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  Abstract :  We present an algorithm to estimate the two-way fixed effect linear model. The algorithm relies on 

the Frisch-Waugh-Lovell theorem and applies to ordinary least squares (OLS), two-stage least squares (TSLS) 

and generalized method of moments (GMM) estimators. The coefficients of interest are computed using the 

residuals from the projection of all variables on the two sets of fixed effects. Our algorithm has three desirable 

features. First, it manages memory and computational resources efficiently which speeds up the computa-

tion of the estimates. Second, it allows the researcher to estimate multiple specifications using the same set 

of fixed effects at a very low computational cost. Third, the asymptotic variance of the parameters of interest 

can be consistently estimated using standard routines on the residualized data.  
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1    Introduction 
 Large data sets allow researchers to obtain precise estimates even after controlling for different sources of 

 heterogeneity. It is often the case that appropriately controlling for heterogeneity requires including two sets 

of high-dimensional fixed effects. For example, consider estimating residential electricity demand using daily 

consumption from a panel of 1000 households over a 5-year period. Half of the households were exposed to 

real-time pricing while the other half faced a regular two-part tariff. It seems appropriate to include house-

holds fixed effects that capture heterogeneity in electricity consumption habits, and day-of-sample fixed 

effects that capture common unobserved time-specific demand shocks (e.g., due to varying whether con-

ditions). If each consumer is observed 1826 times, the data would contain 1.8 million observations. Given 

memory constraints, creating a set of dummies for either household or day effects is not practical and may 

not be feasible at all. In this paper we propose a feasible algorithm that computes the effect of the variables 

of interest (e.g., real-time prices) managing memory and computational power efficiently. 

 The algorithm relies on the Frisch-Waugh-Lovell theorem. The coefficients of interest are computed by 

OLS, TSLS or GMM using the residuals from the projection of all variables on the two sets of fixed effects. This 

procedure is trivial in balanced panels with equally-weighted observations but it can be quite complicated in 

cases where observations are not equally weighted or the panel is unbalanced. The algorithm in this paper is 

especially suited for the latter cases. 

 Let  N  be the number of households/groups and  T  be the number of periods. The data consist of approxi-

mately  N   ×   T  observations. Unbalanced panels may have less observations. Panels where some households 

are observed more than once in each time period may have more observations. Constructing an additional 
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set of dummies requires adding min( N ,  T ) – 1 variables. This is feasible only if the memory is able to store an 

array with dimensions  N   ×   T   ×  (min( N ,  T ) – 1). We propose an algorithm where this is not necessary. The first 

step of the algorithm computes a set of three matrices that characterize the structure of fixed effects given a 

particular sample. The first matrix is  N  by  T  with typical element equal to the sum of weights for observations 

that share a particular pair of fixed effects. The other two matrices can be computed from the first one and 

are used repeatedly in the subsequent steps. The single most computationally intensive operation in this step 

is inverting a (min( N ,  T ) – 1) by (min( N ,  T ) – 1) matrix. The second step of the algorithm obtains the residuals 

of the projection of each of the variables on the two sets of fixed effects. This step is computationally inex-

pensive as the matrix inversion required to compute the projection was done once and for all in the first step. 

The third step is to estimate the desired specification with the residualized data using standard statistical 

routines. By virtue of the Frisch-Waugh-Lovell theorem, the estimate of the asymptotic variance calculated 

with the residualized data is numerically identical to the estimate calculated with the original data. 

 Our algorithm has three desirable features. First, it manages memory and computational resources effi-

ciently which speeds up the computation of the estimates. Second, it allows the researcher to estimate multiple 

specifications using the same set of dummies at a very low computational cost. The most computational inten-

sive operation, inverting the matrix in step one, has to be performed only once no matter how many explana-

tory variables are included in the analyisis. The results of step one can be stored and used over and over as the 

researcher adds more variables to the analysis and runs different specifications. Third, the asymptotic variance 

of the parameters of interest can be consistently estimated using standard routines for OLS, TSLS or GMM on the 

residualized data, including the estimator robust to heteroskedasticity and within-group correlation. 

 Standard routines available in statistical software do not deal with two-way fixed effect models efficiently. 

Stata allows the user to absorb one set of fixed effects but requires generating a set of dummies for the other. In 

SAS,  PROC PANEL  has a  TWOWAY  option that creates one set of dummies. Both procedures may require more 

memory than available. There are some useful user-generated algorithms that avoid creating dummies. They 

are specifically designed to deal with situations where the panel structure is sparse, that is, cases where  N  and 

 T  are both very large but the number of observations is order of magnitudes lesser than  N   ×   T . For example, 

Carneiro et al. (2012) study 12 million employment spells of N=3,000,000 employees in T=350,000 firms. Our 

method inverts a  T   ×   T  matrix. Stata algorithms such as  reghdfe  ( Guimaraes and Portugal 2010 ;  Correia 2014 ), 

 reg2hdfe  ( Guimaraes 2011 ) and  a2reg  ( Ouazad 2008 ) avoid matrix inversion and rely on iterative procedures 

to residualize each covariate.  1     These methods will work better than ours in cases where inverting a  T   ×   T  matrix 

is computationally impractical and the number of covariates to residualize is small. The algorithm proposed 

here is specifically designed to deal with dense panel structures where inverting a (min( N ,  T ) – 1)  ×  (min( N ,  T ) – 1) 

matrix is costly, but possible. The inverse matrix can be stored and used repeatedly when estimating different 

specifications including new covariates. These covariates can be residualized at a relatively low computational 

expense. Intuitively, the fixed cost of inverting the (min(N, T)–1)×(min(N, T)–1) matrix reduces the marginal cost 

of residualizing additional covariates. We show that paying this fixed cost is the best alternative in many practi-

cal situations. 

 The rest of this paper is organized as follows. The next section describes the panel data model with 

two-way fixed effects and the OLS, TSLS, and GMM estimators with their corresponding asymptotic variance. 

Section 3 describes the algorithm. Section 4 compares its performance with other available methods.  

2    The Panel Model 
 Following  Arellano (1987) , consider the model: 

   β= + + + ∈ ∈′ … … ( { 1, , };  { 1, , } ),
it it i t it

y x e h u t T i N  

  1    Gaure (2013a)  and  Gaure (2013b)  implement a similar iterative procedure in R.  
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 where  y  
 it 
  is the outcome of household  i  in period  t ,  x  

 it 
  is a  K   ×  1 vector of included variables,  h  

 t 
  is a time fixed 

effect and  e  
 i 
  is a group/household fixed effect.  2     The household effect  e  

 i 
  and the time effect  h  

 t 
  are unobservable 

and potentially correlated with  x  
 it 
 . There is a set of instruments  z  

 it 
  ( L   ×  1 vector,  L   ≥   K ) that is assumed to satisfy 

the following exogeneity condition: 

   … … =
1 1

( | , , , , , , ) 0.
it i iT i T

E u z z e h h  

 The  u  
 it 
  are assumed to be independently distributed across groups (or households) but no restrictions are 

placed on the form of the autocovariances for a given group: 

   
1 1

( | , , , , , , ) .
i i i iT i T i

E u u z z e h h Ω… … =′ �  

 Each observation has a weight that can be related to the inverse of the probability of being sampled. If a 

pair ( i ,  t ) is unobserved then  w  
 it 
   =  0 (missing data is assumed to occur at random). Let   �y  denote the vector of 

outcomes  y  
 it 
  stacked by group and then ordered chronologically. Similarly, denote   �X  be the matrix of stacked 

vectors   ′
it

x  and   �Z  be the matrix of stacked vectors   ′ .
it

z    �D  is a matrix of dummies for groups and   �H  is a 

matrix of dummies for time periods.  w  is the vector of weights and   �u  is the vector of unobserved  u  
 it 
 . Either   �H  

or   �D  has one of its columns removed so that   = + −� �([ , ]) 1.rank D H T N  It is convenient to remove a column of 

  �H  if  T   <   N  and a column of   �D  if  N   <   T . 

 To obtain a model with constant weights, we premultiply the model by a diagonal matrix with the 

squared roots of the weights arranged on the main diagonal. This transformation is equivalent to multiplying 

each row in the data by the squared root of its weight. Let   ( )diag w  be such a matrix and   = �( ) ,y diag w y  

  = �( ) ,u diag w u    = �( ) ,X diag w X    = �( ) ,Z diag w Z    = �( )D diag w D  and   = �( ) .H diag w H  The model can be 

written as: 

    .Y X De Hh uβ= + + +  (1) 

 Let  M  denote the annihilator matrix of  S   =  [ D ,  H ].  M   =   I  –  S ( S  ′  S )  – 1  S  ′ ,  M   =   M  ′ ,  MM   =   M  and  MS   =  0. Denote  y   +    =   My , 

 X   +    =   MX ,  Z   +    =   MZ . By the Frisch – Waugh – Lovell Theorem ( Frisch and Waugh 1933 ;  Lovell 1963, 2008 ;  Giles 

1984 ), the GMM estimator of   β   for a weighting matrix   Ŵ  is: 

   

1

1

ˆ ˆ ˆ( ) ( )

ˆ ˆ( ) ( ).

GMM
X Z WZ X X Z WZ y

X Z WZ X X Z WZ u

β

β

+ + + + − + + + +

+ + + + − + + +

= ′ ′ ′ ′
= + ′ ′ ′ ′

 

 If   + + −= ′ 1ˆ ( ) ,W Z Z  this estimator is the TSLS estimator; if  K   =   L , it is the instrumental variables estimator; and 

if  X   =   Z , it is the OLS estimator: 

   

1

1

ˆ ( ) ( )

( ) ( ).

OLS
X X X y

X X X u

β

β

+ + − + +

+ + − +

= ′ ′
= + ′ ′

 

 Under appropriate regularity conditions: 

   β β − −− → 1 1ˆ( ) ( 0, ),N N J VJ  

 where 

   
− + + + +

→∞= ′ ′1 ˆplim ( )
N

J N X Z WZ X  

   

1

1

ˆ ˆplim ( ) ( ) ( ).
N

N i i i
i

V N X Z W Z Z WZ XΩ− + + + + + +
→∞

=

⎡ ⎤
= ′ ′ ′ ′⎢ ⎥

⎣ ⎦
∑

 

  2   The panel can be unbalanced. There can be unobserved pairs or pairs that are observed more than once. To keep  notation sim-

ple, we will focus only on imbalances of the first kind but the algorithm handles both. This linear model has also been considered 

by Davis (2002) and Wansbeek and Kapteyn (1989).   
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 and   Ω Ω= �( ) ( ).
i i i i

diag w diag w  Consistent estimates of the asymptotic variance can be obtained applying 

standard statistical routines to the residualized data ( y   +  ,  X   +  ,  Z   +  ). 

 Consider for example the OLS estimator. Its asymptotic distribution specializes to: 

   

1 1

1

1

1

ˆ( ) ( 0, )

plim ( )

plim ( ).

N

N

N i i i
i

N N J VJ

J N X X

V N X X

β β

Ω

− −

− + +
→∞

− + +
→∞

=

− →
= ′

= ′∑
 

  Arellano (1987)  considers three estimators of   β̂( )
OLS

avar . Let   β+ + += − ˆ .
i i i OLS

u y X  The first estimator is robust to 

heteroskedasticity and within-group correlation: 

    

1 1

1
1

ˆ( ) ( ) ( ) .
N

OLS i i i i
i

avar X X X u u X X Xβ + + − + + + + + + −

=

⎛ ⎞
= ′ ′ ′ ′⎜ ⎟⎝ ⎠∑

 

(2)

 

 This estimator can be calculated clustering standard errors at the group level.  3     The second estimator will 

produce consistent standard errors if  x  
 it 
  and  u  

 it 
  have finite 12th moments ( Stock and Watson 2008 , Remark 7) 

and disturbances are homoskedastic, i.e.,  Ω  
 i 
   =   Ω  for all  i : 

    

1 1

2
1

ˆ ˆ( ) ( ) ( ) ,
N

OLS i i
i

avar X X X X X Xβ Ω+ + − + + + + + −

=

⎛ ⎞
= ′ ′ ′⎜ ⎟⎝ ⎠∑

 

(3)

 

 where 

    

1

1

ˆ .
N

i i
i

N u uΩ+ − + +

=

= ′∑
 

(4)

 

 The third estimator will produce consistent standard errors under the classical assumption  Ω  
 i 
   =    σ   2  I : 

    
2 1

3
ˆ ˆ( ) ( ) ,

OLS
avar X Xβ σ + + −′=  (5) 

 where 

   

2ˆ
u u

L N T K
σ

+ +′=
− − −  

 and  L  is the number of observations. This estimator can be calculated running the regression of  y   +   on  X   +   and 

multiplying the estimate of the asymptotic variance of   β̂
OLS

 by   
−

− − −
.

L K

L N T K
   

3    The Algorithm 
 In balanced panels with constants weights in one of the two dimensions  –   w  

 it 
   =   w  

 i 
  or  w  

 it 
   =   w  

 t 
   –  the computation 

of   β̂  and its asymptotic variance is straightforward.  y   +   is obtained subtracting the weighted mean of   �y  along 

both dimensions: 

   
+ = − −�
it it i t

y y y y  

  3   In Stata:  reg plus_y plus_x*, vce(cluster h)   
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 where 

   

( )−
= =∑∑

∑ ∑
��

  and  .
it it iit it it

i t

it itt i

w y yw y
y y

w w
 

  X   +   and  Z   +   are computed following the same procedure. This heuristic approach can be justified formally. 

 Premultiplying the original model in equation (1) first by  M  
 D 
 , the annihilator of  D , and then by  M  

 H 
 , the 

 annihilator of  H , results in: 

    .
H D H D H D

M M Y M M X M M Hh uβ= + +  (6) 

 If the panel is balanced and weights are constant in  t  or in  i , then  M  
 H 
  M  

 D 
   =   M  

 H 
  or  M  

 H 
  M  

 D 
   =  0. In either case, 

 M  
 H 
  M  

 D 
  H   =  0, and the transformed model does not depend on the fixed effects. 

 If the panel is unbalanced or the group weights vary, 0 ≠  M  
 H 
  M  

 D 
  ≠  M  

 H 
  and the transformation  M  

 H 
  M  

 D 
  does 

not eliminate the fixed effects in matrix  H . The fixed effects are annihilated only if the model is premultiplied 

by  M   =   I  –  S ( S  ′  S )  – 1  S  ′  where  S   =  [ D ,  H ]. The algorithm presented in this paper is specifically designed to deal with 

these cases and consists of three steps:

1.    Compute ( S  ′  S )  – 1 . This step requires inverting a (min( N ,  T ) – 1) by (min( N ,  T ) – 1) matrix and storing it along 

with two N-by-T matrices. These three matrix contain all the information required to construct the anni-

hilator matrix  M .  

2.   Obtain ( y   +  ,  X   +  ,  Z   +  ).  

3.   Use standard methods to estimate   β̂  and its asymptotic variance by OLS, TSLS or GMM.    

 Only the first step is computationally intensive as it requires inverting a potentially large matrix. This step 

only has to be performed once for a given panel structure. The compuational cost of residualizing variables 

and running different specifications with them is relatively low. 

3.1    Computation of ( S  ′  S )  – 1  

 According the the definition of  S , 

   

1

1( ) .
D D D H

S S
D H H H

−

−
⎡ ⎤′ ′

=′ ⎢ ⎥′ ′⎢ ⎥⎣ ⎦  

  D  ′  D  is a diagonal matrix with typical diagonal element ( i ,  i ) equal to  Σ  
 t 
  w  

 it 
 . Similarly,  H  ′  H  is a diagonal matrix 

with typical diagonal element ( t ,  t ) equal to  Σ  
 i 
  w  

 it 
 .  D  ′  H  is a  N -by- T  matrix with typical element ( i ,  t ) equal to  w  

 it 
 . 

Using the formula for the inverse of a partitioned matrix: 

    

−
⎡ ⎤ ⎡ ⎤′ ′

=⎢ ⎥ ⎢ ⎥′ ′ ′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1

,
A B D D D H

B C D H H H
 

(7)

 

    ( ) 1
1( ) ( )A D D D H H H H D

−−= −′ ′ ′ ′  (8) 

    ( ) 1
1( ) ( )C H H H D D D D H

−−= −′ ′ ′ ′  (9) 

    
1 1( ) ( ) .B AD H H H D D D HC− −=− =−′ ′ ′ ′  (10) 

 If  T   <   N , the first step of the algorithm calculates and stores  C ,  B ,  D  ′  H  and ( D  ′  D )  – 1  ( C  is  T  – 1 by  T  – 1,  D  ′  H  and 

 B  are  N  by  T  – 1 and  D  ′  D  is  N  by  N  but it is diagonal, so  N  numbers are stored). The only non-diagonal matrix 

that is inverted is (9).  A  can be calculated from the stored matrices by 
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− − −= +′ ′ ′ ′ ′1 1 1( ) ( ) ( ) .A D D D D D HCH D D D  (11) 

 To economize computing power and memory,  A   –  an  N  by  N  matrix  –  is not constructed. 

 If  N   <   T , this step calculates and stores  A ,  B ,  D  ′  H  and ( H  ′  H )  – 1  ( A  is  N  – 1 by  N  – 1,  D  ′  H  and  B  are  N  – 1 by  T  and 

 H  ′  H  is  T  by  T  but it is diagonal, so  T  numbers are stored). The only non-diagonal matrix that is inverted is (8). 

 C  can be calculated by 

    
− − −= +′ ′ ′ ′ ′1 1 1( ) ( ) ( ) .C H H H H H DAD H H H  (12) 

 However,  C  is never constructed or stored. 

 Notice that the algorithm never constructs or stores a non-diagonal square matrix of size equal to the 

greatest of  T  and  N . This feature of the algorithm makes it more robust to memory constraints.  

3.2    The residualized data ( y   +  ,  X   +  ,  Z   +  ) 

 We obtain the projection coefficients 

   

δ

τ

= +′ ′
= +′ ′ ′

ˆ

ˆ

AD y BT y

B D y CT y
 

 and compute   δ τ+ = − −ˆ ˆ.y y D T  Variables   +
k

x  in  X   +  , and   +
k

z  in  Z   +   are obtained in the same way. 

 If  T   <   N , the matrix  A  is replaced by the expression in (11).  D  ′  y  is a  N -th order vector so  AD  ′  y  can be 

 calculated without ever creating  A  or any other  N  by  N  matrix that is not diagonal: 

   
1 1 1( ) ( ) ( ) ( ) ( )( ) ( ).AD y D D D y D D D H C H D D D D y− − −= −′ ′ ′ ′ ′ ′ ′ ′  

 Similarly, If  T   >   N ,  CT  ′  y  is calculated without ever creating  C  or any other  T  by  T  matrix that is not diagonal.  

3.3    Estimation of the parameters and their asymptotic variance 

 The residualized data ( y   +  ,  X   +  ,  Z   +  ) can be used as if it was the original data in any statistical package. In Stata, 

for example, reg plus_y plus_x*, vce(cluster h) returns   β̂
OLS

 along with its asymptotic variance 

estimate that is robust to within group correlation;  ivregress gmm plus_y (plus_x*  =  plus_z*), 

wmatrix(cluster h)  returns   β̂
GMM

 where the weighting matrix   Ŵ  is set equal to 

   

1

1

1

.
N

i i i i
i

N Z u u Z

−

− + + + +

=

⎛ ⎞′ ′⎜ ⎟⎝ ⎠∑
 

  Stata also returns a consistent estimate of the asymptotic variance of   β̂ .
GMM

  ivregress 2sls plus_y 

(plus_x  =  plus_z), vce(robust)  returns a two-stage least square estimate of   β   along with a hetero-

skedasticity robust estimate of its asymptotic variance. If vce(robust) is omitted, the asymptotic variance 

is estimated by (5), which is consistent under the classical assumption that the error terms are independently 

and identically distributed ( Ω  
 i 
   =    σ   2  I ). The reported variance estimates can be multiplied by   

L K

L N T K

−
− − −  to 

account for the reduced degrees of freedom.4  

 4 See textbooks such as Hayashi (2000) and Wooldridge (2010) for further discussion on different estimators of the asymptotic 

variance. Baum (2007) discusses their implementation in Stata. 
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4    Comparative Performance Analysis 
 This section compares the performance of the proposed algorithm with four existing algorithms in Stata: 

 reghdfe ,  reg2hdfe ,  a2reg  and  felsdvreg . The comparisons are not totally fair as these  algorithms 

have been designed to work in sparse panel models that are typical in labor studies (Abowd et al. 1999; 

 Carneiro et al. 2012). They are still the best available options even for dense panels. 

 We implemented the algorithm in  mata , the matrix language in Stata. We wrote a Stata program called 

 res2fe  which follows Stata conventions and calls the  mata  routines.  res2fe  stands for  “ Residualize two 

fixed effects. ”  For example, if hhid is a variable that contains a household identifier and tid contains an 

hour-of-sample identified, then  res2fe, abs(hhid tid) root("C:/abc")  performs the first step of 

the algorithm for a pair of fixed effects and stores the required matrices in the file C:/abc. If consumption 

and hourprice are the endogenous and exogenous variables, respectively,  reg2fe consumption hour-

price, root("C:/abc"), p(plus_)  creates the variables  plus_consumption plus_hourprice  

that contain the residualized version of the original variables.  reg2fe consumption hourprice, 

abs(hhid tid) root("C:/abc"), p(plus_)  preforms both steps.  5     The actual estimation is per-

formed using the built-in commands  regress  or  ivregress  on the residualized variables. 

 The command  a2reg , proposed by Ouazad (2008), uses a Conjugate gradient method to solve the 

minimum squares problem and obtain   β̂ .
OLS

 The algorithm never computes  X  ′  X ; therefore, it does not report 

an estimate of the asymptotic variance. The commands  reghdfe  ( Correia 2014 ) and  reg2hdfe  ( Guimaraes 

2011 ) follow iterative procedures proposed by  Guimaraes and Portugal (2010)  to obtain the solution without 

the explicit calculation of any inverse matrix. They residualize the dependent and independent variables by 

sequentially projecting them on the two sets of dummies. While computationally intensive, this approach 

imposes minimum memory requirements. Another advantage of these algorithms is that they also rely 

on the FWL theorem and generate residualized variables that can be stored for future use. The command 

 felsdvreg, proposed by  Cornelissen (2008) , absorbs one set of fixed effects and constructs components of 

the OLS normal equations using the identifier of the other set of fixed effects. Thus, it solves for   β̂
OLS

 without 

creating a set of dummies or relying on an iterative process. 

 We generate a panel of  N   =  10  n   households and  T   =  10  t   time periods and randomly drop 10 percent of the 

observations. The resulting panel is unbalanced. We draw household-specific and time-specific fixed effect 

from a standard normal. We also draw  K  covariates  x  and errors   υ   from independent standard normals. The 

dependent variable  y  is: 

   

υ
=

= + + +∑
1

K

it itk i t it
k

y x d h

 

 We estimate the parameters of the model using our procedure ( res2fe ) and the four existing algorithms and 

compare their running time over 10 different runs. Notice that the panel structure is different in each draw, 

so we are not taking advantage of the fact that our method allows to run the matrix inversion in step one just 

once. We stopped at 10 draws per configuration because the variance of the running times was very low rela-

tive to the differences in means across configurations.  Table 1   summarizes the results for different values of 

 N ,  T  and  K . 

  Table 1  shows that our procedure outperforms algorithms designed for sparse panels. The only exception 

is the case with  N   =   T   =  10,000 when  res2fe  spends too much time inverting a 9999  ×  9999 matrix.  reghdfe  

performs the estimation much faster. Even this case is useful to illustrate one of the advantages of our proce-

dure. The increase in computing time from  K   =  2 to  K   =  10 is relatively small compared to the increase observed 

  5   See the documentation to the Stata code for additional details. The algorithm was also implemented in Matlab and SAS to take 

advantage of some specific features of those programs. The Matlab implementation uses sparse matrices and takes advantage of a 

faster algorithm to invert matrices. The SAS implementation never loads the raw data in the computer RAM memory.  
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 Table 1 :     This table compares the performance of each algorithm in Stata/SE 12.1 on an Intel Core i7-2600 CPU 3.40GHz with 32 

GB RAM operating under 64-bit Windows 7.  

Running Time (in seconds)  

N  T  K    res2fe  reghdfe  reg2hdfe  a2reg  felsdvreg  

100 100 2 0.05 0.15 0.28 0.24 0.73

100 100 10 0.05 0.22 0.63 0.32 0.80

1000 100 2 0.3 1.2 2.7 2.1 8.0

1000 100 10 0.4 2.0 6.8 3.0 8.4

1000 1000 2 5.0 11.1 24.7 16.4 2074.2

1000 1000 10 6.0 20.1 70.9 27.7 2141.1

10,000 100 2 2.3 11.7 25.1 17.3 73.3

10,000 100 10 3.8 20.0 71.5 28.7 82.5

10,000 1000 2 36.9 122.0 242.2 163.6 21409.9

10,000 1000 10 45.3 200.9 672.2 265.6 21572.9

10,000 10,000 2 2341.9 1313.4 2806.3 *   >  1d

10,000 10,000 10 2522.7 2157.3 8220.4 *   >  1d

100,000 100 2 21.0 112.9 269.8 168.7   >  1d

100,000 100 10 33.8 188.9 891.2 278.8   >  1d

100,000 100 50 132.8 828.6 3917.2 950.0   >  1d

100,000 1000 2 360.3 1347.2 2755.9 *   >  1d

100,000  1000  10  507.1  2187.5  8274.4  *    >  1d  

    N  is the number of groups,  T  is the number of observations per group,  K  is the number of explanatory variables. The column 

labeled as  res2fe  shows the average computing time of our algorithm measured in seconds. Columns  reghdfe   reg2hdfe , 

 a2reg  and  felsdvreg  show computing time for each alternative algorithm. The asterisk represents a violation of the matrix 

size limit in Stata and  “   >  1d ”  indicates that the procedure was stopped after 1 day.   

 Table 2 :     This table breaks down the computing time spent in each of the steps of our algorithm.  

Running Time by Step (in seconds)  

N  T  K  Step 1  Step 2  Step 3  

100 100 2 0.02 0.02 0.01

100 100 10 0.01 0.02 0.01

1000 100 2 0.1 0.1 0.0

1000 100 10 0.1 0.3 0.1

1000 1000 2 3.5 1.3 0.1

1000 1000 10 2.9 2.5 0.5

10,000 100 2 0.8 1.3 0.2

10,000 100 10 0.8 2.4 0.5

10,000 1000 2 22.4 12.0 1.7

10,000 1000 10 18.5 21.3 4.6

10,000 10,000 2 2187.4 128.9 17.4

10,000 10,000 10 2198.7 244.2 49.8

100,000 100 2 7.5 11.3 1.4

100,000 100 10 7.6 20.6 4.7

100,000 100 50 9.7 85.9 35.1

100,000 1000 2 207.1 128.3 17.3

100,000  1000  10  198.4  228.9  47.1  

    N  is the number of groups,  T  is the number of observations per group,  K  is the number of explanatory variables. Step 1 per-

forms the matrix inversion and constructs the matrices that will be needed later on. Step 2 residualizes the dependent and 

 explanatory variables. Step 3 use the command  regress  to compute the OLS estimator using the residualized data.   
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for  reghdfe . This is true also in the other cases where  res2fe  ourperforms  reghdfe . Our method only 

requires inverting the matrix once independently of the number of explanatory variables  K . The maximum 

relative efficiency gain of our method relative to  reghdfe  occurs when  T  is low and  K  is high. In particular, 

if  N   =  100,000,  T   =  100 and  K   =  50,  res2fe  running time was a sixth of that of  reghdfe . 

  Table 2   shows that the computing time employed in step 1, which performs the inversion, does not 

depend on  K . The computing time in step 2, which projects each explanatory variables on the set of fixed 

effects, is increasing in  K . 

 The comparative performance analysis suggests that  res2fe  works best for dense panels where one 

fixed effect dimension is large and the other is large enough so that creating additional dummy variables is 

impractical, but small enough so that inverting a matrix of that dimension is computationally trivial. When 

inverting such a matrix is impractical, iterative procedures such as  reghdfe  perform better.  

5    Final Remarks 
 We present an algorithm to estimate a two-way fixed effect linear model. While existent algorithms are 

designed for sparse panels, ours works best in dense, but unbalanced panels. The algorithm relies on the 

Frisch-Waugh-Lovell Theorem and applies to ordinary least squares, two-stage least squares and general-

ized method of moments estimators. The coefficients of interest are computed using the residuals from the 

projection of all variables on the two sets of fixed effects. Our algorithm has three desirable features. First, it 

manages memory and computational resources efficiently which speeds up the computation of the estimates. 

Second, it allows the researcher to estimate multiple specifications using the same set of fixed effects at a 

very low computational cost. Third, the asymptotic variance of the parameters of interest can be consistently 

estimated using standard routines on the residualized data. This algorithm is preferable to existent ones 

when the panel is dense, one fixed effect dimension is large and the other is large enough so that creating 

additional dummy variables is impractical, but small enough so that inverting a matrix of that dimension is 

computationally feasible.    
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