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SUMMARY

When computing the solution of a generalized symmetric eigenvalue problem of the form Ku = λMu,
the Sturm sequence check is the most popular method for reporting the number of missed eigenvalues
within a range [σL, σR]. This method requires the factorization of the matrices K − σLM and
K − σRM. When the size of the problem is reasonable and the matrices K and M are assembled,
these factorizations are possible. When the eigensolver is equipped with an iterative solver, which is
nowadays the preferred choice for large-scale problems, the factorization of K− σM is not desired or
feasible and therefore the Sturm sequence check cannot be performed. To this effect, the purpose of
this paper is to present a factorization-free algorithm for detecting and identifying the eigenvalues that
were missed by an eigensolver equipped with an iterative linear equation solver within an interval of
interest [σL, σR]. This algorithm constructs a scalar, rational, transfer function whose poles are exactly
the eigenvalues of the symmetric pencil (K,M), approximates it by a Padé expansion, and computes
the poles of this approximation to detect and identify the missed eigenvalues. The proposed algorithm
is illustrated with an academic numerical example. Its potential for real engineering applications is
also demonstrated with a large-scale structural vibrations problem. Copyright c© 2000 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The numerical solution of a generalized large-scale eigenvalue problem of the form

Ku = λMu, (1)

where K and M are real symmetric positive definite matrices of size n, arises in many
engineering problems. For example in structural dynamics, the circular frequencies λk = ω2

k and
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corresponding eigenmodes uk are typically determined to prevent resonant excitations, design
a controller, or simply build a reduced-order computational model to predict the transient
linear response of the structure. Confidence in any of these applications requires, among others,
verifying that all relevant eigenpairs have been computed by the eigensolver.

A corollary of Sylvester’s inertia theorem [11] implies that the number of eigenvalues lying
in a real interval [σL, σR] can be determined by factoring the matrices K − σRM and
K − σLM, counting their number of negative pivots, and computing the difference between
these two numbers. For large-scale three-dimensional problems with ten million or more
degrees of freedom, factoring the aforementioned matrices can be computationally prohibitive.
In this case, experts often re-apply their eigensolvers in the space that is M-orthogonal to
the previously computed eigenmodes in order to identify any missed eigenpair. This idea
was recently exploited in [9] to implement an iterative scheme for computing all p lowest
eigenpairs of a symmetric positive definite pencil (K,M), for a specified p. This scheme relies
on the monotonic convergence of the eigenvalues sequenced in the increasing order. As such,
it can be applied to identify the eigenvalues missed in the range [σL, σR] only if σL < λ1,
where λ1 denotes the smallest eigenvalue of the symmetric positive definite pencil (K,M).
Unfortunately, this can be restrictive.

To the best of the authors’ knowledge, no post-processing technique that does not require the
factorization of a matrix related to K and/or M is currently available for checking whether an
eigensolver applied to the solution of problem (1) has missed some eigenvalues in an arbitrary
range of interest [σL, σR]. Hence, the main objective of this paper is to fill this gap in the
computational literature.

Since K−λM is singular only when λ is an eigenvalue of (K,M), it follows that the poles of
a scalar rational function such as lT (K− λM)−1r, where l and r are two real vectors and the
superscript T designates the transpose, are the eigenvalues of (K,M). It has been shown that
such a rational function can be accurately and efficiently approximated by an appropriate Padé
expansion [5, 6, 7, 4, 10, 1]. The numerical algorithm proposed in this paper for identifying
the eigenvalues missed in a given range of interest builds on the aforementioned observations.
It is described and illustrated in the remainder of this paper which is organized as follows.

In Section 2, the overall approach proposed in this paper for identifying the missed
eigenvalues is presented and justified. A key component of this approach is a scalar rational
function that is approximated by a Padé expansion whose computation is detailed in Section
3. The proposed method is laid out in Section 4. It is illustrated in Section 5 with several
examples, including a large-scale problem from structural dynamics. Its performance is also
assessed and its potential for real engineering applications is highlighted. Finally, conclusions
are offered in Section 6.

2. OVERALL APPROACH AND NUMERICAL ALGORITHM

Consider the following scalar transfer function

H(σ) = bT (K− σM)−1b, (2)

where K and M are two symmetric positive definite matrices, and b is an arbitrary vector.
The poles of H are exactly the eigenvalues of the generalized symmetric eigenvalue problem

(K− λM)u = 0.
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Hence, checking the eigenvalues of (K,M) is equivalent to checking the poles of H. Therefore,
the approach proposed in this paper for identifying the eigenvalues missed by an eigensolver
in an interval of interest [σL, σR] consists in first computing a good approximation of H, then
computing the poles of this approximation, and finally analyzing these poles to identify the
sought-after missed eigenvalues. To this effect, it is first shown that H is a rational function.

2.1. Rational expression of H

Since K and M are symmetric, the pencil (K,M) is diagonalizable. The diagonalization of
this pencil can be written as

KU = MUΛ,

where UT MU = I and Λ is a diagonal matrix whose entries are the eigenvalues of (K,M).
The columns of the matrix U are the corresponding eigenvectors.

Observing that U−1 = UT M, one obtains

K = MUΛUT M

and
K− σM = MU(Λ− σI)UT M.

It follows that
(K− σM)−1 = U(Λ− σI)−1UT

and therefore
H(σ) = bT U(Λ− σI)−1UT b. (3)

The above result can be re-written as

H(σ) =
n∑

k=1

(
UT b

)2
k

λk − σ
, (4)

where (·)k denotes the k-th component of a vector and λk is the k-th diagonal entry in Λ.
This shows that H is a rational function of σ with a numerator that is a polynomial of degree
at most equal to n− 1 and a denominator of degree at most equal to n, where n denotes the
size of the matrix K. Eq. (4) also emphasizes that the poles of H are exactly the eigenvalues
of the pencil (K,M).

2.2. One-point Padé approximation for local accuracy

A rational function such as H is typically well represented by a Padé approximant. The poles
of this approximant can be expected to converge towards the poles of H, which are exactly
the eigenvalues of the pencil (K,M). A Padé approximation of type (l/m) of the function H
around σ0, an arbitrary real number for which however the matrix K− σ0M is non singular,
is defined as a rational function of the form

Hl,m(σ) =
p0 + p1(σ − σ0) + · · ·+ pl(σ − σ0)l

1 + q1(σ − σ0) + · · ·+ qm(σ − σ0)m
(5)

whose Taylor expansion around σ0 matches the first l + m + 1 terms of the Taylor expansion
of H around the same point — that is,

H(σ) = Hl,m(σ) +O
(
(σ − σ0)l+m+1

)
.
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Since the numerator and denominator of H are polynomials of degrees equal at most to n− 1
and n, respectively, a Padé approximation of type

(
(m− 1)/m

)
is considered here and simply

denoted by Hm. The coefficients of the polynomials are computed so that the approximant
matches the first 2m terms of the following Taylor expansion around σ0,

Hm(σ0) = H(σ0) and
djHm

dσj
(σ0) =

djH

dσj
(σ0), ∀ j < 2m.

For the sake of completeness, the derivatives of H at σ0 are computed. The transfer function
H introduced in Eq. (2) can be re-written as follows

H(σ) = bT [K− σ0M− (σ − σ0)M]−1 b

= bT
{
(K− σ0M)[I− (σ − σ0)(K− σ0M)−1M]

}−1
b

= bT
[
I− (σ − σ0)(K− σ0M)−1M

]−1
(K− σ0M)−1b. (6)

The Taylor expansion around σ0 is

H(σ) =
+∞∑
q=0

(σ − σ0)q bT
[
(K− σ0M)−1M

]q
(K− σ0M)−1b. (7)

Since
H(σ0) = bT (K− σ0M)−1b

and
djH

dσj
(σ0) = j! bT

[
(K− σ0M)−1M

]j
(K− σ0M)−1b, for j < 2m,

it follows that
Hm(σ0) = bT (K− σ0M)−1b (8)

and
djHm

dσj
(σ0) = j! bT

[
(K− σ0M)−1M

]j
(K− σ0M)−1b, for j < 2m. (9)

2.3. Multi-point Padé approximation for global accuracy

The Padé approximant Hm can be expected to converge first locally around the expansion
point σ0. However, the polynomial degree m can be expected to grow large before Hm

becomes a globally accurate approximation of H. Since the main focus here is on checking
for missing eigenvalues of (K,M) in a range of interest [σL, σR], a global approximation
of H over the entire interval [σL, σR] is preferrable. Such a global approximation can be
provided by the multi-point Padé method which matches the moments of H at I discrete
points (σi)1≤i≤I ∈ [σL, σR]. If one chooses to fit the value of H and its 2J − 1 derivatives at
each point σi, the resulting multi-point Padé approximation of H satisfies

∀ i ∈ {1, · · · , I}, Hm(σi) = H(σi) and
djHm

dσj
(σi) =

djH

dσj
(σi), ∀ j < 2J.

In this case, one can write

H(σ) = Hm(σ) +O

(
I∏

i=1

(σ − σi)2J

)
,
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where m = IJ . The distribution of the I points σi within the interval [σL, σR] is arbitrary; it
can be a uniform or non uniform one. The multi-point Padé approximation can also consider a
variable number of derivatives at the points σi. However for the sake of simplicity, it is chosen
here to consider the same number of derivatives at each point σi.

2.4. General form of the proposed algorithm

Let Uc denote the matrix storing the nc < n computed eigenvectors whose associated
computed eigenvalues lie within the interval of interest [σL, σR]. If b is a random vector,
it can be assumed that (

UT
c b
)
k
6= 0, ∀ k ≤ nc.

On the other hand if b is chosen in the null space of UT
c — that is, if

UT
c b = 0, (10)

it follows from Eq. (4) that

H(σ) =
∑

k | λk∈Λnc

(
UT b

)2
k

λk − σ
, (11)

where Λnc is the union of the set of missed eigenvalues within [σL, σR] and the set of eigenvalues
that are outside this interval. Hence, if b is chosen to satisfy Eq. (10), H identifies with
the expression given in (11) and its poles become exactly the union of the eigenvalues that
were missed in [σL, σR] and those that lie outside this interval. This result leads to the
following algorithm for identifying the eigenvalues of the pencil (K,M) that were missed by
an eigensolver in the interval [σL, σR].

1. Gather in Uc the computed eigenvectors associated with the computed eigenvalues that
lie in the interval [σL, σR].

2. Generate a random vector b̃.
3. Compute b, the projection of b̃ onto the space orthogonal to Uc; b satisfies UT

c b = 0.
4. Compute Hm, a multi-point Padé approximation of H in [σL, σR].
5. Identify the poles of Hm in the interval [σL, σR].

Next, the computation of the multi-point Padé approximation Hm is discussed.

3. COMPUTATION OF THE MULTI-POINT PADÉ APPROXIMATION

3.1. Relationship with Krylov subspaces

In [5], a non symmetric Lanczos process was developed for computing a single-point Padé
approximant of a transfer function such as H and was shown to be computationally efficient.
In [6], an approach based on the rational non symmetric Lanczos algorithm was proposed
for computing a multi-point approximation of a rational function. Unfortunately, the non
symmetric Lanczos algorithm can suffer a loss of orthogonality and may even break down. For
this reason, a robust alternative based on a two-sided rational Arnoldi algorithm was proposed
in [7] and [2]. In the specific case of the rational function H given in (2) where the matrices are
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6 P. AVERY, C. FARHAT, AND U. HETMANIUK

symmetric and the vectors are the transpose of each other, the two-sided Arnoldi algorithm
reduces to a symmetric Lanczos algorithm.

All numerical methods outlined above for computing a Padé approximant of a rational
function such as H project the matrices K and M, and the vector b, onto a carefully
constructed matrix V. As such, they are often referred to as methods of “reduction by
projection”. Furthermore, all of these methods rely on Krylov subspaces for constructing the
appropriate matrix V. Here, a Krylov subspace is denoted by

Kq(K̆, b̆) = span
{
b̆, K̆b̆, · · · , K̆q−1b̆

}
, (12)

where K̆ is a matrix of interest and b̆ is a starting vector, and the projections of K, M, and
b onto V are denoted by

K̂ = VT KV, M̂ = VT MV, and b̂ = VT b. (13)

In [7, Theorem 3.1], it is proved that if the columns of the constructed V are such that their
span verifies the following property

span{V} ⊃ ⊕I
i=1KJ

(
(K− σiM)−1M, (K− σiM)−1b

)
, (14)

the reduced matrices K̂ and M̂, and the reduced vector b̂ satisfy

b̂T
[
(K̂− σiM̂)−1M̂

]j
(K̂− σiM̂)−1b̂ = bT

[
(K− σiM)−1M

]j
(K− σiM)−1b, (15)

where j = 0, 1, · · · , 2J − 1. From Eqs. (8,9) and Eq. (15) above, it follows that when the
property (14) is satisfied, the function

Hm(σ) = b̂T (K̂− σM̂)−1b̂ =
(
VT b

)T (
VT KV − σVT MV

)−1
VT b (16)

matches the values of H and its 2J − 1 derivatives at the points (σi)1≤i≤I , and therefore is a
multi-point Padé approximant of H.

3.2. Lanczos algorithm for computing the subspace of projection

Algorithm 1 describes a symmetric Lanczos algorithm with full reorthogonalization for
constructing the columns of a matrix V, of dimension n × IJ , that satisfies VT MV = I,
UT

c MV = 0, and the property (14). After V is built, the reduced-order quantities (13) can be
constructed and the sought-after multi-point Padé approximant (16) of H can be computed.

Note that the construction of V requires the solution of m = IJ linear systems (J linear
systems with (K − σiM) for I sample points σi). When the norm

√
vT Mv of a vector v is

zero, Algorithm 1 updates the columns of V by a new random vector while maintaining the
property (14). The reduced matrix M̂ is replaced by the identity matrix. The reduced matrix
K̂ and the reduced vector b̂ are built by direct projection.

4. MISSING EIGENVALUE FINDER

The discussion presented in the previous sections of this paper leads to proposing Algorithm 2
described below for the factorization-free identification of the eigenvalues missed in an arbitrary

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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Algorithm 1 Symmetric Lanczos process
(Initialize) p = 1
for i = 1, 2, · · · , I do

for j = 1, 2, · · · , J do
if j == 1 then

v = (K− σiM)−1b
else

v = (K− σiM)−1(I−Uc(UT
c Uc)−1UT

c )Mvp−1

end if
if p > 1 then

(Orthogonalize) v = v −Vp−1VT
p−1Mv

end if
γ =

√
vT Mv

if γ == 0 then
Reset v to a random vector
(Orthogonalize) v = v −Vp−1VT

p−1Mv.
γ =

√
vT Mv.

end if
(Update) vp = v/γ
p = p + 1

end for
end for

Algorithm 2 Lanczos-based eigencheck
Require: Computed M-orthonormal eigenvectors Uc

Require: Range of interest [σL, σR]
Require: Value for I (for sampling the above range of interest in I points (σi)1≤i≤I)
Require: Value for J (for matching at each point σi the first 2J − 1 derivatives of the scalar

rational function H)
1: Sample [σL, σR] in I points (σi)1≤i≤I

2: Generate a random vector b̃
3: Compute b =

(
I−Uc(UT

c Uc)−1UT
c

)
b̃

4: Apply Algorithm 1 for constructing the matrix V of dimension n×m (where m = IJ).
5: Compute the reduced matrices K̂ and M̂ (we recall M̂ = I)
6: Compute the full solution of the reduced-order m × m generalized symmetric eigenvalue

problem
K̂w = λM̂w (17)

7: Identify those computed eigenvalues of problem (17) which lie in the interval of interest
[σL, σR]

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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range of interest [σL, σR] by an eigensolver applied to the solution of the generalized symmetric
eigenvalue problem (1).

Algorithm 2 is essentially a post-processing procedure. It does not depend on the
eigensolver used to compute the eigenvectors Uc and the corresponding eigenvalues. The inputs
to this proposed algorithm are the computed eigenvectors Uc, the range of interest [σL, σR],
the desired number of sampling points I, and the integer J for which the Padé approximant of
H matches its first 2J − 1 derivatives at the sampled points (σi)1≤i≤I . The projection of the
randomly generated vector b̃ (Step 3) ensures that the vector b satisfies the desired property

UT
c b = 0

so that the poles of the computed Padé approximant correspond to the missed eigenvalues in
the range of interest [σL, σR].

In Section 1, it was noted that experts often try to find the missed eigenpairs by re-applying
their eigensolvers in the space that is M-orthogonal to the previously computed eigenvectors.
Here, it is concluded that this process is equivalent to Algorithm 2 with I = 1 (a single
sampling point) and therefore is unreliable for identifying all eigenvalues that have been missed
in a specific range of interest [σL, σR].

5. EXAMPLES

In this section, the proposed factorization-free Algorithm 2 for finding the eigenvalues missed
in an interval of interest by an eigensolver is illustrated with two numerical examples. The
first one is of the academic type. It has the merit of being easily reproducible by the reader.
It also demonstrates the main behavior and tendencies of the proposed Algorithm 2. The
second example is associated with a large-scale structural vibrations problem. It highlights the
potential of the proposed algorithm for real engineering applications. In both cases, ARPACK
[8] is chosen as the eigensolver.

5.1. Matrix BCSSTK16

Here, the generalized symmetric eigenvalue problem (1) is considered with K set to the matrix
BCSSTK16 from the Harwell-Boeing sparse matrix collection [3] whose size is n = 4884, and
M set to the identity matrix. For reference, a complete solution of this problem is obtained
using the MATLAB EIG routine. It is found that all 73 first eigenvalues of the pencil (K,M)
are equal to 1.0, the 74th one is equal to 1.5 × 105, and the largest eigenvalue is equal to
4.9× 109.

To compute an approximation of the first 100 eigenpairs (Uc,Λc) of the problem specified
above, ARPACK is applied within MATLAB 7 in the shift-invert mode with a shift σ = 0,
a Krylov subspace of size equal to 200, and the convergence tolerance τ = 10−8. For this
purpose, the random starting vector is generated with the MATLAB commands

rand(’state’, 1);
resid = rand(size(K,1), 1);

Using these parameters, 67 of the 100 computed eigenpairs are found to have their eigenvalues
in the range [0, 10]. Since the problem considered here has exactly 73 eigenvalues in [0, 10],

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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this means that in this case, ARPACK has missed six eigenpairs in the range [0, 10]. The 67
computed eigenvalues in [0, 10] are equal to 1.0 up to machine precision.

Then, Algorithm 2 is applied to find the eigenvalues missed in the range [0, 10]. The random
vector b̃ is generated with the MATLAB commands:

rand(’state’, 2);
btilde = rand(size(K, 1), 1);

The obtained results with I = 1 (one-point Padé approximation) are reported in Table I.
More specifically, Table I reports for different matching points σ0, the number of eigenvalues
identified by Algorithm 2 as missed eigenvalues in [0, 10], as a function of the polynomial
degree m = J characterizing the Padé approximant HJ . The reader can observe that once it

σ0 = 0 σ0 = 5 σ0 = 10
ARPACK 67 67 67

ARPACK + poles of H2 67 + 1 67 + 1 67 + 1
ARPACK + poles of H4 67 + 2 67 + 2 67 + 1
ARPACK + poles of H8 67 + 3 67 + 3 67 + 3
ARPACK + poles of H16 67 + 6 67 + 5 67 + 5
ARPACK + poles of H17 67 + 6 67 + 6 67 + 5
ARPACK + poles of H18 67 + 6 67 + 6 67 + 6
ARPACK + poles of H19 67 + 6 67 + 6 67 + 6
ARPACK + poles of H20 67 + 6 67 + 6 67 + 6

Table I. Problem BCSSTK16: number of identified missed eigenvalues in [0, 10] (specified after the +
symbol)

has converged, Algorithm 2 retrieves all six eigenpairs that have been missed by ARPACK
in the range [0, 10]. The convergence of this algorithm is shown however to depend on the
matching point σ0. Indeed, since all 73 eigenvalues lying in [0, 10] are equal to 1, the closer σ0

is to 1, the smaller can the degree m be expected.
To illustrate that Algorithm 2 recovers the correct eigenvalues in [0, 10], Table II reports

the smallest eigenvalues of the reduced pencil (K̂, M̂) (up to the first six) when σ0 = 5. The

Recovered values by Algorithm 2
Poles of H2 (1.0000, 5.0× 107)
Poles of H4 (1.0000, 1.0917, 3.4× 107, 1.2× 108)
Poles of H6 (1.0000, 1.0000, 3.0× 107, 4.5× 107, 8.7× 107, 3.7× 108)
Poles of H8 (1.0000, 1.0000, 1.0000, 3.0× 107, 3.9× 107, 5.5× 107, · · · )
Poles of H12 (1.0000, 1.0000, 1.0000, 1.0000, 3.0× 107, 3.2× 107, · · · )
Poles of H16 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 3.0× 107, · · · )
Poles of H17 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0716, · · · )
Poles of H18 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, · · · )
Poles of H19 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, · · · )
Poles of H20 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, · · · )

Table II. Problem BCSSTK16: poles recovered by Algorithm 2 when σ0 = 5

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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10 P. AVERY, C. FARHAT, AND U. HETMANIUK

reader can observe that once it has identified six missed eigenvalues in the range [0, 10] (with
H17), Algorithm 2 refines the values for the eigenpairs that have been missed by ARPACK.
However, Algorithm 2 can only guarantee that the recovered eigenvalues will be accurate up
to τ = 10−8 as (Uc,Λc) were computed with that tolerance.

Next, a smaller tolerance τ = 10−16 is used and all other ARPACK parameters are kept
the same. In this case, ARPACK finds all 73 eigenvalues that belong to the range [0, 10], and
the post-processing Algorithm 2 correctly finds that no eigenvalue has been missed in this
range.

Finally, the post-processing Algorithm 2 is reapplied for finding the eigenvalues missed
in the range [0, 10] using this time I > 1 matching points (multi-point Padé approximation).
Table III reports for this case the minimal polynomial degree m∗ = IJ∗ (or for a given I, the
minimum value of J , J∗) that enables Algorithm 2 to identify six missed eigenvalues in the
range [0, 10], as a function of I and the choice of the sampling points (σi)1≤i≤I . Note that m∗

is also the number of columns in V. As expected from the global approximation property of

I (σi)1≤i≤I J∗ m∗ = IJ∗

1 {5} 17 17
2 {0, 10} 9 18
3 {0, 5, 10} 6 18
4 {0, 10/3, 20/3, 10} 4 16
5 {0, 2.5, 5, 7.5, 10} 3 15
6 {0, 10/6, 20/6, 30/6, 40/6, 50/6, 10} 2 12

Table III. Problem BCSSTK16: smallest polynomial degree m = IJ for which Algorithm 2 identifies
correctly all eigenvalues missed in [0, 10]

the multi-point Padé algorithm, m∗ is found to decrease with I.

5.2. Large-scale structural vibrations problem

Here, the generalized symmetric eigenvalue problem (1) is considered with K and M set to
the stiffness and mass matrices, respectively, arising from the finite element discretization of
the bolted joint model of Figure 1 whose size is n = 322710. To construct an approximation
of the first 100 eigenpairs (Uc,Λc) of this model, the P(arallel)ARPACK FORTRAN library
functions PDSAUPD and PDSEUPD are applied within an in-house developed finite element
structural analysis code in the shift-invert mode. The shift parameter is set to σ = 0, the size of
the Krylov subspace is set to 200, the convergence tolerance to τ = 10−16, and the FETI-DP
solver [12, 13] is chosen to solve all the resulting linear systems of equations. Furthermore,
every 10th converged eigenpair is deliberately excluded from the approximation (Uc,Λc) so
that some (or all) of the missed eigenvalues can be known a priori for the purpose of verification.

Using the above parameters, 92 of the 100 computed eigenpairs are found to have their
eigenvalues in the range [0, 3.9478×109] (corresponding to the frequency range [0, 1×104] Hz) of
which nine are deliberately excluded from the approximation. The eigenvalues of the excluded
eigenpairs are 3.4939 × 107, 1.7928 × 108, 3.3891 × 108, 8.0245 × 108, 1.0672 × 109, 1.4863 ×
109, 2.4172×109, 2.8610×109, and 3.7337×109. The number of genuinely missed eigenvalues is
unknown, but is most likely zero since the problem did not exhibit any clustering phenomenon
and a tight convergence tolerance was chosen.
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Figure 1. Large-scale finite element model of a bolted joint for modal analysis

Next, Algorithm 2 is applied to find the excluded eigenvalues as well as those potentially
missed in the range [0, 3.9478418 × 109]. In Algorithm 1, the linear systems are solved
iteratively by the FETI-DPH solver [14], a domain-decomposition based iterative solver
designed for indefinite problems of the form (K − σM)x = f . The results obtained with
I = 1 (one-point Padé approximation) are summarized in Table IV. More specifically, Table IV
reports for different matching points σ0, the number of eigenvalues identified by Algorithm
2 as missed eigenvalues in [0, 3.9478 × 109], as a function of the polynomial degree m = J
characterizing the Padé approximant HJ . The reader can observe that once it has converged,
Algorithm 2 retrieves all nine eigenpairs excluded from the approximation in the range
[0, 3.9478 × 109] and does not identify any other missed eigenvalue. Since all 92 eigenvalues
lying in [0, 3.9478 × 109] are evenly spaced, a value of σ0 in the middle of the range can be
expected, and indeed is found, to be the best one.

To illustrate that Algorithm 2 recovers the correct eigenvalues in [0, 3.9478×109], Table V
reports the smallest eigenvalues of the reduced pencil (K̂, M̂) (up to the first nine ones) when
σ0 = 1.9739× 109. The reader can observe that once it has identified nine missed eigenvalues
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σ0 = 0 σ0 = 1.9739× 109 σ0 = 3.9478× 109

PARPACK† 83 83 83
PARPACK† + poles of H4 83 + 2 83 + 2 83 + 1
PARPACK† + poles of H8 83 + 5 83 + 4 83 + 2
PARPACK† + poles of H12 83 + 7 83 + 6 83 + 3
PARPACK† + poles of H16 83 + 7 83 + 8 83 + 4
PARPACK† + poles of H18 83 + 8 83 + 9 83 + 5
PARPACK† + poles of H20 83 + 8 83 + 9 83 + 5
PARPACK† + poles of H22 83 + 9 83 + 9 83 + 6
PARPACK† + poles of H24 83 + 9 83 + 9 83 + 6
PARPACK† + poles of H26 83 + 9 83 + 9 83 + 7
PARPACK† + poles of H28 83 + 9 83 + 9 83 + 7
PARPACK† + poles of H30 83 + 9 83 + 9 83 + 8
PARPACK† + poles of H32 83 + 9 83 + 9 83 + 8
PARPACK† + poles of H34 83 + 9 83 + 9 83 + 8
PARPACK† + poles of H36 83 + 9 83 + 9 83 + 9
PARPACK† + poles of H38 83 + 9 83 + 9 83 + 9
PARPACK† + poles of H40 83 + 9 83 + 9 83 + 9

Table IV. Large-scale structural vibrations problem: number of identified missed eigenvalues in
[0, 3.9478× 109] (specified after the + symbol). PARPACK† denotes PARPACK results with selected

eigenpairs excluded

Recovered values by Algorithm 2
Poles of H4 (2.2807× 109, 2.4173× 109)
Poles of H8 (9.6607× 108, 1.4863× 109, 2.4172× 109, 2.8452× 109)
Poles of H12 (3.1697×108, 8.0244×108, 1.0672×109, 1.4863×109, 2.4172×109,

2.8610× 109)
Poles of H16 (1.7875×108, 3.3889×109, 8.0245×109, 1.0672×109, 1.4863×109,

2.4172× 109, 2.8610× 109, 3.7349× 109)
Poles of H20 (3.4946×107, 1.7928×108, 3.3891×108, 8.0245×108, 1.0672×109,

1.4863× 109, 2.4172× 109, 2.8610× 109, 3.7337× 109, · · · )
Poles of H22 (3.4939×107, 1.7928×108, 3.3891×108, 8.0245×108, 1.0672×109,

1.4863× 109, 2.4172× 109, 2.8610× 109, 3.7337× 109, · · · )
Poles of H24 (3.4939×107, 1.7928×108, 3.3891×108, 8.0245×108, 1.0672×109,

1.4863× 109, 2.4172× 109, 2.8610× 109, 3.7337× 109, · · · )
Poles of H26 (3.4939×107, 1.7928×108, 3.3891×108, 8.0245×108, 1.0672×109,

1.4863× 109, 2.4172× 109, 2.8610× 109, 3.7337× 109, · · · )
Poles of H28 (3.4939×107, 1.7928×108, 3.3891×108, 8.0245×108, 1.0672×109,

1.4863× 109, 2.4172× 109, 2.8610× 109, 3.7337× 109, · · · )

Table V. Large-scale structural vibrations problem: poles recovered by Algorithm 2 when σ0 =
1.9739× 109
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in the range [0, 3.9478× 109], Algorithm 2 refines the actual values for the identified missed
eigenpairs. Note that nine poles for H20 and H22 are in the range [0, 3.9478 × 109] and that
the smallest pole is not exact for H20 but more accurate for H22.

Finally, the post-processing Algorithm 2 is reapplied for finding the eigenvalues missed
in the range [0, 3.9478 × 109] using this time I > 1 matching points (multi-point Padé
approximation). Table VI reports for this case the minimal polynomial degree m∗ = IJ∗

(or for a given I, the minimum value of J , J∗) that enables Algorithm 2 to identify nine
missed eigenvalues in the range [0, 3.9478 × 109], as a function of I and the choice of the
sampling points (σi)1≤i≤I . Note that m∗ is also the dimension of the reduced pencil (K̂, M̂)
and the total number of linear solves performed in Algorithm 1. As expected from the global

I (σi)1≤i≤I J∗ m∗ = IJ∗

1 {1.9739× 109} 18 18
2 {0, 3.9478× 109} 9 18
3 {0, 1.9739× 109, 3.9478× 109} 6 18
4 {0, 1.3159× 109, 2.6319× 109, 3.9478× 109} 4 16
5 {0, 9.8696× 108, 1.9739× 109, 2.9609× 109, 3.9478× 109} 3 15
6 {0, 7.8956× 108, 1.5791× 109, 2.3687× 109, 3.1582× 109, 3.9478× 109} 3 18

Table VI. Large-scale structural vibrations problem: smallest polynomial degree m = IJ for which
Algorithm 2 identifies correctly all eigenvalues missed in [0, 3.9478× 109]

approximation property of the multi-point Padé algorithm, J∗ and m∗ are found to decrease
with I.

6. CONCLUSIONS

To the best of the author’s knowledge, a factorization-free algorithm for detecting and
identifying the eigenvalues missed by an eigensolver equipped with an iterative linear equation
solver within an interval of interest [σL, σR] has been presented for the first time. This
algorithm constructs a scalar, rational, transfer function whose poles are exactly the eigenvalues
of the symmetric pencil (K,M), approximates it by a Padé expansion, and computes the poles
of this approximation to detect and identify the missed eigenvalues. The proposed algorithm
was illustrated with an academic numerical example. Its potential for real engineering
applications was also demonstrated with a large-scale structural vibrations problem.
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