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Vector Form of the Semi-Discrete Euler Equations

From Chapter 7, it follows that the semi-discretization on
unstructured (or for that matter structured) grids of the unsteady
Euler equations in multiple dimensions can be written as

dW i

dt
= −

∑
?

F̂i?

‖Ci‖
, i = 1, 2, · · · , N

where N denotes the total number of finite volume cells

An alternative expression of the above equations is

‖Ci‖
dW i

dt
+
∑
?

F̂i? = 0, i = 1, 2, · · · , N
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Vector Form of the Semi-Discrete Euler Equations

Let
W = [W

T

1 W
T

2 · · · W
T

N ]T

and
F(W) = [

∑
?

F̂T
1?

∑
?

F̂T
2? · · ·

∑
?

F̂T
N?]T

And let Ω = diag(Ω1, Ω2, · · · , ΩN) denote the diagonal matrix of
cell volumes, where Ωi = ‖Ci‖Im (m = 3, 4, 5 for one-, two-, and
three-dimensional problems, respectively)

Then, the semi-discretization in multiple dimensions of the unsteady
Euler equations can be written in vector form as

Ω
dW

dt
+ F(W) = 0
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Steady-State Solution

Fictitious Time-Evolution

At the steady-state, the above semi-discrete equation simplifies to

F(W) = 0

However, because F(W) is in general a highly nonlinear function of
W whose solution by Newton’s method is difficult to initialize, the
above nonlinear algebraic equation is transformed into the following
nonlinear ordinary differential equation

U
dW

dτ
+ F(W) = 0

where U is a positive definite matrix, and τ is a fictitious, global time

If the above problem is hyperbolic everywhere, then, regardless of
the initial condition, as long as U is positive definite, the above
system converges to a steady-state solution as τ →∞
In particular, the specific choice of a positive definite matrix U is
unimportant, except that it may change the convergence point if
there are multiple steady-state solutions for W, which is assumed
here not to be the case
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Steady-State Solution

Local Time-Stepping

U
dW

dτ
+ F(W) = 0

Assume that a different local time τi is chosen for each cell Ci

Then, there exists a Jacobian matrix Ji for the transformation from

τ in every cell Ci to τi : Ji =
dτ

dτi
Im

Let J = diag(J1, J2, · · · , JN)
Note that both Ω and J are positive definite matrices
Assume next that U is chosen as

U = ΩJ = diag(Ω1J1, Ω2J2, · · · , ΩNJN)

= diag(‖C1‖
dτ

dτ1
Im, ‖C2‖

dτ

dτ2
Im, · · · , ‖CN‖

dτ

dτN
Im)

Then, the above equation becomes

ΩJ
dW

dτ
+ F(W) = 0
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Steady-State Solution

Local Time-Stepping

ΩJ
dW

dτ
+ F(W) = 0

The above equation can be re-written as

‖Ci‖Ji
dWi

dτ
+
∑
?

F̂i?(W) = ‖Ci‖
dτ

dτi

dWi

dτ
+

∑
?

F̂i?(W)

= ‖Ci‖
dWi

dτi
+
∑
?

F̂i?(W)

= 0, i = 1, 2, · · · , N

It can also be expressed as

dWi

d τ̄i
+
∑
?

F̂i?(W) = 0, i = 1, 2, · · · , N

where
τ̄i =

τi
‖Ci‖
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Steady-State Solution

Local Time-Stepping

dWi

d τ̄i
+
∑
?

F̂i?(W) = 0, τ̄i =
τi
‖Ci‖

, i = 1, 2, · · · , N

The above equation suggests that the original semi-discrete equation

Ω
dW

dt
+ F(W) = 0

can be solved using any preferred ordinary differential equation
solver and a local time-step
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Steady-State Solution

Local Time-Stepping

To understand the benefit of a local time-step, consider the case of
a 1D linear advection equation (speed = a) and a FT or BT
approximation

In this case, for a given CFL number CFL, the local and global
time-steps are given by

∆t`i =
CFL

a
∆xi and ∆tgi =

CFL

a
∆xmin

respectively

It follows that

∆t̄`i =
∆t`i
∆xi

=
CFL

a
and ∆t̄gi =

∆tgi
∆xi

=
CFL

a

∆xmin

∆xi
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Steady-State Solution

Local Time-Stepping

Note that

∆t̄`i =
∆t`i
∆xi

=
CFL

a
and ∆t̄gi =

∆tgi
∆xi

=
CFL

a

∆xmin

∆xi

⇒ ∆t̄`i = ∆t̄gi
∆xi

∆xmin

Hence, time-integrating the governing semi-discrete equations using
a local time-step ∆t`i — a process also known as pseudo-time
integration — advances the solution in each cell towards the
steady-state at the same scaled pace

Comparatively, time-integrating the governing semi-discrete
equations using a global time-step ∆tgi — as in the genuinely
unsteady case — slows down convergence toward the steady-state
solution

What happens in the case of a 1D nonlinear advection equation?
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