the pump. Industry experts and consumer surveys (NACS 2007) regularly reveal 
that consumers are somewhat more likely to purchase with credit cards when gas 
prices increase. Although the magnitude of such an effect is unclear, it implies that 
our observed credit card purchases may appear less elastic than overall gasoline 
demand in response to a price change. In addition, if a higher gasoline price causes 
consumers to substitute from paying with credit in the store to paying with credit 
at the pump, perhaps because they are less likely to be also purchasing food, then 
pay-at-pump purchases will be even less elastic than overall credit card gasoline 
purchases. We do not have the necessary information or data to attempt to correct for 
these effects, and so we consider the estimates obtained from our pay-at-pump data 
to represent a conservative estimate of the true elasticity of gasoline demand. In the 
interest of completeness our analysis will present estimates utilizing all purchases 
as well as estimates using only pay-at-pump purchases. However, we will generally 
take the more conservative approach of using pay-at-pump purchase data in our 
alternative specifications and supplementary analysis.

Although our data only contain gasoline purchases made on Visa credit and debit 
cards, we believe them to be reasonably representative of all gasoline buyers using 
credit or debit cards. If cash buyers exhibit different purchase behavior, this will not 
be captured in our elasticity estimates. However, as roughly 70 percent of all gas-
oline purchases are made using a credit or debit cards (NACS 2007), our findings 
reflect the demand responsiveness of the vast majority of gasoline buyers.

A. Descriptive Statistics

Before we begin our empirical analysis, it is helpful to highlight some important 
features of the data. First, the price data reveal significant idiosyncratic fluctuation 
across cities. Though prices in all cities are impacted by common factors like world 
oil prices, there are many other factors that influence prices locally. Persistent price 
differences across states arise as a result of differences in gasoline tax rates or in the 
blends of gasoline that are required. More importantly, significant transitory differ-
ences in daily prices across the MSAs arise frequently during our sample period. 
Figure 1 compares retail price fluctuations in Los Angeles, Chicago, and New York 

typical gasoline purchase. Unfortunately, our data do not allow us to examine the distribution of individual transac-
tion amounts since we only observe the total expenditure for the day in each city. 
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over a typical 100 day period in 2007. It is clear that daily city-level prices provide 
much richer price variation than monthly data with which to study demand response.

The daily quantity of gasoline purchased also exhibits different patterns across 
MSAs, presumably due to both independent retail price movements and other 
city-specific events. Figure 2 presents a normalized seven-day moving average of 
this measure of the daily quantity purchased for the same three cities depicted in 
Figure 1 over the same period.13 The daily quantities for each MSA are normal-
ized by the average quantity purchased in that MSA over the sample period. Just 
as with the prices, the quantities move together at times but also exhibit significant 
differences.

13 A moving average of daily quantity is used here to eliminate the strong within-week purchase patterns that 
are described below. 
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As an example of the type of variation that will be important for our empirical 
identification of demand, note that as the daily average price in California increases 
from being the lowest to the highest of the three cities by the end of the time period 
in Figure 1, the normalized quantity demanded falls from being the highest to the 
lowest over the same time period in Figure 2. The fact that these relative price and 
quantity differences between cities often persist over many months illustrates why 
the elasticity estimates from our baseline (static) demand model should be inter-
preted to reflect demand responses occurring over weeks or months even when esti-
mated using daily data.

Daily expenditure data also allow us to examine high frequency features of gas-
oline purchase patterns. Gasoline demand is known to exhibit strongly seasonal 
variation, and our data reflects this general pattern. We are also able to document a 
very strong within-week pattern in gasoline purchasing behavior. Our data show that 
consumers buy roughly 17 percent more gasoline on Fridays than the daily average 
and buy 15 percent less on Sundays than the daily average. Within each city, this 
pattern varies to some extent, but Friday is always the highest expenditure day, and 
Sunday is always the lowest expenditure day.

Variation in the total expenditures across days can result either from fluctuations 
in the number of transactions that occur or from fluctuations in the amount people 
purchase per transaction. The within-week pattern in expenditure per transaction 
is notably different from that of overall expenditures, with Mondays and Fridays 
exhibiting the largest purchase sizes. However, expenditure per transaction exhib-
its much less day-to-day variation overall, revealing that the within-week pattern 
observed in total expenditures results largely from fluctuations in the number of 
transactions occurring in each day. Figures reporting average expenditures by day 
of week and average expenditures per transaction by day of week are presented in 
online Appendix F.

III. Model of Consumer Demand and Purchase Behavior

Because we are working with daily data, the effect of price on the amount of 
gasoline purchased may be very different from the effect on the amount of gasoline 
people are actually demanding at any given time. Consumers can buy and store 
gasoline in their car, which implies that a consumer’s daily demand for gasoline can 
differ from its expenditures on gasoline. This section presents a theoretical model 
that recovers an estimate of the daily price elasticity of the unobserved demand for 
gasoline from data on the daily number of purchases and expenditures on gasoline 
for each MSA. A latent customer-level daily demand for gasoline and daily pur-
chase probability give rise to an econometric model for customer-level daily gaso-
line expenditures that we then aggregate to the MSA level.

Suppose the daily demand for each customer in a city  j  on a day  d  takes the form

(1)   d jd   = exp ( α j   +  λ d   + β ln (  p jd  ) +  ϵ jd  ) ,

where   α j    is a fixed-effect for MSA  j  ,   λ d    is the fixed-effect for day-of-sample  d  ,   p jd    is 
the price of gasoline for day  d  in region  j  , and  β  is the price elasticity of demand. For 
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each  j  , the   ϵ jd    are a sequence of unobserved mean-zero random variables that may 
be heteroscedastic and correlated over time within each MSA, but are distributed 
independently across MSAs, and are independent of   p jd    . Consumers must period-
ically purchase gasoline to satisfy this level of daily usage. The probability that a 
consumer in MSA  j  purchases gasoline on a day  d  is assumed to equal

(2)   ρ jd   =  γ j   +  δ d    ,

where   γ j    is a fixed-effect for MSA  j , and   δ d    is the day-of-sample fixed effect for  
day  d . We assume that the expenditure on gasoline during day  d  by each customer 
in MSA  j  ,   e jd    , is related to the consumer’s daily purchase probability and daily gas-
oline demand through the following relationship:

(3)   e jd   =   
 p jd    d jd   _____  ρ jd     . 

This model implies that the actual quantity of gasoline purchased (if purchase occurs) 
times the daily probability of purchase is equal to the daily quantity demanded by 
that customer. Because our data is at the MSA level, we aggregate the custom-
er-level model of daily gasoline expenditures over the total number of customers in 
MSA  j  during day  d  ,   N jd   . The number of customers in MSA  j  during day  d  making a 
gasoline purchase is equal to   n jd    . Therefore,   E jd    , total gasoline expenditures during 
day  d  for MSA  j  can be expressed as

(4)   E jd   =  e jd    n jd   =   
 p jd   d(  p jd   ,  ϵ jd  )  n jd    _____________  ρ jd     . 

Because we observe the total number of active Visa cards (  N jd   ) in MSA  j  during 
day  d  , and the total number of gasoline transactions (  n jd   ),   n jd  / N jd    is an unbiased 
estimate of   ρ jd    , the probability of purchase for MSA  j  during day  d . Accordingly, we 
can estimate the parameters of equation (2) using OLS applied to

(5)    
 n jd   ___  N jd  

   =  γ j   +  δ d   +  ν jd   ,  

where the   ν jd    are a sequence of mean-zero random variables that may be heterosce-
dastic and correlated with   ϵ jd   , and over time within each MSA, but are distributed 
independently across MSAs. We can use the fitted values    ρ ˆ   jd   =   γ ˆ   j   +   δ ̂   d    to obtain 
a consistent estimates of the   ρ jd    . Substituting the estimated purchase probability 
into equation (4) and taking logs generates our econometric model of gasoline 
expenditures:

(6)  ln ( E jd  ) =  α j   +  λ d   + (β + 1) ln (  p jd  ) + ln ( n jd  ) − ln (   ρ ˆ   jd  ) +  ϵ jd   . 
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This model can alternatively be expressed in terms of the quantity purchased:

(7)  ln ( Q jd  ) =  α j   +  λ d   + β ln (  p jd  ) + ln ( n jd  ) − ln (   ρ ˆ   jd  ) +  ϵ jd   .  

The empirical model in equation (7) makes it possible to identify the underlying 
MSA-level elasticity of demand for gasoline ( β ) using data on prices, the quantity 
purchased, and the number of transactions. In equations (1) and (2), the demand 
and probability of purchase are both assumed to vary by city and day of sample, 
but different combinations of fixed effects can easily be used to generate alternative 
specifications for each of these functions. We will also consider a specification that 
includes both lagged and current prices in the demand and purchase probability 
equations.

IV. Estimation and Results

A. Frequency of Purchase model

We begin by estimating city-level demand for gasoline using the model expressed 
in equation (7). Results are reported in Table 1. Following the discussion of data 
concerns in Section II, our main specifications are estimated using pay-at-pump pur-
chases only, but we also report the results when all purchases are used. The model 
implies that coefficients on  ln ( n jd  )  and  ln (   ρ ˆ   jd  )  should be 1 and −1, respectively. We 
estimate the model with this restriction imposed and without it. To facilitate compar-
isons with earlier studies of gasoline demand, we also include (in columns 1 and 4) 
estimates from a basic log-linear aggregate demand model. For the basic model, we 
report heterskedacticity consistent standard error estimates that allow for arbitrary 
serial correlation within each city. Standard error estimates for the purchase model 
are generated using a nonparametric bootstrap to account for the fact that the pre-
dicted probability of purchase is estimated in a first-stage regression.14

When estimated using pay-at-pump transactions only, the model with all restric-
tions yields an elasticity estimate of −0.36, while the unrestricted model produces 
a similar elasticity estimate of −0.30. The unrestricted coefficient on  ln ( n jd  )  is very 
close to one, but the coefficient on  ln (   ρ ˆ   jd  )  is very close to zero; far from the −1 
implied by the theory. This may be because the fixed effects absorb most of the 
variation in the probability of purchase (given the functional form specified in equa-
tion (7)), and any variation left may be measured with error. The estimated price 
elasticity is still similar to that from the model with restrictions imposed. Estimates 
of both the restricted and unrestricted models are somewhat more elastic when using 
data from all purchases as would be expected if the inclusion of in-store purchases 

14 Given that there are  c  cities and  D  days in the sample, the procedure first resamples with replacement  c  pairs 
of OLS residual vectors of length  D  from the purchase probability equation and the expenditure equation for the 
same city. These are combined with the OLS estimates of the fitted values for both equations to compute resam-
pled purchase frequencies and expenditure levels vectors of length  cD . The two-step estimation procedure is then 
repeated for the resampled purchase frequency equation and then for the expenditure equation with the logarithm 
of the fitted value from the estimated purchase frequency equation used as a regressor in the expenditure equation 
to obtain estimates for the parameter values for both equations for that resample. The sample variance of these 
re-samples is then used to compute the estimated standard errors for both parameter vectors. 
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results in some bias from non-gasoline transactions. Nevertheless, the pattern of 
estimates across specifications is similar for the pay-at-pump and all-transaction 
samples. The coefficient estimates from the basic demand model in columns 1 and 4 
are quite close to those generated by our frequency of purchase model.

Including time fixed effects helps to control for shifts in demand, but it can also 
mask supply shifts that could help to better identify demand elasticity. Hence, as 
an alternative specification, we estimate the demand model using month-of-sample 
fixed effects rather than day-of-sample. Day-of-week fixed effects are also included 
to control for the weekly pattern in demand suggested by online Appendix Figure F1. 
The resulting coefficient estimates, reported in Table 2, column 1, are very simi-
lar to those of the benchmark pay-at-pump specification, with the price elasticity 

Table 1—Estimates of Baseline Empirical Model of Demand

Dependent variable = ln (quantit  y jd   )

Pay-at-pump only All purchases

(1) (2) (3) (4) (5) (6)

ln (pric  e jd   ) −0.295 −0.364 −0.301 −0.378 −0.465 −0.408
(0.031) (0.022) (0.006) (0.030) (0.022) (0.008)

ln (number of 1 0.996 1 1.021
 transaction  s jd   ) (0.002) (0.004)
ln (predicted probability − 1 −0.003 − 1 0.006
 of purchas  e jd   ) (0.001) (0.002)

Notes: Day-of-sample fixed effects and city fixed effects are included in all specifications. 
Standard errors in columns 1 and 4 are robust and clustered to allow serial correlation within 
city. Standard errors for the remaining specifications are generated using a nonparametric boot-
strap that allows errors to be serially correlated within a city and jointly distributed with the 
error term in the first-stage regression.

Table 2—Estimates from Alternative Specifications

Dependent variable = ln (quantit  y jd   )

Pay-at-pump transactions

(1) (2) (3) (4)

ln(pric  e jd   ) −0.278 −0.271 −0.301 −0.351
(0.011) (0.012) (0.006) (0.005)

ln(number of 1.007 1.010 0.989 0.994
 transaction  s jd   ) (0.006) (0.006) (0.002) (0.002)
ln(predicted probability 0.009 0.011 −0.003 −0.002
 of purchas  e jd   ) (0.006) (0.006) (0.001) (0.001)

Fixed effects:
 Day of week X X
 Month of sample X
 Day of sample X X
 City X
 Month of year  ×  city X
 Month of sample  ×  city X X

Note: Standard errors are generated using a nonparametric bootstrap that allows errors to be 
arbitrary serial correlated within a city and jointly distributed with the error term in the first-
stage regression.
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estimated to be −0.28, suggesting that month-of-sample and day-of-sample fixed 
effects appear to work similarly in controlling for macroeconomic or gasoline mar-
ket specific fluctuations that might impact gasoline demand at the national level.

In all the specifications estimated to this point, demand elasticities are identi-
fied off of city-specific variation in price and quantity purchased. However, large 
city-specific or regional demand shifts occurring over time have the potential to 
bias these elasticity estimates. Therefore, we estimate an additional set of specifi-
cations that include additional controls for city-specific demand patterns. Table 2, 
column 2 reports the results of a regression including month-of-sample effects for 
each city as well as day-of-week fixed effects. Column 3 contains the estimates from 
a model including a full set of national day-of-sample fixed effects in addition to the 
city-specific month-of-year effects to allow seasonal patterns in demand to differ 
across cities. Column 4 adds further flexibility by including both day-of-sample and 
city-specific month-of-sample fixed effects. The estimated elasticities vary some-
what across these models but are all of a similar magnitude to the baseline estimates 
in Table 1. It is important to note, however, that once separate month-of-sample 
fixed effects are included for each city they absorb any deviations from the national 
average that last longer than one month. As a result, the elasticity estimate in col-
umn 4 only reflects the response in demand that occurs in the four weeks following a 
change in price. This estimate is slightly more elastic than in the other specifications 
suggesting that very short run demand response is even more elastic than that which 
persists over a longer time horizon.15 In general, however, the results reveal that 
relatively elastic estimates of demand can be obtained using a variety of different 
sources of variation within the data and are not sensitive to a particular functional 
form.

Though the ability to include extensive fixed effects should minimize any 
potential endogeneity bias that might result from unobserved demand shocks, it 
is difficult to conclude with certainty that these demand shocks have been entirely 
eliminated. Unobserved city-specific demand shocks could still bias our elasticity 
estimates downward if local distribution terminals are not able to plan ahead or use 
inventories to costlessly absorb these differences (i.e., if the local supply curve is 
not highly elastic with respect to daily adjustments). As a final robustness check, 
we have estimated an instrumental variables specification that utilizes spot market 
(wholesale) gasoline prices from large regional refining centers (New York Harbor, 
the Gulf Coast, or Los Angeles) as instruments for local retail prices. Market-wide 
fluctuations in wholesale gasoline prices resulting from a combination of changes in 
demand and changes in crude oil and refining costs are captured by  day-of-sample 
fixed effects, but differences in wholesale gasoline prices between regions still 
exhibit significant variation largely driven by unexpected refinery shocks. Under 
the assumption that this regional variation in spot prices is relatively unaffected by 
temporary city-specific demand fluctuations, using this IV approach could help to 
eliminate any remaining endogeneity generated by correlation between city-level 
prices and local demand shocks.

15 This result is confirmed when we explore the differences in longer run versus shorter run demand response 
in more detail in Section IVB. 
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The results of these IV specifications (described in more detail and reported in 
online Appendix D) largely confirm that the robustness of the main OLS findings. 
The IV estimates of both the basic aggregate demand model and the frequency of 
purchase model are slightly more elastic but of a relatively similar magnitude to 
those reported in Tables 1 and 2.

What is most striking about these findings, in general, is that the elasticity esti-
mates from both our frequency of purchase model and the basic log-linear aggregate 
demand model are consistently several times more elastic than those from compara-
ble recent studies including Hughes, Knittel, and Sperling (2008), whose estimates 
range from −0.034 to −0.077 for the period 2000–2006, and Park and Zhao (2010), 
whose time-varying estimates range from around −0.05 in 2000 to around −0.15 
in 2008. Our daily city-level purchase data clearly reveal a much greater degree of 
demand response than has been suggested by much of the literature.

It is important to highlight that the use of daily data rather than, say, monthly 
data does not imply that our elasticity estimates describe a “shorter run” demand 
response. The relevant response horizon of any elasticity estimate depends on the 
variation in prices used to identify the response parameter and when these move-
ments occur relative to when demand is observed. Prices change in this market on 
a daily basis and consumers make purchase decisions on a daily basis, so behavior 
is likely to be more accurately represented using a model of daily demand for gas-
oline. However, as in most studies, our baseline model is static and does not allow 
the degree of demand responsiveness to change depending on how long it has been 
since a price change occurred, so price changes occurring several months ago are 
just as important as price changes occurring days or weeks ago in terms of identi-
fying demand elasticity.16 As a result, we believe that our main elasticity estimates 
reflect the same type of consumer response that other studies attempt to measure 
using more aggregated monthly or quarterly data. In the next section, we leverage 
our daily data by relaxing these assumptions in the model to investigate if demand 
responds differently in the very short run.

B. immediate versus Short-run Demand response

To this point, our models have assumed that prices influence gasoline demand 
entirely through the current gasoline price, implying that all demand response occurs 
immediately. In practice, however, it is not unusual for the elasticity of demand to 
change when considering different response horizons. Perhaps the most common of 
these situations occurs when consumers can hold inventories and choose to add to or 
withdraw from inventories in response to price changes even when their underlying 
consumption does not change. Gasoline consumers obviously hold small inventories 
of gasoline in their vehicle’s tank, so this behavior is feasible on a limited scale. 
Similarly, consumers may have the ability to postpone (or expedite) some neces-
sary trips or utilize public transportation in response to a temporary increase (or 

16 Specifically, our model of daily demand implies that if the daily price rose by 10 percent and remained at 
this higher level, daily gasoline demand would remain lower by an amount equal to 10 percent times our demand 
elasticity for as long as the daily price remained 10 percent higher. 
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decrease) in price, regardless of how they change their overall driving habits. These 
types of behavior imply that, for a given gasoline price today, the amount of gasoline 
purchased today might depend on whether the price has been at or near its current 
level for a while or whether it was significantly higher or lower a few days or a few 
weeks ago.

The elasticity estimate from most gasoline demand models (including our base-
line model) represents some average of these shorter run and longer run responses. 
However, with daily data, it is possible to separately identify these different 
responses by allowing demand to depend on past prices as well as current price lev-
els. Moreover, by using the structure of our consumer purchase model and including 
past prices along with current prices in both the individual demand and purchase 
equations, we are able to decompose any potential short-run responses to exam-
ine whether consumers appear to be significantly altering gasoline usage or simply 
shifting when they make purchases in the days following a price change. If consum-
ers are substituting away from driving in response to price increases then their daily 
demand may be influenced by past prices. If consumers are using their inventories 
of gasoline strategically, both current and past prices may influence a consumer’s 
probability of purchase. We alter equations (1) and (2) to allow for these types of 
behavior. The demand for each customer in a city  j  on a day  d  can be specified as

(8)   d jd   = exp  ( α j   +  λ d   + β ln (  p jd  ) +  ∑ 
l∈L

      ζ l   ln (  p j, d−l  ) +  ϵ jd  )  ,

where   p j, d−l    represents the price  l  days prior to the current period and  L  represents 
the set of lags lengths included in the specification. Similarly, the probability of 
purchase can be expressed as

(9)   ρ jd   =  γ j   +  δ d   + ψ ln (  p jd  ) +  ∑ 
l∈L

      η l   ln (  p j, d−l  ) .

Leaving the consumer purchase model from Section III otherwise unchanged results 
in the following final representation of the aggregate quantity purchased in city  j  on 
day  d :

(10)  ln ( Q jd  ) =  α j   +  λ d   + β ln (  p jd  ) +  ∑ 
l∈L

      ζ l   ln (  p j, d−l  ) + ln ( n jd  ) − ln (   ρ ˆ   jd  ) +  ϵ jd    ,

where the predicted purchase probability can be estimated from an OLS regression 
of

(11)    
 n jd   ___  N jd  

   =  γ j   +  δ d   + ψ ln (  p jd  ) +  ∑ 
l∈L

      η l   ln (  p j, d−l  ) +  ν jd    .

In both the demand equation and the purchase probability equation we include 
log of the current price and the lagged log prices from each of the previous 5 days 
as well as longer lags of 10 and 20 days. Lags longer than 20 days are omitted as 



332 AmEricAN EcoNomic JoUrNAL: EcoNomic PoLicy AUGUST 2017

their inclusion requires the use of a shorter sample for estimation, but when price 
lags of 40 and 60 days are included, their coefficients are small in magnitude and 
do not substantially affect the estimates of the existing coefficients. For comparison 
we also estimate a similar version of the more traditional single-equation demand 
specification that includes lagged prices. Coefficient estimates from the traditional 
model are reported in column 1 of Table 3, and estimates from the demand and pur-
chase probability equations from the frequency of purchase model are reported in 
columns 2 and 3. All specifications are estimated using only pay-at-pump purchases. 
The final row of the table includes the total implied elasticity of the probability 
of purchase or of demand response after 20 days.17 Estimates from the traditional 
demand model and the demand equation in the purchase model are directly compa-
rable to the corresponding specifications without lags in Table 1.

17 For the demand equations, this is simply the sum of all the log-price coefficients. For the probability of pur-
chase equation this is the sum of all the log-price coefficients divided by the mean probability of purchase. 

Table 3—Purchase Model with Lagged Prices

Traditional model Purchase frequency model

Demand equation Purchase equation Demand equation
(1) (2) (3)

ln (pric  e jd   ) −0.775 −0.009 −0.458
(0.081) (0.002) (0.009)

ln (pric  e j, d−1   ) −0.607 −0.028 0.098
(0.098) (0.002) (0.008)

ln (pric  e j, d−2   ) 0.637 0.023 −0.002
(0.091) (0.001) (0.007)

ln (pric  e j, d−3   ) 0.393 0.014 0.052
(0.044) (0.001) (0.006)

ln (pric  e j, d−4   ) 0.184 0.003 0.020
(0.046) (0.002) (0.007)

ln (pric  e j, d−5   ) 0.055 0.003 −0.011
(0.039) (0.002) (0.007)

ln (pric  e j, d−10   ) −0.076 −0.003 0.0002
(0.021) (0.001) (0.003)

ln (pric  e j, d−20   ) −0.119 −0.001 0.004
(0.021) (0.001) (0.004)

ln (number of transaction  s jd   ) 0.995
(0.002)

ln (predicted probability −0.003
 of purchas  e jd   ) (0.001)

Total implied elasticity −0.308 0.061 −0.296
 20 days after a price change

Notes: City and day of sample fixed effects are present in all specifications. The dependent 
variable in column 1 is the log of the average quantity purchased at the pump per capita by 
Visa customers in city j on day d. Standard errors in column 1 are robust and clustered to allow 
arbitrary serial correlation within a city. The dependent variables columns 2 and 3 are the share 
of Visa customers purchasing at the pump and the log of the quantity purchased at the pump 
by Visa customers in city j on day d. Standard errors in columns 2 and 3 are generated using 
a nonparametric bootstrap that allows errors to be arbitrary serial correlated within a city and 
jointly distributed with the error term in the first-stage regression.
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In the traditional demand model (column 1), the coefficients on the current and 
previous day’s log price are negative and much larger in magnitude than the cor-
responding elasticity estimated without lags. The sum of the first two coefficient 
estimates in column 1 imply that the amount of gasoline purchased one day after a 
1 percent price increase will be 1.38 percent lower than it would have been without 
the price increase. During the following three to four days, however, the amount pur-
chased tends to increase sharply, back toward its original level, canceling out much 
of the very strong initial response in purchasing. The 10- and 20-day lags reveal that 
the price response becomes slightly stronger once again, several weeks after the 
price change. Adding together the coefficients of all the price lags in the regression 
gives the response of demand 20 days after a permanent price change. This sum of 
coefficients is reported in the last row of Table 3 and implies that the elasticity of 
demand response after 20 days is −0.31, nearly identical to the elasticities of −0.30 
identified in our baseline model with no lags.

Coefficient estimates from the frequency of purchase model in columns 2 and 3 
of Table 3 reveal that the large response in the amount of gasoline purchased in the 
days following a price change results almost entirely from a temporary change in the 
probability of making a purchase rather than a change in gasoline demand or usage. 
The probability of purchase falls (rises) significantly on the day of and particularly 
on the day following a price increase (decrease). The coefficients on  ln (  p j, d  )  and  
ln (  p j, d−1  )  imply that the purchase probability one day after a price change exhibits 
an elasticity with respect to price of around −1.12 all else equal.18 However, this 
response in the probability of purchase in the day of and the day after a price change 
is entirely counteracted over the following few days to leave the elasticity of the 
overall response of purchase probability after 20 days to be small and slightly pos-
itive at 0.06.

In the demand equation (column 3), the inclusion of lagged prices causes the 
coefficient on the current value of  ln (  p jd  )  to increase in magnitude, suggesting an 
even larger immediate demand response to price changes. As in the basic demand 
specification of column 1, however, the sum of the coefficients on the current and 
lagged values of  ln (  p jd  )  in the demand equation are very similar to the coefficient 
estimates for  ln (  p jd  )  when no lagged prices are included (Table 1, column 3). In 
other words, the total demand response to a price shock that lasts longer than a few 
days exhibits a demand elasticity of around −0.30, nearly identical to the estimates 
in our baseline purchase model. The results also reveal a small additional response 
within the first few days of a price shock, consistent with the idea that consumers 
delay/expedite gasoline usage by a few days in response to price fluctuations, but 
this effect does not appear to be as large as those resulting from changes in the prob-
ability of purchase.

The results of both the traditional demand model and the purchase frequency 
model provide evidence of a stronger responsiveness to price changes in the very 
short run, but also confirm that these responses are in addition to a more persistent 
response, which very closely resembles that implied by our earlier specifications. 

18 The average probability of purchase by a cardholder on a given day is 0.033, so the elasticity of the probabil-
ity of purchase is computed as  (−0.009 − 0.028)/0.033 = −1.12 . 
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We conclude from this that previous studies utilizing monthly or annual data did 
not obtain lower elasticity estimates a result of consumers being less responsive to 
price changes that persist over longer time periods. Instead, as we show in the next 
section, the use of such temporally aggregated data is likely to bias elasticity esti-
mates causing demand to appear less responsive than can be revealed when using 
daily data.

V. Examining the Divergence from Previous Findings

Given the rather large discrepancy between our elasticity estimates and those 
found in other recent studies, we discuss in this section a number of differences in 
our analyses that could potentially explain this disparity.

A. Sources of Gasoline consumption Data

Perhaps the biggest challenge in studying gasoline demand is finding an accurate 
measure of consumption. Nearly all available measures are recorded at a highly 
aggregated level and are likely to measure actual gasoline usage within the specified 
time interval with a considerable amount of error. The most common source used in 
recent time series or panel studies (e.g., Hughes, Knittel, and Sperling 2008; Park 
and Zhao 2010; Lin and Prince 2013) is the US Energy Information Administration’s 
(EIA’s) data on finished motor gasoline “product supplied.” These data are con-
structed from surveys of refineries, import/export terminals, and pipeline operators, 
and the volumes reported reflect the disappearance of refined product from these 
primary suppliers into the secondary distribution system (local distributers and stor-
age facilities). Each month the EIA reports amounts disappearing as the product 
supplied in each of the nation’s five Petroleum Area Defense Districts (PADDs). 
Unfortunately, given distribution lags and storage capabilities, the amount of prod-
uct flowing from secondary distributors to retailers and ultimately to consumers 
could differ substantially from the amount received by these suppliers in any given 
time period. In addition, to generate a measure that represents domestic gasoline 
usage, the EIA must net out from total production the estimated quantity of gasoline 
exported for use in other countries. This step provides yet another dimension for 
potential error, and created serious measurement issues in 2011 during a period of 
rapidly growing refined product exports.19

Another potential data source for gasoline consumption is the Federal Highway 
Administration (FHWA), which collects information from each state on the number 
of gallons of motor gasoline for which state excise taxes have been collected each 
month. This measure would appear to be more closely linked to consumption, and 
it is available at the state level rather than the PADD level. However, a significant 
amount of measurement error is generated by the fact that each state has its own pro-
cedures and systems for collecting this information. The point in the supply chain at 
which the fuel is taxed also varies across states. Some require taxes to be paid when 

19 See Cui (2012). 
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the distributer first receives the fuel, while others tax the volume of gasoline sold by 
the distributor. In fact, the FHWA includes in its publications the disclaimer that the 
reported volumes “may reflect time lags of six weeks or more between wholesale 
and retail levels.”20

In contrast to the EIA and FHWA data, our measure of gasoline expenditures 
from Visa is recorded at the final step of the distribution process—when the con-
sumer purchases the product from the retailer. This eliminates the possibility that 
changes in consumer purchase volumes are masked by additions or withdrawals 
from local storage. Moreover, it allows daily city-specific volumes to be observed 
and more accurately linked with contemporaneous local prices, providing for a more 
direct identification of demand response.

B. Estimating Demand Elasticity Using Aggregated Data

In general, using highly aggregated data can mask much of the temporal and geo-
graphic co-movements in prices and quantities that result from consumer demand 
response and also make it more difficult to empirically identify consistent estimates 
of such response. To illustrate this point, suppose the per capita daily demand for 
gasoline in MSA  c  during day  d  can be represented as

(12)   q cd   =  D cd   (  p cd   ,  X cd  ) +  ϵ cd    ,

where   p cd    is the price of gasoline in region  c  on day  d  and   X cd    is the vector of charac-
teristics of region  c  and day  d  that enter the demand function for that region and day. 
These daily demand functions for each MSA imply that   Q m    , the national average 
daily per capita demand for gasoline during month  m  , is equal to the sum of total 
consumption (  q cd    N cd   ) across cities and days divided by the sum of the total popula-
tion (  N cd   ) across cities and days:

(13)   Q m   =   
 ∑ d∈  m          ∑ c=1  c     N cd    D cd   (  p cd   ,  X cd  )   ______________________   

 ∑ d∈  m          ∑ c=1  c     N cd  
   +   

 ∑ d∈  m    
      ∑ c=1  c     N cd    ϵ cd    ______________  
 ∑ d∈  m          ∑ c=1  c     N cd  

    ,

where  c  is the total number of MSAs in the sample and    m    denotes the set of days 
in month  m . This aggregation process implies that the national monthly demand for 
gasoline depends on the daily prices for all days during that month for all MSAs, 
rather than simply a single monthly national average price. Similarly, a monthly 
state-level average demand would depend on the daily prices for all days during that 
month for all MSAs in that state. However, this is not the model estimated in most 
empirical studies of aggregate demand. Typically, these studies only have access to 
aggregated price measures as well and, as a result, estimate something like

(14)   Q m   =  D ̃  (    
_
 p   m   ,   X ̃   m  ) +   ϵ ̃   m   where    _ p   m   =   1 ___  A m       

1 __ 
c

     ∑ 
d∈  m  

      ∑ 
c=1

  
c

     p cd    .

20 FHWA Highway Statistics (2010, table MF-33GA, footnote 1). 
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Given the data generating process in (12), the model in (14) will only hold under 
very specific assumptions, such as the case in which the   D cd   (  p cd   ,  X cd  )  function is 
linear and identical across cities, and each   ϵ cd    is uncorrelated not just with   p cd    and   
X cd    but also with the values of these variables in other cities and periods over which 
aggregation occurs.21 If these conditions are not collectively satisfied in the markets 
being examined, then biases arising from aggregation have the potential to explain 
the large differences observed between our elasticity estimates and those from pre-
vious studies. Fortunately, we are able to investigate the impact of aggregation by 
using our data to create new datasets with varying levels of temporal and geographic 
aggregation. We construct daily datasets of state-level and nationwide total quantity 
purchased, and average price, as well as three monthly datasets at the city, state, 
and national levels. To facilitate a more direct comparison with other studies, we 
estimate basic log-log aggregate demand models and use aggregate per capita quan-
tities calculated as the corresponding sum of the daily quantity purchased divided by 
the total number of Visa customers in the combined area. For consistency, average 
prices are also computed as a per capita weighted average across cities and days.

As in our main analysis, a complete set of time period and cross-sectional fixed 
effects are used whenever possible to control for shifts in demand. When using 
daily national time-series data, we include day-of-week and month-of-sample fixed 
effects. For the monthly national time series we are restricted to using month of 
year (i.e., seasonal) fixed effects, so per capita real personal disposable income is 
included as an additional control for demand shifts.22 This final specification is 
identical to that of Hughes, Knittel, and Sperling (2008).

The demand estimates for each level of aggregation appear in panel A of Table 4. 
The top rows report the results when estimated using pay-at-pump purchases only 
while the bottom rows report the results for all purchases. The first column reports 
the daily city-level results again for comparison. The next three columns contain 
panel regressions with varying levels of temporal and/or geographic aggregation. 
Price elasticity estimates from these specifications are all very similar to each other 
(between −0.22 and −0.25 for pay-at-pump purchases and between −0.30 and 
−0.34 for all purchases) and are less elastic than corresponding estimates from the 
disaggregated regression in column 1. The elasticity estimates from the two time 
series regressions in columns 5 and 6 are even smaller in magnitude, being indistin-
guishable from zero for pay-at-pump purchases and ranging from −0.12 to −0.14 
for all purchases; much closer to the elasticities reported by Hughes, Knittel, and 
Sperling (2008) in their national time-series study.23 Clearly, increasing levels of 
aggregation lead to less elastic estimates of demand, particularly when moving from 
panel to time series data.

21 The various issues necessitating such strong assumptions will be detailed in Section VC. 
22 Data on per capita personal disposable income comes from the Bureau of Economic Analysis. 
23 In online Appendix E, we replicate the exact model of Hughes, Knittel, and Sperling (2008) using their data 

source, but from our 2006–2009 time period, and show the results to be very similar to our pay-at-pump national 
time-series estimates. 
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C. Sources of Aggregation Bias

In this section, we decompose the impact of using different forms of aggregate 
price and quantity data on the resulting elasticity estimates. Rather than assess the 
impact of aggregating data with a log-log demand specification and have to deal 
with the fact that the sum across days or cities of the log price or quantity is not the 

Table 4—Regressions Using Aggregated Data

Geography: City City State State National National
Periodicity: Daily Monthly Daily Monthly Daily Monthly

(1) (2) (3) (4) (5) (6)

Panel A. log-log model: Dependent variable = ln (quantity per capita)
Pay-at-pump only:
 ln(pric  e it   ) −0.323 −0.246 −0.245 −0.215 −0.014 −0.002

(0.025) (0.028) (0.059) (0.066) (0.067) (0.021)
 ln(incom  e it   ) 0.339

(0.171)

All purchases:
 ln(pric  e it   ) −0.405 −0.338 −0.325 −0.295 −0.137 −0.130

(0.024) (0.028) (0.065) (0.073) (0.064) (0.016)
 ln(incom  e it   ) 0.458

(0.146)

Panel B. Linear model: Dependent variable = quantity per capita
Pay-at-pump only:
 pric  e it   −0.046 −0.037 −0.030 −0.025 −0.009 −0.001

(0.004) (0.004) (0.009) (0.010) (0.008) (0.003)
 incom  e it   0.005

(0.002)

Implied elasticities:
 price −0.312 −0.247 −0.201 −0.164 −0.062 −0.008
 income 0.379

All purchases:
 pric  e it   −0.077 −0.064 −0.058 −0.050 −0.035 −0.027

(0.006) (0.007) (0.016) (0.018) (0.009) (0.003)
 incom  e it   0.010

(0.002)

Implied elasticities:
 price −0.379 −0.313 −0.285 −0.245 −0.174 −0.133
 income 0.613

Fixed effects:
 Day of sample X X
 Day of week X
 Month of sample X X X
 Month of year X
 City X X
 State X X

Notes: Standard errors for panel specifications are robust and clustered at the level of the 
cross-sectional unit to allow for arbitrary serial correlation. Standard errors for time-series 
specifications are estimated using the Newey and West (1987) procedure and are robust to the 
forms of serial correlation they consider. Implied elasticities are calculated at the sample-wide 
mean values of quantity per capita, price, and income.
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same as the log of the sum, we consider a linear demand specification that can be 
aggregated using linear operations. To evaluate the importance of this functional 
form choice, we begin by estimating these linear demand models at different lev-
els of aggregation, just as was done with the log-log model. In panel B of Table 
4, we report both coefficient estimates and the implied elasticities evaluated at 
mean values of quantity per capita, price, and income per capita. Although the 
linear and log-log specifications have the potential to yield different results, for our 
data, the levels of the elasticity estimates evaluated at the sample mean of the data 
and the degree to which they change across increasing levels of aggregation are 
quite similar. We conclude from this comparison that the differences in estimates 
resulting from data aggregation apparent in our setting is relatively pervasive and 
is not the result of a particular functional form assumption or a particular mode of 
aggregation.

Although most studies of gasoline demand focus on a model in which all loca-
tions are assumed to have the same price coefficient, our decomposition analysis 
considers a more general data generating process in which the daily city-level per 
capita demand for gasoline depends on a city-specific fixed effect, a day-of-sample 
fixed effect, and the price of gasoline with a coefficient that may differ across cities:

(15)   Q cd   =  λ c   +  α d   +  β c    p cd   +  ϵ cd    ,

where  c = 1, … , c; d = 1, … , D; c = 241  is the number of cities, and  
D = 1,430  is the number of days in our sample.

To write this model in matrix form we utilize the following standard nota-
tion:   ι N    represents an  N × 1  vector on 1s,   I N    is an  N × N  identity matrix, and  
  M X   =  I N   − X (X′ X)   −1  X′  represents the residual maker matrix of dimension  N,  
where  N  is the number of rows in  X . Let  P  equal a  cD × c  matrix with the c th 
column having zeros everywhere but the c th block of length D, which is replaced 
with the  D × 1  vector   p c   = (  p c1  ,  p c2  , … ,  p cD  )′ ,  Q = ( Q  1  ′   ,  Q  2  ′   , … ,  Q  c  ′  )′ ,  
  Q c   = ( Q c1  ,  Q c2  , … ,  Q cD  ) ′,  β = ( β 1  ,  β 2  , … ,  β c  )′ ,  ϵ = ( ϵ  1  ′  ,  ϵ  2  ′   , … ,  ϵ  c  ′  )′ , and   
ϵ c   = ( ϵ c1   ,  ϵ c2   , … ,  ϵ cD  )′ . In addition,  λ  is a  c × 1  vector of the city fixed effects,  
 α  is a  D × 1  vector of the day-of-sample fixed effects,  δ = (λ′, α′  )′ , and  
 Z = [ I c   ⊗  ι D   |  ι c   ⊗  I D   ]  a  cD × (c + D)  matrix. In terms of this notation (15) 
becomes

(16)  Q = Zδ + Pβ + ϵ .

OLS can be applied to equation (16) to recover an estimate of each city’s   β c    . Let  b  ,  
d , and  e  equal the OLS estimates of  β  ,  δ  , and  ϵ  , respectively.

It is more common to estimate a restricted model of gasoline demand in which 
all locations are assumed to have the same price coefficient, implying the following 
true model:

(17)  Q = Z  δ   ∗  + (P ι c  ) β   ∗  +  ϵ   ∗  ,
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where  P ι c    is a  cD × 1  vector that equals  p = ( p  1  ′  ,  p  2  ′   , … ,  p  c  ′  )′  and   β   ∗   is a scalar. 
The Appendix derives the following expression for the OLS estimate of   β   ∗   in terms 
of  b  , the OLS estimates of the vector  β ,

(18)   b   ∗  = ( ι  c  ′   P′  M Z   P ι c   )   −1   ι  c  ′   P′  M Z   Pb = (p′  M Z   p )   −1  p′  M Z   Pb .

Note that if (16) is the true data generation process, then the OLS estimate   b   ∗   is a 
weighted average of the OLS estimates of   β c    in which the relative weighting of each 
city’s   β c    is based on the degree of within-city variation in the residual prices (after 
controlling for city and day-of-sample fixed effects). As we demonstrate below, dif-
ferent data aggregations will yield different weighted sums of the OLS estimates of 
the   β c    as a component of the estimated slope coefficient.

Using this notation, we can also derive expressions for the OLS estimate of the 
slope coefficient with different quantity and price aggregates. Consider a regres-
sion model aggregated to the month and state level. Suppose there are  S  states and  
m  months. This can be accomplished by pre-multiplying  Q  and  p  by a  Sm × cD  
aggregation matrix  A  defined in the Appendix. Let   p   +  = Ap  and   Q   +  = AQ . 
These are the  Sm × 1  vectors of monthly per capita prices and quantities for each 
state. Let   Z   +  = [ I S   ⊗  ι m   |  ι S   ⊗  I m  ]  be the  Sm × (S + m  )  matrix of indicator vari-
ables for the state and month-of-sample fixed effects. The OLS estimate of the slope 
coefficient using state and month per capital variables is

(19)   b   +  = (p′ A′  M  Z   +    Ap )   −1 p′ A′  M  Z   +    AQ .

The Appendix derives the following expression for the difference between   b   +   and   b   ∗  :

(20)

   b   +  −  b   ∗  =  [ (p′ A′  M  Z   +    Ap)   −1  p′ A′  M  Z   +    A −  (p′  M Z   p)   −1  p′  M Z  ] Pb

+  (p′ A′  M  Z   +    Ap)   −1  p′ A′  M  Z   +    AZd +  (p′ A′  M  Z   +    Ap)   −1 p′ A′  M  Z   +    Ae .

This difference can be decomposed into three components (represented by the 
three terms of (20)). The first results from the fact that aggregation changes how 
the city-specific price response parameters in  b  are weighted within   b   +   relative 
to how they are weighted in   b   ∗  . Specifically, the   b   +   estimate from the aggregate 
model weights elements of  b  from each state according to the variance in the state’s 
monthly average prices over time relative to other states, while the   b   ∗   estimate from 
the disaggregate model weights each city’s coefficient based on the variance in the 
city’s daily prices over time relative to other cities.24 The second component of the 
difference arises when the residuals of the state-level, monthly weighted  average 

24 Note that the product  Pb  represents a vector of the elements   β c    p cd   . Thus, in the second term of the   β   +   
estimate in (A5), premultiplying  Pb  by  A  produces a population-weighted average of these region-specific pre-
dicted price effects across days of the month and cities within each state, while premultiplying these averages by  
  (p′  M Z   p)   −1  p′ A′  M  Z   +     produces a variance-weighted average across states and months of these population-weighted 
state-month average price effects. 
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prices regressed on state and month-of-sample fixed effects are correlated with the 
state-level, monthly weighted average of the city, and day-of-sample fixed effects. 
If the models using aggregate panel data retain a complete set of time-series and 
cross-section fixed effects, this term will be zero. However, this will not be true 
when aggregating to a national time series. The third term is nonzero if the residual 
from regressing state and month-of-sample weighted-average prices on state and 
month-of-sample fixed effects is correlated with residual from regressing the state 
and month-of-sample weighted-average values of the OLS residuals from estimat-
ing equation (18),  e  , on state and month-of-sample fixed effects. Although a nec-
essary condition for the consistency of the OLS estimates of  δ  and  β  is that   p cd    and   
ϵ cd    are contemporaneously uncorrelated, if there is correlation between any prices in 
the same state and month, and any values of demand shock  (ϵ)  in the same state and 
month, this third term will be nonzero.

When comparing estimates obtained using time-series aggregated data, the spe-
cific terms of the decomposition change but maintain a similar structure. For exam-
ple, aggregating to the daily national average level requires replacing the aggregation 
matrix  A  with a new matrix  B  defined in the Appendix. Using this notation,  Bp  is 
the daily national per capita weighted average price, and  BQ  is the daily national per 
capita weighted average quantity. Although it is no longer possible to include day-
of-sample fixed effects, more time-aggregated fixed-effects can be included. Let   Z   #   
equal the  D × m  matrix that is composed of m blocks each of length equal to the 
number of days in month m for  m = 1, 2, … , m . Suppose that the daily weight-
ed-average quantity is regressed on the daily weighted-average price and month-of-
sample fixed effects. The slope coefficient from this regression is

(21)   b   #  = (p′ B′  M  Z   #    Bp )   −1  p′ B′  M  Z   #    BQ. 

The Appendix derives the following expression for the difference between   b   #   
and   b   ∗  :

(22)

    b   #  −  b   ∗  =  [ (p′ B′  M  Z   #    Bp)   −1  p′ B′  M  Z   #    B −  (p′  M Z   p)   −1  p′  M Z  ] Pb

+  (p′ B′  M  Z   #    Bp)   −1  p′ B′  M  Z   #    BZd +  (p′ B′  M  Z   #    Bp)   −1 p′ B′  M  Z   #    Be .

The three components of (22) differ in several important ways from those in (20). 
Because the matrix  B  generates a population-weighted national average, the first 
term in (22) now represents the difference between a simple population-weighted 
average of the elements of  b  and the residual-price-variation weighted average 
reflected in   b   ∗  . The second term is due to correlation between the residual of daily 
weighted average prices regressed on month-of-sample fixed effects and the residual 
from regressing the fitted values from the city and day-of-sample fixed effects on 
month-of-sample fixed effects. In other words, within-month fluctuations in nation-
wide demand that are correlated with national average prices but do not represent 
demand response will now result in endogeneity bias due to the inability to include 
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daily fixed effects. The third term is nonzero if the residual from regressing daily 
weighted-average prices on month-of-sample fixed effects is correlated with the 
residual from regressing the month-of-sample weighted average values of the OLS 
residuals from estimating (16),  e  , on state and month-of-sample fixed effects. If 
there is correlation between average prices on a day and the value of the demand 
shock on a different day in the same month, then this term will be nonzero.

While we allow the true price responsiveness of demand to vary across cities, our 
decomposition reflects a comparison to the restricted OLS model, which assumes 
a common slope coefficient, in large part because nearly all studies of gasoline 
demand estimate such models. In fact, for our daily city-level data, OLS estimation 
of the unrestricted model (15) does reveal some degree of heterogeneity, though the 
city-specific price coefficients are reasonably tightly centered around the mean of 
−0.049 with a standard deviation of 0.010. This mean also turns out to be quite close 
to the OLS estimate from the restricted model (17), which produces   b   ∗  = −0.047 . 
In other words, in the disaggregate data, the estimate of the weighted average of the   
β c    reflected in   b   ∗   is very close to the unweighted average of the estimates of the   β c    . 
We will see that with aggregation this will no longer be the case.

In Table 5, we examine the extent to which the three different sources of bias 
discussed above arise in our data. Each column presents the estimation results for a 
particular degree of aggregation. The top panel presents the price coefficient from 

Table 5—Difference between Aggregate and Disaggregate Estimates  
of Responsiveness to Price

(Pay-at-pump transactions only)

Aggregated panel models Time-series models

Geography: City State State National National
Periodicity: Monthly Daily Monthly Daily Monthly

(1) (2) (3) (4) (5)

Disaggregated:
   b   ∗   (from equation (17)) −0.047 −0.047 −0.047 −0.047 −0.047 

(0.004) (0.004) (0.004) (0.004) (0.004)
 Implied elasticity −0.312 −0.312 −0.312 −0.312 −0.312

Aggregated:
   b   +   (from equation (19)) −0.037 −0.030 −0.025 −0.009 −0.001 

(0.004) (0.009) (0.010) (0.007) (0.004)
 Implied elasticity −0.247 −0.201 −0.164 −0.062 −0.004

Decomposition of the difference (  b   +  −  b   ∗  ):
 Equation (20), term 1 0.0002 0.004 0.005 −0.0001 −0.0001 
 Implied impact on elasticity 0.001 0.028 0.035 −0.001 −0.001

 Equation (20), term 2 0 0 0 0.042 0.046
 Implied impact on elasticity 0 0 0 0.282 0.305

 Equation (20), term 3 0.010 0.012 0.017 −0.005 0.0005
 Implied impact on elasticity 0.064 0.083 0.112 0.031 0.003

Notes: Included fixed effects in each specification are the same as those indicated in Table 4. 
Standard errors for panel specifications are robust and clustered at the level of the  cross-sectional 
unit to allow for arbitrary serial correlation. Standard errors for time-series specifications are 
estimated using a Newey and West (1987) procedure and are robust to first-order serial cor-
relation. Implied elasticity terms represent the associated coefficient estimate multiplied by the 
sample mean price and divided by the sample mean of the quantity per capita measure.
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the aggregate model and compares it to the price coefficient obtained using disag-
gregate data. Because a linear demand model is used in all specifications, we also 
report the elasticity implied by the coefficient when evaluated at the mean of the 
data. In the lower panel of Table 5, we decompose the difference in estimates from 
aggregate and disaggregate models by calculating the values of the three different 
terms in equation (20). In the aggregated panel regressions (first three columns), the 
first term in equation (20) contributes a moderate positive impact, making demand 
appear up to 11 percent less elastic in aggregate models. This suggests that cities in 
which demand is more responsive are being relatively underweighted in the aggre-
gated models, either because weighting within state is now based on population or 
because weighting relative to cities in other states now depends on the degree vari-
ation in state weighted average prices. In addition, the third term in equation (20) 
consistently contributes an even larger positive impact on the aggregated panel esti-
mates, making demand appear of up to 36 percent less elastic as a result of positive 
correlation between prices and unexplained demand shifts occurring on other days 
within the month and in other cities within the state.

In the aggregated time-series models (columns 4 and 5 of Table 5) the source of 
bias is entirely different, resulting instead from the inability to include the  time-period 
fixed effects that are present in the panel regressions. The incomplete set of time 
dummy variables are only partially able to control for macroeconomic fluctuations 
that may influence both gasoline demand and gasoline prices, and as a result, these 
models exhibit very inelastic estimates (due to the large positive impact from the 
second term in equation (22)). Similar issues will arise if data is aggregated over 
time necessitating the use of cross-sectional or short-panel models that are no longer 
able to include a complete set of location fixed effects. In this case, the inability to 
control for unobserved locational characteristics that influence gasoline demand and 
are correlated with price local levels has the potential to substantially bias elasticity 
estimates (most likely toward higher magnitudes).25 While not reported here, mod-
els estimated after aggregating our data to city- or state-level cross-sections result in 
estimates that are several times more elastic than our disaggregated results suggest.

We conclude from our decomposition that several important sources of bias may 
result from estimating gasoline demand using aggregate data, and that the source 
and degree of bias is likely to differ across the various levels of potential aggre-
gation. Moreover, the generalized decomposition provided above can be used to 
evaluate the effects of almost any form of aggregation. As long as the aggregation 
process can be written as a matrix times the original vector of daily city-level data, 
a decomposition of the sources of bias can be computed as shown.

D. implications for Studies Utilizing Aggregate Data

The findings from our bias decomposition analysis provide a framework for 
researchers designing or implementing new studies of gasoline demand response to 

25 For example, people in highly populated areas might consume less gasoline per capita due to higher density 
and/or public transportation, but might also face higher gasoline prices that reflect higher costs of distribution and 
retailing. 
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evaluate the scope of potential biases that might arise from their data and empirical 
setting. In addition, by revealing how estimates from different empirical designs 
are likely to be biased and in what direction they may be biased, this will enable 
researchers and policymakers to utilize more appropriately and effectively demand 
elasticity estimates from existing studies. The wide ranging estimates of demand 
elasticity observed in the literature can be rationalized as reflecting, at least in part, 
the varying biases resulting from different levels and dimensions of data aggregation.

As an example, consider recent studies by Li, Linn, and Muehlegger (2014) 
and Rivers and Schaufele (2015) that examine how gasoline demand responds to 
changes in gasoline-related taxes. Li, Linn, and Muehlegger (2014) estimate a panel 
two-way fixed effects demand model using state-level annual averages of gasoline 
deliveries and prices (very similar to the type of log-log models we estimate in 
Table 4), obtaining estimates that are relatively consistent with our similarly aggre-
gated panel results. Rivers and Schaufele (2015) take a similar approach using 
monthly  province-level data from Canada. The focus of both studies, however, is on 
distinguishing price changes generated by gasoline tax rate adjustments from other 
non-tax related price changes and separately estimating the elasticity of demand 
response to these two types of price changes. They consistently find demand to 
be more elastic with respect to a change in gasoline tax. While both studies con-
clude that this result may reflect differences in persistence or salience, our aggrega-
tion model illustrates how different types of price changes (i.e., tax versus non-tax 
related) could result in different degrees of aggregation bias. For a given level of 
aggregation, the magnitude of the bias depends on the degree of heterogeneity and 
cross-correlation between consumption and prices in different cities or on different 
days over which aggregation is occurring. Unlike gas price fluctuations, gasoline 
taxes (and changes) are uniform across cities in the state and exhibit only occa-
sional (and coordinated) discrete changes across the days of each year. As a result, 
tax-related prices changes are less likely to be correlated with unobserved demand 
fluctuations in other cities. In this case, an estimate of the elasticity of demand to 
state tax changes could be more elastic simply because it exhibits less bias than an 
estimate based on nontax-related price changes. This mechanism may also explain 
why Davis and Kilian (2011) and Coglianese et al. (2015) obtain more elastic esti-
mates when using gasoline tax changes as an instrumental variable for gasoline 
price in order to identify demand response.

VI. Summary and Conclusions

In this study, we use high frequency panel data on gasoline prices and expendi-
tures to reexamine the nature of gasoline demand in the United States. We specify 
a model of gasoline purchase behavior that allows us to identify a measure of the 
short-run elasticity of gasoline demand from data on gasoline expenditures. Our 
demand estimates are significantly more elastic than those of other recent studies. To 
investigate this discrepancy, we aggregate our data, estimate demand models similar 
to those used in previous studies, and then perform a decomposition that identi-
fies the degree of aggregation bias resulting from each of several possible sources. 
The results suggest that the sources of bias can differ depending on the degree and 
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dimension of aggregation, but clearly show that the strongest bias occurs in time 
series models where a complete set of time-period fixed effects can not be included.

We also take advantage of the high frequency of our data to more carefully study 
how consumers respond immediately following a change in gasoline prices. Using 
our purchase frequency model, we are able to separately identify the elasticity of 
gasoline usage or demand from the change in consumers’ probability of purchase. 
Our findings reveal a temporary response in the probability of purchase in the days 
following a price change as well as an immediate response in usage that does not 
dissipate over time. The estimated demand response over durations longer than a 
few days is consistent with the estimate from our static model.

Gasoline demand elasticity estimates are frequently used in policy evaluation 
and in broader economic research. Our results provide robust evidence that gasoline 
demand may be considerably more responsive to price fluctuations than one might 
conclude based on the recent literature, and the estimates differ by magnitudes large 
enough to substantially impact subsequent policy evaluation or market analysis.

Hughes, Knittel, and Sperling (2008), for example, estimate that gasoline demand 
has become extremely inelastic in recent years and conclude that emission reduction 
goals that rely on reductions in gasoline consumption will be difficult to achieve 
using gasoline taxes alone. They suggest that alternative measures such as CAFE 
standards may be needed to meet desired reductions while avoiding politically 
infeasible tax levels. Based on our more elastic estimates, however, the required 
gasoline tax increase needed to achieve a particular reduction in consumption would 
be at least five times smaller than what would be predicted using the estimates of 
Hughes, Knittel, and Sperling (2008).

Studies evaluating the impacts of cap-and-trade policies, like Borenstein et al. 
(2015), who analyze expected permit prices under California’s greenhouse gas 
emissions cap-and-trade program, also rely directly on existing parameter estimates 
such as the price responsiveness of gasoline demand. Partly in response to recent 
estimates like those of Hughes, Knittel, and Sperling (2008), they adopt a rather 
inelastic value for gasoline demand elasticity which may contribute to their over-
all prediction that the supply of emissions abatement will be relatively inelastic to 
permit prices. Acknowledging a greater elasticity in the demand for gasoline could 
reduce predicted GHG permit price levels and volatility.

More accurate elasticity estimates can also substantially impact the inferences 
one draws when evaluating the macroeconomic costs of gasoline and oil mar-
ket disruptions and the benefits of policies responses like maintaining a Strategic 
Petroleum Reserve (SPR) that are intended to reduce these costs. If gasoline demand 
were significantly more elastic than previously thought, prices will likely increase 
substantially less than would otherwise be predicted in response to a oil supply 
disruption, and the quantity consumers will purchase at these prices will be substan-
tially smaller. As a result, the overall macroeconomic displacement effect is likely 
to be much smaller than would have previously been predicted. In addition, when 
consumers have more elastic demand, the release of a certain volume of fuel from 
the SPR during a market disruption will not be as effective as a policy lever aimed 
at reducing price levels. By demonstrating a significantly larger price-responsive-
ness of gasoline demand, our elasticity results strengthen any argument in favor of 
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 eliminating or reducing the size of the SPR or in support of mechanisms imposing 
prices for greenhouse gas emissions.

In addition to providing a more robust and precise estimate of gasoline demand 
response, our aggregation analysis and decomposition of the sources of aggregation 
bias in this setting should help researchers and policy analysts to more successfully 
evaluate the reliability of existing estimates and to improve empirical design and 
identification in future studies.

Appendix

A. Aggregated model Slope Estimates in Terms of Disaggregate model Estimates

This Appendix derives the estimates of the slope coefficients and the relation-
ships between them presented in Section VC. Applying OLS to equation (16) yields 
the following sample analogue:

(A1)  Q = Zd + Pb + e,  

where  d, b,  and  e  are the OLS estimates of  δ  ,  β  , and  ϵ  , respectively. Pre-multiplying 
both sides of (A1) by   M Z   =  I Dc   − Z  (Z′ Z)   −1 Z′  yields

(A2)   M Z   Q =  M Z   Pb + e,  

where  b =  (P′  M Z   P)   −1 P′  M Z   Q . In terms of this notation, the OLS estimate of   β   ∗   
is   b   ∗  =  ( ι  c  ′  P′  M Z   P  ι c  )   −1   ι  c  ′   P′  M Z   Q . Substituting the expression for  Q  from (A1) 
and recognizing that   M Z   Z = 0  and   M Z   e = e  yields

(A3)   b   ∗  =  ( ι  c  ′   P′  M Z   P  ι c  )   −1   ι  c  ′   P′  M Z   Pb =  (p′  M Z   p)   −1  p′  M Z   Pb. 

We can also derive an expression for the OLS estimate of the slope coefficient 
from the model aggregated to the month and state level in terms of  d, b,  and  e . The 
first step in this process requires defining a  Sm × cD  matrix  A  that creates month 
and state-level data from day and city-level data. Assume that the rows of  A  are 
ordered in blocks by states and within each block by months. Assume the columns 
of  A  are ordered in blocks by cities and then by days within each block. The  m th  
row of the  s th  block is composed of zeros for all elements except those where city 
c is contained in state s and day d is contained in month m. In those cases, the ele-
ment of the matrix is equal to   N cd   , the number of active purchasers in city c in day 
d divided by the sum of all of the   N cd    values in the  m th  row of block s. The analog 
to equation (A1) when using monthly state-level aggregate data to estimate a single 
price coefficient is

(A4)  AQ =  Z   +   d   +  + AP  b   +  +  e   +  ,

where   Z   +  = [ I S   ⊗  ι m   |  ι S   ⊗  I m  ]  the  Sm × (S + m  )  matrix of indicator variables for 
the state and month-of-sample fixed effects, and   d   + ,  b   + ,  and   e   +   are the  resulting 
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OLS estimates. Following the logic above,   b   +   can be expressed as in equation 
(19), where   m  Z   +    =  I Sm   −  Z   +   ( Z   + ′  Z   + )   −1   Z   + ′ . Substituting equation (A1) into this 
expression for   b   +   yields

(A5)   b   +  =  (p′ A′  M  Z   +    Ap)   −1 p′A′  M  Z   +    AZd +  (p′ A′  M  Z   +    Ap)   −1 p′A′  M  Z   +    APb

 +  (p′ A M  Z   +    Ap)   −1 p′A M  Z   +    Ae .

This produces the expression for the difference between   b   +   and   b   ∗   in equation (20) 
of Section VC.

Estimating a daily national weighted average quantity on the daily weighted- 
average price regression requires a  D × cD  matrix  B  that transforms daily city- 
level data into daily national data. Each row of  B  is composed of c blocks of 
length D. All of the elements of the  d th  row are zero except for the  d th  element of 
each of the c blocks, each of which is equal to   N cd    divided by   N d   =  ∑ c=1  c     N cd   . In 
terms of this notation, the slope coefficient from the regression of the daily national 
weighted-average quantity on the daily weighted-average price and month-of- 
sample fixed effects is

(A6)   b   #  =  (p′ B′  M  Z   #    Bp)   −1  p′ B′  M  Z   #    BZd +  (p′ B′  M  Z   #    Bp)   −1 p′ B′  M  Z   #    BPb

 +  (p′ B′  M  Z   #    Bp)   −1  p′ B′  M  Z   #    Be ,

where   M  Z   #    =  I D   −  Z   #   ( Z   # ′  Z   # )   −1   Z   # ′ . This yields the following expression for 
the difference between   b   #   and   b   ∗   given in equation (22) in Section VC.
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