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I—Vector Form of the Semi-Discrete Euler Equations

m From Chapter 7, it follows that the semi-discretization on
unstructured (or for that matter structured) grids of the unsteady
Euler equations in multiple dimensions can be written as

i=1,2 -, N
EHKH

where N denotes the total number of finite volume cells

m An alternative expression of the above equations is

Firo =0, i=1,2 -, N
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I—Vector Form of the Semi-Discrete Euler Equations

m Let T .
W:[Wl wy .- WN]T
and R R R
FW) =D FL DAL Y R
* * *
m And let Q = diag(Q1, Qa, ---, Qu) denote the diagonal matrix of
cell volumes, where Q; = ||G;||T,, (m = 3,4,5 for one-, two-, and

three-dimensional problems, respectively)

m Then, the semi-discretization in multiple dimensions of the unsteady
Euler equations can be written in vector form as

dW
0" L F(W) =
5 HFW)=0
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|—Steady-State Solution

L Fictitious Time-Evolution
m At the steady-state, the above semi-discrete equation simplifies to
F(W)=0

m However, because F(W) is in general a highly nonlinear function of
W whose solution by Newton's method is difficult to initialize, the
above nonlinear algebraic equation is transformed into the following
nonlinear ordinary differential equation

dw
— +FW) =
UdT+() 0

where U is a positive definite matrix, and 7 is a fictitious, global time

m If the above problem is hyperbolic everywhere, then, regardless of
the initial condition, as long as U is positive definite, the above
system converges to a steady-state solution as 7 — oo

m In particular, the specific choice of a positive definite matrix U is
unimportant, except that it may change the convergence point if
there are multiple steady-state solutions for W, which is assumed
here not to be the case
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|—Steady-State Solution
L Local Time-Stepping

dw
— +F(W) =
Ud7+() 0

m Assume that a different Jocal time 7; is chosen for each cell C;
m Then, there exists a Jacobian matrix J; for the transformation from
. dr
7 in every cell C; to 7: Ji = —1,,
dT,'
m Let J =diag(J1, b, -+, Inv)
m Note that both Q and J are positive definite matrices

m Assume next that U is chosen as
U=QJ = diag(Qh, Q0h, -, Qvin)
dr dr dr
= i 7I[ma 7Hma Tty 7I[m
diog (| Gl 3 L. [1Call 5 Nl )

Then, the above equation becomes

¥
dW
] dr (W) =0
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|—Steady-State Solution
L Local Time-Stepping

W
QJC:,— +F(W) =0

m The above equation can be re-written as

dW; ~ dr dW
IGillJi = (W) = lIGl - ix(
_ e de :
- 1 d7_ 1%
= 0, i=12 -, N
m It can also be expressed as
dT, +¥]:/* = 7 I:17 27 Ty N

4
where
_ Ti ¥ iz
Ti =
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|—Steady-State Solution
L Local Time-Stepping

dW;
d7;

+Zﬁl*(w):07 T =

*

m The above equation suggests that the original semi-discrete equation

dW
Q= + F(W) =
5 HFW)=0

can be solved using any preferred ordinary differential equation
solver and a local time-step
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|—Steady-State Solution
L Local Time-Stepping

m To understand the benefit of a local time-step, consider the case of
a 1D linear advection equation (speed = a) and a FT or BT
approximation

m In this case, for a given CFL number CFL, the local and global
time-steps are given by

CFL CFL

Atf = — A% and  Aff = —Axiiy
a
respectively
m |t follows that
- Atf CFL - Atf CFL Axp;
Ate = L = — d Atg = 1! —— min
! JANYS, a an ! Ax; a Ax;
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|—Steady-State Solution
L Local Time-Stepping

m Note that
- At! CFL - At CFL Axp;
Até: L= — d Atgzilzi min
! AX,‘ a an ! AX,' a AX,‘
_ _ Ax;
= Af = At,gix
Xmin

m Hence, time-integrating the governing semi-discrete equations using
a local time-step Atf — a process also known as pseudo-time
integration — advances the solution in each cell towards the
steady-state at the same scaled pace

m Comparatively, time-integrating the governing semi-discrete
equations using a global time-step Atf — as in the genuinely
unsteady case — slows down convergence toward the steady-state
solution

m What happens in the case of a 1D nonlinear advection equation?
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