The Finite Volume Method

These slides are partially based on the recommended textbook: Culbert B. Laney. "Computational Gas Dynamics," CAMBRIDGE UNIVERSITY PRESS, ISBN 0-521-62558-0

1/61

イロン イヨン イヨン ・

Outline

- **1** Conservative Finite Volume Methods in One Dimension
- 2 Introduction to Reconstruction-Evolution Methods
- 3 First-Order Upwind Reconstruction-Evolution Methods
 - Scalar Conservation Laws
 - Euler Equations
 - Roe's First-Order Upwind Method for the Euler Equations
- 4 Introduction to Second- & Higher-Order Reconstruction-Evolution Methods
- 5 The MUSCL/TVD Method
 - The Method of Lines
 - Flux Splitting
 - Second-Order Approximation
 - Van Leer's Slope Limiter

Multidimensional Extensions

- 6 Steger-Warming Flux Vector Splitting Method for the Euler Equations

2/61

Note: The material covered in this chapter equally applies to scalar conservation laws and the Euler equations, in one and multiple dimensions. To keep matters as simple as possible however, this material is presented primarily in one dimension then briefly extended to multiple dimensions.

3/61

イロト イヨト イヨト イヨト

Conservative Finite Volume Methods in One Dimension

Recall that the integral form of a conservation law can be written as

$$\int_{x_{i-1/2}}^{x_{i+1/2}} [u(x, t^{n+1}) - u(x, t^n)] \, dx = -\int_{t^n}^{t^{n+1}} [f(u(x_{i+1/2}, t)) - f(u(x_{i-1/2}, t))] \, dt$$

This leads to the following numerical conservation form

$$\Delta t \left(\widehat{\frac{\partial \bar{u}}{\partial t}} \right)_{i}^{n} = -\lambda (\hat{f}_{i+1/2}^{n} - \hat{f}_{i-1/2}^{n})$$
(1)

イロン イロン イヨン イヨン

4/61

Conservative Finite Volume Methods in One Dimension

Recall that the integral form of a conservation law can be written as

$$\int_{x_{i-1/2}}^{x_{i+1/2}} [u(x, t^{n+1}) - u(x, t^n)] \, dx = -\int_{t^n}^{t^{n+1}} [f(u(x_{i+1/2}, t)) - f(u(x_{i-1/2}, t))] \, dt$$

This leads to the following numerical conservation form

$$\Delta t \left(\widehat{\frac{\partial \bar{u}}{\partial t}} \right)_{i}^{n} = -\lambda \left(\hat{f}_{i+1/2}^{n} - \hat{f}_{i-1/2}^{n} \right)$$
(1)

where

$$\bar{u}_{i}^{n} \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x, t^{n}) dx, \quad \hat{f}_{i+1/2}^{n} \approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} f\left(u(x_{i+1/2}, t)\right) dt$$
(2)

and the rest of the notation is the same as in the previous Chapter

Conservative Finite Volume Methods in One Dimension

- \bar{u}_i^n is the spatial cell-integral average value of u at time t^n that is, the average value of u in the cell $[x_{i-1/2}, x_{i+1/2}]$ at time t^n
- fⁿ_{i+1/2} is the time-integral average of f at the point x_{i+1/2}
- Note that for a uniform spatial discretization, $x_{i+1/2} - x_{i-1/2} = (x_{i+1} + x_i)/2 - (x_i + x_{i-1})/2 = (x_{i+1} - x_{i-1})/2 = \Delta x$ is constant, $x_{i\pm 1/2} = x_i \pm \Delta x/2$, and therefore

$$\frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} g(x) dx = g(x_i) + O(\Delta x^2)$$
(3)

- From (1)–(3), it follows that
 - If u_iⁿ is replaced by ū_iⁿ, ALL concepts and results presented in the previous Chapter that is, for the finite difference method equally apply for the finite volume method presented in this Chapter
 - on a uniform spatial discretization, ū_iⁿ = u_iⁿ + O(Δx²) ⇒ second-order accuracy in space is not affected by identifying ū_iⁿ with u_iⁿ and vice-versa ⇒ there is no need to distinguish between finite volume and finite difference when the order of spatial accuracy is less or equal to 2
 - the "bar" notation is often dropped in the remainder of this chapter, particularly when this should not create any confusion

LIntroduction to Reconstruction-Evolution Methods

$$\int_{x_{i-1/2}}^{x_{i+1/2}} [u(x,t^{n+1})-u(x,t^n)] dx = -\int_{t^n}^{t^{n+1}} [f(u(x_{i+1/2},t))-f(u(x_{i-1/2},t))] dt$$

$$\Delta t \widehat{\left(\frac{\partial \bar{u}}{\partial t}\right)}_{i}^{n} = -\lambda (\hat{f}_{i+1/2}^{n} - \hat{f}_{i-1/2}^{n})$$

$$\bar{u}_{i}^{n} \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x,t^{n}) dx, \quad \hat{f}_{i+1/2}^{n} \approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} f\left(u(x_{i+1/2},t)\right) dt$$

6/61

メロト メポト メヨト メヨト 二日

Introduction to Reconstruction-Evolution Methods

- Two-step finite volume design approach
 - spatial reconstruction
 - reconstruct $u(x, t^n)$ in each cell without necessarily accounting for the upwind direction
 - this step differentiates the finite volume method which forms u then f(u), from the finite difference method which forms directly f(u)

7/61

イロト イヨト イヨト イヨト

- Two-step finite volume design approach
 - spatial reconstruction
 - reconstruct $u(x, t^n)$ in each cell without necessarily accounting for the upwind direction
 - this step differentiates the finite volume method which forms u then f(u), from the finite difference method which forms directly f(u)
 - temporal evolution
 - approximate $u(x_{i+1/2},t)$ for $t^n \leq t \leq t^{n+1}$ then evaluate

$$\hat{f}_{i+1/2}^n = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} f\left(u(x_{i+1/2}, t)\right) dt$$

- any reasonable approximation based on waves and characteristics naturally introduces the minimal amount of upwinding required by the CFL condition
- Reconstruction-evolution methods are sometimes called Godunov-type methods or MUSCL-type methods

7/61

・ロト ・四ト ・ヨト ・ヨト

Introduction to Reconstruction-Evolution Methods

・ロ・・西・・ヨ・・ヨ・ のへ(

- Example: first-order reconstruction-evolution method for the linear advection equation
 - piecewise constant reconstruction in the cell $[x_{i-1/2}, x_{i+1/2}]$: $u(x, t^n) \approx p_r(x) = \bar{u}_i^n$

• for the linear advection equation, $u(x, t) = u(x - a(t - t^n), t^n)$ and therefore

$$egin{aligned} u(x_{i+1/2},t) &pprox p_{e,i+1/2}(t) &= p_r \left(x_{i+1/2} - a(t-t^n)
ight); \ -1 &\leq \lambda a \leq 1 \ &= & \left\{ egin{aligned} ar{u}_i^n & ext{for } 0 \leq \lambda a \leq 1 \ ar{u}_{i+1}^n & ext{for } -1 \leq \lambda a \leq 0 \end{aligned}
ight. \end{aligned}$$

then

$$\hat{f}_{i+1/2}^{n} = \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} f\left(p_{e,i+1/2}(t)\right) dt = \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} a p_{e,i+1/2}(t) dt = \begin{cases} a \bar{u}_{i}^{n} & \text{for } 0 \le \lambda a \le 1 \\ a \bar{u}_{i+1}^{n} & \text{for } -1 \le \lambda a \le 0 \end{cases}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ の

Introduction to Reconstruction-Evolution Methods

- What if the previous example was about a nonlinear conservation law instead of the linear advection equation?
 - piecewise constant reconstruction
 - **\blacksquare** gives rise to a Riemann problem at each cell edge, and the Riemann problem has an exact solution at x/t = 0
 - an approximate Riemann solver can be used instead of the true Riemann solver without changing the numerical solution (surprisingly)
 - higher-order reconstruction
 - the jump at each cell edge in the higher-order piecewise polynomial reconstruction gives rise to a problem that lacks a known exact solution
 - the exact solution can be approximated using Riemann solvers

LIntroduction to Reconstruction-Evolution Methods

└─Scalar Conservation Laws

- Suppose that the reconstruction is piecewise constant: Then, each cell edge gives rise to a Riemann problem
- The exact evolution of the piecewise constant reconstruction yields

$$u_i^{n+1} = u_i^n - \lambda (\hat{f}_{i+1/2}^n - \hat{f}_{i-1/2}^n)$$

where

$$\hat{f}_{i+1/2}^{n} = \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} f\left(u_{Riemann}(x_{i+1/2}, t)\right) dt$$

12/61

イロト イヨト イヨト イヨト 三日

└─Scalar Conservation Laws

- Suppose that the reconstruction is piecewise constant: Then, each cell edge gives rise to a Riemann problem
- The exact evolution of the piecewise constant reconstruction yields

$$u_i^{n+1} = u_i^n - \lambda (\hat{f}_{i+1/2}^n - \hat{f}_{i-1/2}^n)$$

where

based on (4)

$$\hat{f}_{i+1/2}^n = rac{1}{\Delta t} \int_{t^n}^{t^{n+1}} f\left(u_{Riemann}(x_{i+1/2},t)\right) dt$$

Since the solution of the Riemann problem is self-similar (a function of $(x - x_{i+1/2})/t$), $u_{Riemann}(x_{i+1/2}, t) = u((x_{i+1/2} - x_{i+1/2})/t))$ = u(0) is constant for all time

$$\implies \hat{f}_{i+1/2}^n = f\left(u_{Riemann}(x_{i+1/2},t)\right) = f\left(u_{Riemann}(0)\right) \tag{6}$$

where $f(u_{Riemann}(x_{i+1/2}, t))$ is computed using any exact or approximate Riemann solver and t is any arbitrary time $t > t^n$ • Many first-order upwind methods for scalar conservation laws are

クへで 12/61

4)

イロン イロン イヨン イヨン

└─Scalar Conservation Laws

• Upwind methods based on $\hat{f}_{i+1/2}^n = f\left(u_{Riemann}(x_{i+1/2}, t)\right)$

- above equation assumes that the waves from different cell edges do not interact (or at least that any interaction does not affect the solution at the cell edges)
 - $|\lambda a(u)| \le 1/2 \Rightarrow$ waves originating at one cell edge cannot interact with those originating from any other cell edge
 - $|\lambda a(u)| \le 1 \Rightarrow$ they can, but the interactions cannot reach the cell edges in one time-step

14/61

First-Order Upwind Reconstruction-Evolution Methods

Scalar Conservation Laws

• Upwind methods based on $\hat{f}_{i+1/2}^n = f\left(u_{Riemann}(x_{i+1/2}, t)\right)$

- CFL condition: $|\lambda a(u)| < 1$
- conservative, consistent, converge when $\Delta x \rightarrow 0$ and $\Delta t \rightarrow 0$ and the CFL condition is satisfied
- explicit, finite volume
- Inearly stable provided the CFL condition is satisfied
- satisfy all nonlinear stability conditions of previous Chapter
- formally 1st-order accurate in space and time (except possibly at sonic points) イロト イヨト イヨト イヨト

└─Scalar Conservation Laws

• Upwind methods based on $\hat{f}_{i+1/2}^n = f\left(u_{Riemann}(x_{i+1/2},t)\right)$ (continue)

If |λa(u)| ≤ 1, waves can interact only if there is a compressive sonic (sonic ⇒ a(u) = 0, compressive ⇒ wave direction switches from right to left) point inside the cell¹

→	÷
→ ●	•
→	<u>ا</u>

waves at the left cell edge are right-running, counterparts at the right cell edge are left-running

- if the wave speeds are always positive, all waves originating from $x_{i+1/2}$ are right-running $\Rightarrow \hat{f}_{i+1/2}^n = f(u_{Riemann}(x_{i+1/2}, t)) = f(u_i^n) \Rightarrow FTBS$
- if the wave speeds are always negative, all waves originating from x_{i+1/2} are left-running ⇒ fⁿ_{i+1/2} = f (u_{Riemann}(x_{i+1/2}, t)) = f(uⁿ_{i+1}) ⇒ FTFS
 the above is true for the exact Riemann solver or any reasonable approximate Riemann solver ⇒ all first-order upwind methods based on fⁿ_{i+1/2} = f (u_{Riemann}(x_{i+1/2}, t)) are FTBS or FTFS except near sonic points where the wave speeds change sign

 $^{^1}$ Compressive sonic points typically occur inside stationary or slowly moving shocks. \equiv >

└─Euler Equations

 Assuming that the reconstruction is piecewise constant, each cell gives rise to a Riemann problem and the exact evolution of the piecewise constant reconstruction yields

$$\widehat{\mathcal{F}}_{x_{i+1/2}}^{n} = \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \mathcal{F}_{x}\left(W_{\textit{Riemann}}(x_{i+1/2}, t)\right) dt$$

• Again, the solution of the Riemann problem being self-similar, $W_{Riemann}(x_{i+1/2}, t)$ is constant for all time

$$\implies \widehat{\mathcal{F}}_{x_{i+1/2}}^{n} = \mathcal{F}_{x}\left(W_{Riemann}(x_{i+1/2},t)\right) = \mathcal{F}_{x}\left(W_{Riemann}(0)\right)$$
(5)

where $\mathcal{F}_{x}(W_{Riemann}(x_{i+1/2}, t))$ is computed using any exact or approximate Riemann solver and t is any arbitrary time $t > t^{n}$

 Many first-order upwind methods for the Euler equations are based on (5)

Euler Equations

$$\widehat{\mathcal{F}}_{x_{i+1/2}}^{n} = \mathcal{F}_{x}\left(W_{Riemann}(x_{i+1/2},t)\right)$$

- Again, equation (5) assumes that the waves from different cell edges do not interact (or at least that any interaction does not affect the solution at the cell edges)
- If λρ(A) ≤ 1, waves travel at most one grid cell per time-step: They can interact, but the interactions cannot reach the cell edges during a single time-step
- Unlike in the case of scalar conservation laws where a compressive point inside the cell must be present for waves to interact when $|\lambda a(u)| \leq 1$, waves in the subsonic Euler equations interact routinely for $1/2 \leq \rho(A) \leq 1$ (since there are always right- and left-running waves in subsonic flows)
- $\lambda \rho(A) \leq 1$ is also the CFL condition for all first-order upwind methods

LEuler Equations

• Upwind methods based on $\widehat{\mathcal{F}}_{x_{i+1/2}}^n = \mathcal{F}_x\left(W_{Riemann}(x_{i+1/2},t)\right)$

• if the wave speeds are always positive (as in some supersonic flows), all waves originating from $x_{i+1/2}$ are right-running

$$\Rightarrow \widehat{\mathcal{F}}_{x_{i+1/2}}^n = \mathcal{F}_x \left(W_{Riemann}(x_{i+1/2}, t) \right) = \mathcal{F}_x(W_i^n) \Rightarrow \mathsf{FTBS}$$

• if the wave speeds are always negative (as in some supersonic flows), all waves originating from $x_{i+1/2}$ are left-running

$$\Rightarrow \widehat{\mathcal{F}}_{x_{i+1/2}}^n = \mathcal{F}_x\left(W_{Riemann}(x_{i+1/2},t)\right) = \mathcal{F}_x(W_{i+1}^n) \Rightarrow \mathsf{FTFS}$$

• the above is true for the exact Riemann solver or any reasonable approximate Riemann solver² \Rightarrow all first-order upwind methods based on $\widehat{\mathcal{F}}_{x_{i+1/2}}^n = \mathcal{F}_x \left(W_{Riemann}(x_{i+1/2}, t) \right)$ are FTBS or FTFS for supersonic flows

²Recall that for Roe's approximate Riemann solver:

- $\widehat{\mathcal{F}}_{x}(W(0)) = \mathcal{F}_{x}(W_{L}) + A_{RL}^{-}(W_{R} W_{L})$
- $\widehat{\mathcal{F}}_{x}(W(0)) = \mathcal{F}_{x}(W_{R}) A_{RL}^{+}(W_{R} W_{L})$

 \implies also shows that the temporal evolution introduces

the minimal amount of upwinding required by the CFL condition

└─Euler Equations

- Most properties of first-order upwind methods for scalar conservation laws carry over to first-order upwind methods for the Euler equations
- The reverse is not necessarily true:
 - for example, the Riemann problem for the Euler equations is not monotonicity preserving but that for scalar conservation laws is monotonicity preserving ⇒ first-order upwind methods for the Euler equations based on reconstruction-evolution sometimes produce spurious oscillations, especially at steady and slowly moving shocks

19/61

・ロト ・回ト ・ヨト ・ヨト

LRoe's First-Order Upwind Method for the Euler Equations

Recall Roe's approximate Riemann solver for the Euler equations

$$\widehat{\mathcal{F}}_{x}\left(W(0)\right) = \frac{1}{2}\left(\mathcal{F}_{x}(W_{R}) + \mathcal{F}_{x}(W_{L})\right) - \frac{1}{2}|A_{RL}|(W_{R} - W_{L})$$

20 / 61

First-Order Upwind Reconstruction-Evolution Methods

LRoe's First-Order Upwind Method for the Euler Equations

Recall Roe's approximate Riemann solver for the Euler equations

$$\widehat{\mathcal{F}}_{x}\left(W(0)\right) = \frac{1}{2}\left(\mathcal{F}_{x}(W_{R}) + \mathcal{F}_{x}(W_{L})\right) - \frac{1}{2}|A_{RL}|(W_{R} - W_{L})$$

- replace W_L and W_R by W_i^n and W_{i+1}^n , respectively, and replace A_{RL} by $A_{i+1/2}^n$
- replace also t = 0 by $t = t^n$ and x = 0 by $x = x_{i+1/2}$
- then, Roe's first-order upwind method for the Euler equations can be described by

$$\widehat{\mathcal{F}}_{x_{i+1/2}}^{n} = \frac{1}{2} \left(\mathcal{F}_{x}(W_{i}^{n}) + \mathcal{F}_{x}(W_{i+1}^{n}) \right) - \frac{1}{2} |A_{i+1/2}| (W_{i+1}^{n} - W_{i}^{n})$$

20 / 61

イロト イヨト イヨト イヨト

LRoe's First-Order Upwind Method for the Euler Equations

Recall Roe's approximate Riemann solver for the Euler equations

$$\widehat{\mathcal{F}}_{x}\left(W(0)\right) = \frac{1}{2}\left(\mathcal{F}_{x}(W_{R}) + \mathcal{F}_{x}(W_{L})\right) - \frac{1}{2}|A_{RL}|(W_{R} - W_{L})$$

- replace W_L and W_R by W_i^n and W_{i+1}^n , respectively, and replace A_{RL} by $A_{i+1/2}^n$
- replace also t = 0 by $t = t^n$ and x = 0 by $x = x_{i+1/2}$
- then, Roe's first-order upwind method for the Euler equations can be described by

$$\widehat{\mathcal{F}}_{x_{i+1/2}}^{n} = \frac{1}{2} \left(\mathcal{F}_{x}(W_{i}^{n}) + \mathcal{F}_{x}(W_{i+1}^{n}) \right) - \frac{1}{2} |A_{i+1/2}| (W_{i+1}^{n} - W_{i}^{n})$$

$$\widehat{\mathcal{F}}_{x_{i-1/2}}^{n} = \underbrace{\frac{1}{2} \left(\mathcal{F}_{x}(W_{i-1}^{n}) + \mathcal{F}_{x}(W_{i}^{n}) \right)}_{centered} - \underbrace{\frac{1}{2} |A_{i-1/2}| (W_{i}^{n} - W_{i-1}^{n})}_{upwinding(due to approximate Riemann solver)}$$

LRoe's First-Order Upwind Method for the Euler Equations

Recall also that the Roe-average matrix must satisfy

$$\mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n}) = A_{i+1/2}^{n}(W_{i+1}^{n} - W_{i}^{n})$$

and that
$$A_{i+1/2}^{n^+} + A_{i+1/2}^{n^-} = A_{i+1/2}^n$$
 and $A_{i+1/2}^{n^+} - A_{i+1/2}^{n^-} = |A_{i+1/2}^n|$

³Recall that a method in flux split form is conservative if and only if $\hat{f}_{i+1/2}^n = g_i^n + \Delta \hat{f}_{i+1/2}^{-n}$ and $\hat{f}_{i-1/2}^n = g_{i-1}^n + \Delta \hat{f}_{i-1/2}^{-n}$.

LRoe's First-Order Upwind Method for the Euler Equations

Recall also that the Roe-average matrix must satisfy

$$\mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n}) = A_{i+1/2}^{n}(W_{i+1}^{n} - W_{i}^{n})$$

and that
$$A_{i+1/2}^{n^+} + A_{i+1/2}^{n^-} = A_{i+1/2}^n$$
 and $A_{i+1/2}^{n^+} - A_{i+1/2}^{n^-} = |A_{i+1/2}^n|$

$$\mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n}) = \left(A_{i+1/2}^{n^{+}} + A_{i+1/2}^{n^{-}}\right)(W_{i+1}^{n} - W_{i}^{n})$$

³Recall that a method in flux split form is conservative if and only if $\hat{f}_{i+1/2}^n = g_i^n + \Delta \hat{f}_{i+1/2}^{-n}$ and $\hat{f}_{i-1/2}^n = g_{i-1}^n + \Delta \hat{f}_{i-1/2}^{-n}$.

21 / 61

First-Order Upwind Reconstruction-Evolution Methods

LRoe's First-Order Upwind Method for the Euler Equations

Recall also that the Roe-average matrix must satisfy

$$\mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n}) = A_{i+1/2}^{n}(W_{i+1}^{n} - W_{i}^{n})$$

and that $A_{i+1/2}^{n^+}+A_{i+1/2}^{n^-}=A_{i+1/2}^n$ and $A_{i+1/2}^{n^+}-A_{i+1/2}^{n^-}=|A_{i+1/2}^n|$

$$\Longrightarrow \begin{cases} \mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n}) = \left(A_{i+1/2}^{n^{+}} + A_{i+1/2}^{n^{-}}\right) (W_{i+1}^{n} - W_{i}^{n}) \\ \widehat{\mathcal{F}}_{x_{i+1/2}}^{n} = \underbrace{\frac{1}{2} \left(\mathcal{F}_{x}(W_{i}^{n}) + \mathcal{F}_{x}(W_{i+1}^{n})\right) - \frac{1}{2}A_{i+1/2}^{n^{+}}(W_{i+1}^{n} - W_{i}^{n})}_{\mathcal{S}_{i}^{n}} + \underbrace{\frac{1}{2}A_{i+1/2}^{n^{-}}(W_{i+1}^{n} - W_{i}^{n})}_{\Delta i_{i+1/2}^{n^{-}}} \\ \widehat{\mathcal{F}}_{x_{i-1/2}}^{n} = \underbrace{\frac{1}{2} \left(\mathcal{F}_{x}(W_{i-1}^{n}) + \mathcal{F}_{x}(W_{i}^{n})\right) - \frac{1}{2}A_{i-1/2}^{n^{+}}(W_{i}^{n} - W_{i-1}^{n})}_{\mathcal{S}_{i-1}^{n^{-}}} + \underbrace{\frac{1}{2}A_{i-1/2}^{n^{-}}(W_{i}^{n} - W_{i-1}^{n})}_{\Delta i_{i-1/2}^{n^{-}}} \end{cases}$$

³Recall that a method in flux split form is conservative if and only if $\hat{f}_{i+1/2}^n = g_i^n + \Delta \hat{f}_{i+1/2}^{-n}$ and $\hat{f}_{i-1/2}^n = g_{i-1}^n + \Delta \hat{f}_{i-1/2}^{-n}$.

Roe's First-Order Upwind Method for the Euler Equations

Recall also that the Roe-average matrix must satisfy

$$\mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n}) = A_{i+1/2}^{n}(W_{i+1}^{n} - W_{i}^{n})$$

and that $A_{i+1/2}^{n^+}+A_{i+1/2}^{n^-}=A_{i+1/2}^n$ and $A_{i+1/2}^{n^+}-A_{i+1/2}^{n^-}=|A_{i+1/2}^n|$

$$\Rightarrow \begin{cases} \mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n}) = \left(A_{i+1/2}^{n^{+}} + A_{i+1/2}^{n^{-}}\right) (W_{i+1}^{n} - W_{i}^{n}) \\ \widehat{\mathcal{F}}_{x_{i+1/2}}^{n} = \underbrace{\frac{1}{2} \left(\mathcal{F}_{x}(W_{i}^{n}) + \mathcal{F}_{x}(W_{i+1}^{n})\right) - \frac{1}{2}A_{i+1/2}^{n^{+}}(W_{i+1}^{n} - W_{i}^{n})}_{g_{i}^{n^{-}}} + \underbrace{\frac{1}{2}A_{i+1/2}^{n^{-}}(W_{i+1}^{n} - W_{i}^{n})}_{\Delta \tilde{t}_{i+1/2}^{n^{-}}} \\ \widehat{\mathcal{F}}_{x_{i-1/2}}^{n} = \underbrace{\frac{1}{2} \left(\mathcal{F}_{x}(W_{i-1}^{n}) + \mathcal{F}_{x}(W_{i}^{n})\right) - \frac{1}{2}A_{i-1/2}^{n^{+}}(W_{i}^{n} - W_{i-1}^{n})}_{g_{i-1}^{n^{-}}} + \underbrace{\frac{1}{2}A_{i-1/2}^{n^{-}}(W_{i}^{n} - W_{i-1}^{n})}_{\Delta \tilde{t}_{i-1/2}^{n^{-}}} \end{cases}$$

 For this reason, Roe's first-order upwind method is sometimes called a *flux difference* splitting method³

$$\left(\mathcal{F}_{x}(W_{i+1}^{n}) - \mathcal{F}_{x}(W_{i}^{n})\right) = A_{i+1/2}^{n^{+}}(W_{i+1}^{n} - W_{i}^{n}) + A_{i+1/2}^{n^{-}}(W_{i+1}^{n} - W_{i}^{n})$$

³Recall that a method in flux split form is conservative if and only if $\hat{f}_{i+1/2}^n = g_i^n + \Delta \hat{f}_{i+1/2}^{-n}$ and $\hat{f}_{i-1/2}^n = g_{i-1}^n + \Delta \hat{f}_{i-1/2}^{-n}$.

LIntroduction to Second- & Higher-Order Reconstruction-Evolution Methods

- Bigher-order accurate methods based on the exact Riemann solver
 - the spatial reconstruction is straightforward: Use any piecewise-linear, piecewise-quadratic, or higher-order piecewise polynomial reconstruction
 - the temporal evolution is more elaborate, as explained below
- Recall that the temporal evolution is given by

$$\widehat{\mathcal{F}}_{x_{i+1/2}}^n \approx \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \mathcal{F}_x\left(W(x_{i+1/2}, t)\right) dt$$

22 / 61

イロト イヨト イヨト イヨト

LIntroduction to Second- & Higher-Order Reconstruction-Evolution Methods

- Higher-order accurate methods based on the exact Riemann solver
 - the spatial reconstruction is straightforward: Use any piecewise-linear, piecewise-quadratic, or higher-order piecewise polynomial reconstruction
 - the temporal evolution is more elaborate, as explained below
- Recall that the temporal evolution is given by

$$\widehat{\mathcal{F}}_{x_{i+1/2}}^n \approx \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \mathcal{F}_x\left(W(x_{i+1/2}, t)\right) dt$$

Step 1: Compute a second or even higher-order approximation of the above integral
 for example, use the midpoint rule

$$\frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \mathcal{F}_x\left(W(x_{i+1/2},t)\right) dt = \underbrace{\mathcal{F}_x\left(W(x_{i+1/2},t^{n+1/2})\right)}_{t^n} + O(\Delta t^2)$$

or the trapezoidal rule

$$\frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \mathcal{F}_{x} \left(W(x_{i+1/2}, t) \right) dt = \frac{1}{2} \frac{\mathcal{F}_{x} \left(W(x_{i+1/2}, t^{n+1}) \right)}{1 + \frac{1}{2} \mathcal{F}_{x} \left(W(x_{i+1/2}, t^{n}) \right) + O(\Delta t^{2})}$$

23 / 61

Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

Step 2: Perform a Taylor series expansion about $t = t^n$ – for example

$$egin{aligned} \mathcal{F}_x\left(W(x_{i+1/2},t)
ight) &= \mathcal{F}_x\left(W(x_{i+1/2},t^n)
ight) + rac{\partial \mathcal{F}_x}{\partial t}\left(W(x_{i+1/2},t^n)
ight)(t-t^n)\ &+ O\left((t-t^n)^2
ight) \end{aligned}$$

23/61

E

ヘロト 人間 ト 人間 ト 人間 ト

Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

Step 2: Perform a Taylor series expansion about $t = t^n$ – for example

$$egin{aligned} \mathcal{F}_x\left(W(\mathsf{x}_{i+1/2},t)
ight) &= \mathcal{F}_x\left(W(\mathsf{x}_{i+1/2},t^n)
ight) + rac{\partial\mathcal{F}_x}{\partial t}\left(W(\mathsf{x}_{i+1/2},t^n)
ight)(t-t^n) \ &+ O\left(\left(t-t^n
ight)^2
ight) \end{aligned}$$

 Step 3: Express time derivatives in the Taylor series in terms of space derivatives (Cauchy-Kowalewski) – for example, the time derivative of the momentum flux can be obtained from the conservation of momentum

$$\frac{\partial}{\partial t}(\rho v_x) = -\rho v_x \frac{\partial v_x}{\partial x} - v_x \frac{\partial}{\partial x}(\rho v_x) - \frac{\partial p}{\partial x}$$

23/61

イロト イヨト イヨト イヨト

LIntroduction to Second- & Higher-Order Reconstruction-Evolution Methods

Step 4: Differentiate the spatial reconstruction at time level n to approximate the spatial derivative at (x_{i+1/2}, tⁿ)

24/61

イロン イロン イヨン イヨン

Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

- Step 4: Differentiate the spatial reconstruction at time level n to approximate the spatial derivative at (x_{i+1/2}, tⁿ)
 - note that in general, the reconstruction and/or its derivatives contain jump discontinuities at the cell edges at x_{i+1/2}
 - "average" the left and right limits, $W_{i+1/2,L}(t)$ and $W_{i+1/2,R}(t)$, of the approximation of $W(x_{i+1/2}, t)$
 - the Riemann solver average is the only average that yields the exact solution in the case of piecewise constant reconstruction
 - for this purpose, use $W_{i+1/2,L}(t)$ and $W_{i+1/2,R}(t)$ as the left and right states in the exact solution of the Riemann problem

LIntroduction to Second- & Higher-Order Reconstruction-Evolution Methods

- Because the above four-step procedure is based on Taylor series and differential forms, it does not apply at shocks
- At shocks, all higher-order terms of the approximation should be eliminated and a return to first-order piecewise constant reconstruction becomes essential

25 / 61

イロト イヨト イヨト イヨト
^LThe MUSCL/TVD Method

- MUSCL: Monotonic Upwind Scheme for Conservation Laws
- More specifically, this section describes the method proposed in 1986 by Anderson, Thomas, and Van Leer who called it "the MUSCL" method, and not the original MUSCL method designed in 1979 by Van Leer using the approach summarized in the previous section
- Both of this method and the original MUSCL method are reconstruction-evolution methods

26 / 61

^LThe MUSCL/TVD Method

└─The Method of Lines

Two-step approximation procedure

Spatial Discretization

time is frozen and space is discretized

$$\frac{\partial \mathcal{F}_{x}}{\partial x}(x_{i},t) \approx \frac{\widehat{\mathcal{F}}_{x_{s,i+1/2}}(t) - \widehat{\mathcal{F}}_{x_{s,i-1/2}}(t)}{\Delta x}$$

- the above equation is called the *semi-discrete* finite volume/difference approximation
- $\widehat{\mathcal{F}}_{x_s}$ is called the *semi-discrete conservative numerical flux*
- the semi-discrete approximation comprises a system of ordinary differential equations
- in many cases, it is needed only at discrete time levels, in which case it can be written as

$$\frac{dW_i^n}{dt} \approx -\frac{\widehat{\mathcal{F}}_{x_{s,i+1/2}}^n - \widehat{\mathcal{F}}_{x_{s,i-1/2}}^n}{\Delta x}$$
(6)

where
$$W_i^n = W_i(t^n)$$
 and $\widehat{\mathcal{F}}^n_{\mathsf{x}_{s,i+1/2}} = \widehat{\mathcal{F}}_{\mathsf{x}_{s,i+1/2}}(t^n)$

28 / 61

└─The MUSCL/TVD Method

└─The Method of Lines

Two-step approximation procedure (continue)

$$\frac{dW_i^n}{dt}\approx-\frac{\widehat{\mathcal{F}}_{x_{\mathrm{s},i+1/2}}^n-\widehat{\mathcal{F}}_{x_{\mathrm{s},i-1/2}}^n}{\Delta x}$$

Temporal Discretization

- any ordinary differential equation solver (time-integration algorithm) can be used to solve Eq. (6)
- in other words, space is frozen and time is discretized
- the resulting approximation for example using FT

$$\underbrace{\frac{W_i^{n+1} - W_i^n}{\Delta t}}_{x=x_i} = \underbrace{\frac{\widehat{\mathcal{F}}_{x_{i+1/2}}^n - \widehat{\mathcal{F}}_{x_{i-1/2}}^n}{\Delta x}}_{t=t^n}$$

is called the *fully discrete* finite difference approximation, and $\widehat{\mathcal{F}}_x$ is called the *fully discrete conservative numerical flux*

■ The two-stage approximation procedure described above is sometimes called the *method of lines*, where the lines are the coordinate lines *x* = *cst* and *t* = *cst*

^LThe MUSCL/TVD Method

└-Flux Splitting

In the context of the (explicit) finite volume method

$$\widehat{\mathcal{F}}_{x_{s,i+1/2}}^{n} = \widehat{\mathcal{F}}_{x_{s,i+1/2}}(t^{n}) \left(\approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \mathcal{F}_{x}\left(W(x_{i+1/2},t)\right) dt \right) = \mathcal{F}_{x}\left(W(x_{i+1/2},t^{n})\right)$$

Using flux vector splitting – that is, assuming

$$\mathcal{F}_{x}(W) = \mathcal{F}_{x}^{+}(W) + \mathcal{F}_{x}^{-}(W)$$

Leads to

$$\widehat{\mathcal{F}}_{x_{s,i+1/2}}^n \approx \mathcal{F}_x^+ \left(W(x_{i+1/2},t^n) \right) + \mathcal{F}_x^- \left(W(x_{i+1/2},t^n) \right)$$

• Therefore, one needs to approximate $\mathcal{F}_x^+(W(x_{i+1/2}, t^n))$ - or equivalently, $W(x_{i+1/2}, t^n)$ - with a leftward bias, and $\mathcal{F}_x^-(W(x_{i+1/2}, t^n))$ - or equivalently, $W(x_{i+1/2}, t^n)$ - with a rightward bias

30 / 61

^LThe MUSCL/TVD Method

Second-Order Approximation

- First, $W(x_{i+1/2}, t^n)$ is approximated with a leftward bias, for use in $\mathcal{F}^+_x(W(x_{i+1/2}, t^n))$
 - a first-order accurate reconstruction of the *primitive* variables u of which W is made leads to

$$u(x_{i+1/2},t^n)\approx \bar{u}_i^n$$

30 / 61

^LThe MUSCL/TVD Method

Second-Order Approximation

- First, $W(x_{i+1/2}, t^n)$ is approximated with a leftward bias, for use in $\mathcal{F}^+_x(W(x_{i+1/2}, t^n))$
 - a first-order accurate reconstruction of the *primitive* variables u of which W is made leads to

$$u(x_{i+1/2}, t^n) \approx \overline{u}_i^n$$

a second-order accurate linear reconstruction of the *primitive* variables u of which W is made leads to the following *extrapolation*

$$u(x_{i+1/2}, t^n) \approx \bar{u}_i^n + \frac{\bar{u}_i^n - \bar{u}_{i-1}^n}{\Delta x}(x_{i+1/2} - x_i) = \bar{u}_i^n + \frac{1}{2}(\bar{u}_i^n - \bar{u}_{i-1}^n)$$

30 / 61

30 / 61

L The MUSCL/TVD Method

Second-Order Approximation

- First, $W(x_{i+1/2}, t^n)$ is approximated with a leftward bias, for use in $\mathcal{F}^+_x(W(x_{i+1/2}, t^n))$
 - a first-order accurate reconstruction of the *primitive* variables u of which W is made leads to

$$u(x_{i+1/2}, t^n) \approx \overline{u}_i^n$$

a second-order accurate linear reconstruction of the *primitive* variables u of which W is made leads to the following *extrapolation*

$$u(x_{i+1/2}, t^n) \approx \bar{u}_i^n + \frac{\bar{u}_i^n - \bar{u}_{i-1}^n}{\Delta x}(x_{i+1/2} - x_i) = \bar{u}_i^n + \frac{1}{2}(\bar{u}_i^n - \bar{u}_{i-1}^n)$$

• instead of a pure constant or pure linear reconstruction, the following convex linear combination is considered $(0 \le \theta \le 1)$

$$\begin{split} u_{i+1/2}^{n+} &= \theta_i^{n+} \bar{u}_i^n + (1 - \theta_i^{n+}) \left(\bar{u}_i^n + \frac{1}{2} (\bar{u}_i^n - \bar{u}_{i-1}^n) \right) \\ &= \bar{u}_i^n + \frac{1}{2} \phi_i^{n+} (\bar{u}_i^n - \bar{u}_{i-1}^n), \quad \text{where} \quad \phi_i^{n+} = 1 - \theta_i^{n+} \end{split}$$

which limits the effect of the extrapolation and achieves second-order accurate reconstruction ($\phi \approx 1$) in the smooth regions of the flow

^LThe MUSCL/TVD Method

Second-Order Approximation

Principle of a slope limiter

• What if the solution has an extremum in the vicinity of x_i?

31 / 61

31 / 61

イロン イロン イヨン イヨン

^LThe MUSCL/TVD Method

Second-Order Approximation

- Next, $W(x_{i+1/2}, t^n)$ is approximated with a rightward bias, for use in $\mathcal{F}_x^-(W(x_{i+1/2}, t^n))$
 - a first-order accurate reconstruction of the *primitive* variables of which *W* is made leads to

$$u(x_{i+1/2},t^n)\approx \bar{u}_{i+1}^n$$

 a second-order accurate linear reconstruction of the *primitive* variables of which W is made leads to the following *extrapolation*

$$u(x_{i+1/2},t^n) \approx \bar{u}_{i+1}^n + \frac{\bar{u}_{i+2}^n - \bar{u}_{i+1}^n}{\Delta x}(x_{i+1/2} - x_{i+1}) = \bar{u}_{i+1}^n - \frac{1}{2}(\bar{u}_{i+2}^n - \bar{u}_{i+1}^n)$$

 as for the approximation with a rightward bias, instead of a pure constant or pure linear reconstruction, the following convex linear combination is considered for limiting the effect of the extrapolation

$$u_{i+1/2}^{n-} = \bar{u}_{i+1}^n - \frac{1}{2}\phi_{i+1}^{n-}(\bar{u}_{i+2}^n - \bar{u}_{i+1}^n)$$

32 / 61

where the superscript n- refers to time t^n and the rightward bias

L The MUSCL/TVD Method

Second-Order Approximation

Applying the method of lines yields

$$\frac{dW_i^n}{dt} = -\frac{\widehat{\mathcal{F}}_{x_s,i+1/2}^n - \widehat{\mathcal{F}}_{x_s,i-1/2}^n}{\Delta x}$$

$$\begin{split} \hat{\mathcal{F}}_{x_{5,i+1/2}}^{n} &= \mathcal{F}_{x}^{+} \left(W(u_{i+1/2}^{n+}) \right) + \mathcal{F}_{x}^{-} \left(W(u_{i+1/2}^{n-}) \right) \\ &= \mathcal{F}_{x}^{+} \left(W \left(\bar{u}_{i}^{n} + \frac{1}{2} \phi_{i}^{n+} (\bar{u}_{i}^{n} - \bar{u}_{i-1}^{n}) \right) \right) + \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i+1}^{n} - \frac{1}{2} \phi_{i+1}^{n-} (\bar{u}_{i+2}^{n} - \bar{u}_{i+1}^{n}) \right) \right) \\ \Rightarrow \frac{dW_{i}^{n}}{dt} &= -\frac{1}{\Delta x} \left(\mathcal{F}_{x}^{+} \left(W \left(\bar{u}_{i}^{n} + \frac{1}{2} \phi_{i}^{n+} (\bar{u}_{i}^{n} - \bar{u}_{i-1}^{n}) \right) \right) + \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i+1}^{n} - \frac{1}{2} \phi_{i+1}^{n-} (\bar{u}_{i+2}^{n} - \bar{u}_{i+1}^{n}) \right) \right) \\ &+ \frac{1}{\Delta x} \left(\mathcal{F}_{x}^{+} \left(W \left(\bar{u}_{i-1}^{n} + \frac{1}{2} \phi_{i-1}^{n+} (\bar{u}_{i-1}^{n} - \bar{u}_{i-2}^{n}) \right) \right) + \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i}^{n} - \frac{1}{2} \phi_{i}^{n-} (\bar{u}_{i+1}^{n} - \bar{u}_{i}^{n}) \right) \right) \right) \\ &= -\frac{1}{\Delta x} \left(\underbrace{ \left(\frac{\mathcal{F}_{x}^{+} \left(W \left(\bar{u}_{i}^{n} + \frac{1}{2} \phi_{i}^{n+} (\bar{u}_{i}^{n} - \bar{u}_{i-1}^{n}) \right) \right) - \mathcal{F}_{x}^{+} \left(W \left(\bar{u}_{i-1}^{n} + \frac{1}{2} \phi_{i-1}^{n+} (\bar{u}_{i-1}^{n} - \bar{u}_{i-2}^{n}) \right) \right) \right) \\ &- \frac{1}{\Delta x} \left(\underbrace{ \left(\frac{\mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i}^{n} + \frac{1}{2} \phi_{i+1}^{n-} (\bar{u}_{i}^{n} - \bar{u}_{i-1}^{n}) \right) \right) - \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i}^{n} - \frac{1}{2} \phi_{i-1}^{n-} (\bar{u}_{i-1}^{n} - \bar{u}_{i-2}^{n}) \right) \right) \right) \\ &- \frac{1}{\Delta x} \left(\underbrace{ \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i+1}^{n} - \frac{1}{2} \phi_{i+1}^{n-} (\bar{u}_{i+2}^{n} - \bar{u}_{i+1}^{n}) \right) \right) - \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i}^{n} - \frac{1}{2} \phi_{i-1}^{n-} (\bar{u}_{i+1}^{n} - \bar{u}_{i}^{n}) \right) \right) \right) \\ &- \frac{1}{\Delta x} \left(\underbrace{ \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i+1}^{n} - \frac{1}{2} \phi_{i+1}^{n-} (\bar{u}_{i+2}^{n} - \bar{u}_{i+1}^{n}) \right) \right) - \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i}^{n} - \frac{1}{2} \phi_{i-1}^{n-} (\bar{u}_{i+1}^{n} - \bar{u}_{i}^{n}) \right) \right) \right) \\ &- \frac{1}{\Delta x} \left(\underbrace{ \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i+1}^{n} - \frac{1}{2} \phi_{i+1}^{n-} (\bar{u}_{i+2}^{n} - \bar{u}_{i+1}^{n}) \right) \right) - \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i}^{n} - \frac{1}{2} \phi_{i-1}^{n-} (\bar{u}_{i+1}^{n} - \bar{u}_{i}^{n}) \right) \right) \right) \\ &- \frac{1}{\Delta x} \left(\underbrace{ \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i+1}^{n} - \frac{1}{2} \phi_{i+1}^{n-} (\bar{u}_{i+1}^{n} - \bar{u}_{i+1}^{n}) \right) \right) \right) \right) \\ &- \frac{1}{\Delta x} \left(\underbrace{ \mathcal{F}_{x}^{-} \left(W \left(\bar{u}_{i+1}^{n}$$

L The MUSCL/TVD Method

Second-Order Approximation

- Many variants of the MUSCL method exist today
- The most popular ones use flux difference splitting along the lines of an approximate Riemann solver such as Roe's solver instead of flux vector splitting: In this case, convex linear combinations of the constant and linear reconstructions of $W_{i+1/2,L}(t)$ and $W_{i+1/2,R}(t)$ are used as the left and right states in the solution of the approximate Riemann problem
- Many slope limiters have been proposed in the literature and continue to be the subject of on-going research: One example is presented next
- Since at shocks, all higher-order terms of an approximation should be eliminated and a return to first-order piecewise constant reconstruction is essential, the value of a slope limiter must, by design, approach 1 away from shocks (and other discontinuities) and 0 near shocks (and other discontinuities)

L The MUSCL/TVD Method

└─Van Leer's Slope Limiter

Ratios of solution differences

$$r_i^{n+} = \frac{u_i^n - u_{i-1}^n}{u_{i+1}^n - u_i^n}, \qquad r_i^{n-} = \frac{u_{i+1}^n - u_i^n}{u_i^n - u_{i-1}^n} = \frac{1}{r_i^{n+}}$$

Note that

- $r_i^{n\pm} \ge 0$ if the solution u is monotone increasing or monotone decreasing
- $r_i^{n\pm} \leq 0$ if the solution *u* has a maximum or a minimum around x_i
- $|r_i^{n+}|$ is large and $|r_i^{n-}|$ is small if the solution differences decrease dramatically from left to right or if $u_{i+1}^n \approx u_i^n$
- $|r_i^{n+}|$ is small and $|r_i^{n-}|$ is large if the solution differences increase dramatically from left to right or if $u_{i-1}^n \approx u_i^n$

L The MUSCL/TVD Method

└─Van Leer's Slope Limiter

- Very large or very small ratios |r_i^{n±}| sometimes signal shocks, but not always
 - for example, if $u_{i+1}^n u_i^n = 0$ and $u_i^n u_{i-1}^n \neq 0$, then $|r_i^{n+}| = \infty$ regardless of whether the solution is smooth or shocked
 - in general, because there is only limited information contained in solution samples, no completely reliable way to distinguish shocks from smooth regions exists
 - consequently, slope-limited methods do not even attempt to identify shocks: Instead, they regulate maxima and minima – whether or not they are associated with shocks – using the nonlinear stability conditions (for example, TVD)

36 / 61

イロン イロン イヨン イヨン

37 / 61

L The MUSCL/TVD Method

└─Van Leer's Slope Limiter

Van Leer's slope limiter can be described as

 $\phi(r) = \begin{cases} \frac{2r}{1+r} & \text{for } r \ge 0 & \text{limits the slope in monotone regions of the flow} \\ 0 & \text{for } r < 0 & \text{reverses to constant (first-order) reconstruction elsewhere} \end{cases}$

- Note that for a uniform mesh, $\phi(1) = 1$ $(r = 1 \Rightarrow u_i = (u_{i-1} + u_{i+1})/2 \Rightarrow$ solution behaves locally as an affine (linear) function \Rightarrow no slope limiting is needed)
- For a nonuniform mesh, a similar result is obtained for *r* equal to the ratio of two consecutive space increments
- Note also that $\lim_{r \to \infty} \phi(r) = 2$
- Equipping the scheme described in the previous pages with

$$\phi_i^{n\pm} = \phi\left(r_i^{n-/+}\right)$$

(explain why in this case it is $\phi(r_i^{n-/+})$ and not $\phi(r_i^{n\pm})$) makes it:

- TVD and therefore nonlinearly stable
- second-order accurate in monotone regions ($r \ge 0$) of the flow (proof given in class)
- in practice, between first-order and second-order accurate at extrema

38 / 61

Steger-Warming Flux Vector Splitting Method for the Euler Equations

Recall that flux splitting is defined as

$$egin{array}{rcl} \mathcal{F}_x(W) &=& \mathcal{F}_x^+(W) + \mathcal{F}_x^-(W) \ \displaystyle rac{d\mathcal{F}_x^+}{dW} &\geq& 0, \qquad \displaystyle rac{d\mathcal{F}_x^-}{dW} \leq 0 \end{array}$$

Hence, the flux split form of the Euler equations is

$$\frac{\partial W}{\partial t} + \frac{\partial \mathcal{F}_x^+}{\partial x} + \frac{\partial \mathcal{F}_x^-}{\partial x} = 0$$

Then,
 [∂]F⁺_x can be discretized conservatively using at least one
 point to the left – for example, using BS – and
 [∂]F⁻_x can be
 discretized conservatively using at least one point to the right – for
 example, using FS – thus obtaining conservation and satisfaction of
 the CFL condition

39/61

Steger-Warming Flux Vector Splitting Method for the Euler Equations

Recall the related concept of wave speed splitting

$$egin{array}{rcl} A(W) &=& A^+(W) + A^-(W) \ A^+(W) &\geq& 0, & A^-(W) \leq 0 \end{array}$$

Then, the vector conservation law can be written in wave speed split form as

$$\frac{\partial W}{\partial t} + A^{+}(W)\frac{\partial W}{\partial x} + A^{-}(W)\frac{\partial W}{\partial x} = 0$$

where the matrices $A^+(W)$ and $A^-(W)$ are usually obtained by splitting the eigenvalues of A(W) into positive and negative parts

$$\lambda_i(\mathcal{W}) = \lambda_i^+(\mathcal{W}) + \lambda_i^-(\mathcal{W}), \qquad \lambda_i^+(\mathcal{W}) \ge 0, \; \lambda_i^-(\mathcal{W}) \le 0$$

 $\Longrightarrow \Lambda(W) = \Lambda^+(W) + \Lambda^-(W), \qquad \Lambda^+(W) \geq 0, \ \Lambda^-(W) \leq 0$

40 / 61

^LSteger-Warming Flux Vector Splitting Method for the Euler Equations

For the 1D Euler equations written in conservation form

$$\begin{aligned} Q(W)A(W)Q^{-1}(W) &= \Lambda(W) \implies A(W) = Q^{-1}(W)\Lambda(W)Q(W) \\ \text{where } \lambda_1 &= v_x \ \lambda_2 = v_x + c \ \lambda_3 = v_x - c \\ \text{and} \\ Q^{-1}(W) &= \begin{pmatrix} 1 & \frac{\rho}{2c} & -\frac{\rho}{2c} \\ v_x & \frac{\rho}{2c}(v_x + c) & -\frac{\rho}{2c}(v_x - c) \\ \frac{v_x^2}{2} & \frac{\rho}{2c} \left(\frac{v_x^2}{2} + \frac{c^2}{\gamma - 1} + cv_x\right) & -\frac{\rho}{2c} \left(\frac{v_x^2}{2} + \frac{c^2}{\gamma - 1} - cv_x\right) \end{pmatrix} \\ Q(W) &= \frac{\gamma - 1}{\rho c} \begin{pmatrix} \frac{\rho}{c} \left(-\frac{v_x^2}{2} + \frac{c^2}{\gamma - 1} - v_x + \frac{c}{\gamma} - 1 - 1 \right) \\ \frac{v_x^2}{2} - \frac{cv_x}{\gamma - 1} & v_x + \frac{c}{\gamma - 1} - 1 \end{pmatrix} \end{aligned}$$

 $\begin{array}{rcl} A(W) & = & A^+(W) + A^-(W), & A^+(W) \ge 0, & A^-(W) \le 0 \\ A(W)^+ & = & Q^{-1}(W)\Lambda^+(W)Q \ge 0, & A^-(W) = Q^{-1}(W)\Lambda^-(W)Q(W) \le 0 \end{array}$

40/61

└─Steger-Warming Flux Vector Splitting Method for the Euler Equations

- For the Euler equations in conservation form and a perfect gas, \mathcal{F}_x is homogeneous function of W of degree 1
 - Steger and Warming (1981)⁴

$$\mathcal{F}_{x}(W) = \left(\frac{d\mathcal{F}_{x}}{dW}(W)\right)W = A(W)W \quad \text{(Euler's theorem)}$$
$$\Rightarrow \mathcal{F}_{x}^{\pm}(W) = A^{\pm}(W)W = \left[Q^{-1}(W)\Lambda^{\pm}(W)Q(W)\right]W \quad (7)$$

$$\begin{aligned} \mathcal{F}_{x}^{\pm} &= \frac{\gamma - 1}{\gamma} \rho \lambda_{1}^{\pm} \begin{bmatrix} 1\\ \mathbf{v}_{x}\\ \frac{1}{2} \mathbf{v}_{x}^{2} \end{bmatrix} \\ &+ \frac{\rho}{2\gamma} \lambda_{2}^{\pm} \begin{bmatrix} 1\\ \mathbf{v}_{x} + \mathbf{c}\\ \frac{1}{2} \mathbf{v}_{x}^{2} + \frac{c^{2}}{\gamma - 1} + \mathbf{c} \mathbf{v}_{x} \end{bmatrix} \\ &+ \frac{\rho}{2\gamma} \lambda_{3}^{\pm} \begin{bmatrix} 1\\ \mathbf{v}_{x} - \mathbf{c}\\ \frac{1}{2} \mathbf{v}_{x}^{2} + \frac{c^{2}}{\gamma - 1} - \mathbf{c} \mathbf{v}_{x} \end{bmatrix} \end{aligned}$$

⁴Lerat (1983): $d\mathcal{F}_x^+/dW \ge 0$ and $d\mathcal{F}_x^-/dW \le 0$ $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

└─Steger-Warming Flux Vector Splitting Method for the Euler Equations

Practical implementation

 compute at each grid point (constant reconstruction) or each edge of each computational cell (linear reconstruction)

$$\lambda_i^+ = \max(0, \lambda_i) = \frac{1}{2}(\lambda_i + |\lambda_i|), \quad \lambda_i^- = \min(0, \lambda_i) = \frac{1}{2}(\lambda_i - |\lambda_i|)$$
(8)

• compute at each grid point (constant reconstruction) or each edge of each computational cell (linear reconstruction) the Mach number $M = \frac{v_x}{c} \in]-\infty, -1] \cup [-1, 0] \cup [0, 1] \cup [1, \infty[$

42 / 61

Steger-Warming Flux Vector Splitting Method for the Euler Equations

Practical implementation

 compute at each grid point (constant reconstruction) or each edge of each computational cell (linear reconstruction)

$$\lambda_i^+ = \max(0, \lambda_i) = \frac{1}{2}(\lambda_i + |\lambda_i|), \quad \lambda_i^- = \min(0, \lambda_i) = \frac{1}{2}(\lambda_i - |\lambda_i|)$$
(8)

 compute at each grid point (constant reconstruction) or each edge of each computational cell (linear reconstruction) the Mach number

$$\begin{split} & M = \frac{v_x}{c} \in]-\infty, -1] \cup [-1, 0] \cup [0, 1] \cup [1, \infty[\\ \bullet \quad \text{if } M \leq -1 \ (\Rightarrow \lambda_1 < 0, \ \lambda_2 \leq 0, \ \lambda_3 < 0) \\ & \mathcal{F}_x^+ = 0, \qquad \mathcal{F}_x^- = \mathcal{F}_x \end{split}$$

42 / 61

└─Steger-Warming Flux Vector Splitting Method for the Euler Equations

Practical implementation

 compute at each grid point (constant reconstruction) or each edge of each computational cell (linear reconstruction)

$$\lambda_i^+ = \max(0, \lambda_i) = \frac{1}{2} (\lambda_i + |\lambda_i|), \quad \lambda_i^- = \min(0, \lambda_i) = \frac{1}{2} (\lambda_i - |\lambda_i|)$$
(8)

 compute at each grid point (constant reconstruction) or each edge of each computational cell (linear reconstruction) the Mach number

$$M = \frac{v_x}{c} \in] -\infty, -1] \cup [-1, 0] \cup [0, 1] \cup [1, \infty[$$

• if $M \le -1$ ($\Rightarrow \lambda_1 < 0, \lambda_2 \le 0, \lambda_3 < 0$)
 $\mathcal{F}_x^+ = 0, \quad \mathcal{F}_x^- = \mathcal{F}_x$

• if
$$-1 < M \le 0 \ (\Rightarrow \lambda_1 \le 0, \lambda_2 > 0, \lambda_3 < 0)$$

$$\mathcal{F}_x^+ = \frac{\rho}{2\gamma} (v_x + c) \begin{bmatrix} 1 \\ v_x + c \\ \frac{1}{2} v_x^2 + \frac{c^2}{\gamma - 1} + cv_x \end{bmatrix}$$

$$\mathcal{F}_x^- = \frac{\gamma - 1}{\gamma} \rho v_x \begin{bmatrix} 1 \\ v_x \\ \frac{1}{2} v_x^2 \end{bmatrix} + \frac{\rho}{2\gamma} (v_x - c) \begin{bmatrix} 1 \\ v_x - c \\ \frac{1}{2} v_x^2 + \frac{c^2}{\gamma - 1} - cv_x \end{bmatrix}$$

43/61

^LSteger-Warming Flux Vector Splitting Method for the Euler Equations

Practical implementation (continue)

- continue
- continue

• if $0 < M < 1 \ (\Rightarrow \lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 < 0)$

$$\begin{aligned} \mathcal{F}_{x}^{+} &= \frac{\gamma - 1}{\gamma} \rho v_{x} \begin{bmatrix} 1\\ v_{x}\\ \frac{1}{2} v_{x}^{2} \end{bmatrix} + \frac{\rho}{2\gamma} (v_{x} + c) \begin{bmatrix} 1\\ v_{x} + c\\ \frac{1}{2} v_{x}^{2} + \frac{c^{2}}{\gamma - 1} + c v_{x} \end{bmatrix} \\ \mathcal{F}_{x}^{-} &= \frac{\rho}{2\gamma} (v_{x} - c) \begin{bmatrix} 1\\ v_{x} - c\\ \frac{1}{2} v_{x}^{2} + \frac{c^{2}}{\gamma - 1} - c v_{x} \end{bmatrix} \end{aligned}$$

43 / 61

^LSteger-Warming Flux Vector Splitting Method for the Euler Equations

Practical implementation (continue)

- continue
- continue

• if $0 < M < 1 \ (\Rightarrow \lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 < 0)$

$$\mathcal{F}_{x}^{+} = \frac{\gamma - 1}{\gamma} \rho v_{x} \begin{bmatrix} 1 \\ v_{x} \\ \frac{1}{2} v_{x}^{2} \end{bmatrix} + \frac{\rho}{2\gamma} (v_{x} + c) \begin{bmatrix} 1 \\ v_{x} + c \\ \frac{1}{2} v_{x}^{2} + \frac{c^{2}}{\gamma - 1} + c v_{x} \end{bmatrix}$$
$$\mathcal{F}_{x}^{-} = \frac{\rho}{2\gamma} (v_{x} - c) \begin{bmatrix} 1 \\ v_{x} - c \\ \frac{1}{2} v_{x}^{2} + \frac{c^{2}}{\gamma - 1} - c v_{x} \end{bmatrix}$$

• if $M \ge 1 \ (\Rightarrow \lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 \ge 0)$ $\mathcal{F}_x^+ = \mathcal{F}_x, \qquad \mathcal{F}_x^- = 0$

Steger-Warming Flux Vector Splitting Method for the Euler Equations

- Problem: At the sonic points (M = 0 for the entropy waves and $M = \pm 1$ for the acoustic waves), the wave speed splitting (8) is not differentiable the first derivative of the split wave speeds is discontinuous at the sonic points because the function "absolute value" is discontinuous at zero
- Consequently, the wave speed splitting (8) may experience numerical difficulties at these sonic points for example, when an implicit scheme is used; and the Jacobian of (7) is evaluated and thus |λ_i| is differentiated
- Solution: Regularization (or "entropy fix", or "rounding the corner")

$$\boxed{\lambda_i^{\pm} = \frac{1}{2} \left(\lambda_i \pm \left| \sqrt{\lambda_i^2 + \epsilon^2} \right| \right)}$$

where ϵ is a small user-adjustable parameter

- The extension to multiple dimensions of the material covered in this chapter is straightforward (except perhaps for the characteristic theory)
- The expressions of the Euler equations in 2D and 3D can be obtained from Chapter 2 (as particular cases of the expression of the Navier-Stokes equations in 3D)
- Furthermore, given that Chapter 6 discusses the extension of the finite difference method to multiple dimensions on structured grids, this chapter discusses – for the sake of variety – the extension of the finite volume method to multiple dimensions on unstructured grids
- For simplicity, the focus is set here on the 2D Euler equations

$$\frac{\partial W}{\partial t} + \frac{\partial \mathcal{F}_x}{\partial x}(W) + \frac{\partial \mathcal{F}_y}{\partial y}(W) = 0$$
(9)

イロト イヨト イヨト イヨト

and on unstructured triangular meshes

2D unstructured triangular mesh

Euler-Poincaré theorem: Asymptotically, there are about two times more triangles than nodes in a 2D triangular mesh

46 / 61

2D cell-centered grid

- simple implementation: each triangle is at the same time a control volume and a *primal cell*
- three numerical fluxes per triangle only, but more flow variables than necessary (recall the Euler-Poincaré theorem)

47/61

2D vertex-based grid

- deemed more accurate than the cell-centered approach for stretched/skewed grids
- more memory efficient than comparable cell-centered techniques (recall the Euler-Poincaré theorem)
- requires however the construction of an associated control volume or dual cell

2D control volume or *dual cell* for the vertex-based approach

- Sample algorithm for constructing a dual cell C_i attached to vertex i
 - for each triangle τ_{ikl} connected to *i*:
 - determine the point of intersection of the three *medians*, G_{ikl}
 - connect the point G_{ikl} to the midpoints M_{il} and M_{ik} of the edges *il* and *ik*, respectively

 2D control volume or *dual cell* for the vertex-based approach (continue)

- at the wall boundaries and at the far-field boundaries, one obtains "half" dual cells
- the union of all full and half dual cells covers exactly the union of all triangles τ_{ikl} and therefore covers exactly the given triangular mesh

50 / 61

2D cell edge for the vertex-based approach

• the boundary ∂C_i of each dual cell C_i attached to vertex i is the union of *cell edges* $\partial C_{i\star}$

$$\partial C_i = \partial C_{ij} \cup \partial C_{ik} \cup \partial C_{il} \cup \partial C_{im} \cup \partial C_{in}$$

• the cell edge ∂C_{ij} , which is attached to the edge ij, is itself the union of two segments $M_{ij}G_{ijk}$ and $M_{ij}G_{ijn}$

51/61

-Multidimensional Extensions

 Consider again the 2D Euler equations (9): From the results of Chapter 3, it follows that the integration over the dual cell C_i of these equations can be written (after scaling by 1/||C_i|| and usage of the divergence theorem) as

$$\frac{\partial \overline{W}_{i}}{\partial t} + \frac{1}{\|C_{i}\|} \int_{\partial C_{i}} \overrightarrow{\mathcal{F}} \cdot \overrightarrow{\nu}_{i} d\Gamma_{i} = 0, \quad \text{where} \quad \overline{W}_{i} = \frac{1}{\|C_{i}\|} \int_{C_{i}} W_{i} d\Omega$$

-Multidimensional Extensions

Integrating Eq. (10) between t^n and t^{n+1} and re-arranging gives

$$\int_{t^{n}}^{t^{n+1}} \frac{\partial \overline{W}_{i}}{\partial t} dt = -\int_{t^{n}}^{t^{n+1}} \left(\frac{1}{\|C_{i}\|} \int_{\partial C_{i}} \overrightarrow{\mathcal{F}} \cdot \overrightarrow{\nu}_{i} d\Gamma_{i} \right) dt$$
$$= -\sum_{\star} \int_{t^{n}}^{t^{n+1}} \left(\frac{1}{\|C_{i}\|} \int_{\partial C_{i\star}} \overrightarrow{\mathcal{F}} \cdot \overrightarrow{\nu}_{i\star} d\Gamma_{i} \right) dt (11)$$

Eq. (11) can be re-written as

$$\int_{t^{n}}^{t^{n+1}} \frac{\partial \overline{W}_{i}}{\partial t} dt = -\sum_{\star} \frac{\Delta t}{\|C_{i}\|} \left(\frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \left(\int_{\partial C_{i\star}} \overrightarrow{\mathcal{F}} \cdot \vec{\nu}_{i\star} d\Gamma_{i} \right) dt \right)$$

which leads to

$$\boxed{\Delta t \left(\widehat{\frac{\partial \overline{W}}{\partial t}} \right)_{i}^{n} = -\sum_{\star} \frac{\Delta t}{\|C_{i}\|} \widehat{\mathcal{F}}_{i\star}^{n}}$$
(12)

where

$$\overline{W}_{i}^{n} \approx \frac{1}{\|C_{i}\|} \int_{C_{i}} W_{i}(x, y, t^{n}) d\Omega, \quad \widehat{\mathcal{F}}_{i\star}^{n} \approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \left(\int_{\partial C_{i\star}} \overrightarrow{\mathcal{F}} \cdot \overrightarrow{v}_{i\star} d\Gamma_{i} \right) dt$$
(13)
Eq. (12) is the 2D extension of Eq. (1); and definitions (13) are the 2D extensions of definitions (2)

-Multidimensional Extensions

55/61

-Multidimensional Extensions

$$f_{i_{\star}}^{n} \approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} (\widehat{\mathcal{F}}(W(M_{i_{\star}}, t)) \cdot \int_{\partial C_{i_{\star}}} \vec{v}_{i_{\star}} d\Gamma_{i}) dt$$

$$F_{i_{\star}}^{n} \approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} (\widehat{\mathcal{F}}(W(M_{i_{\star}}, t)) \cdot \int_{\partial C_{i_{\star}}} \vec{v}_{i_{\star}} d\Gamma_{i} (1 \text{ quadrature point})$$

$$F_{i_{\star}}^{n} \approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} (\widehat{\mathcal{F}}(W(M_{i_{\star}}, t)) \cdot \int_{\partial C_{i_{\star}}} \vec{v}_{i_{\star}} d\Gamma_{i}) dt \text{ is constructed in 2D similarly}$$

$$to how \ \widehat{\mathcal{F}}_{i_{\star}+1/2}^{n} \approx \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \mathcal{F}_{x}(W(x_{i+1/2}, t)) dt \text{ in constructed in 1D}$$
-Multidimensional Extensions

In particular, upwind methods based on

$$\begin{split} \widehat{\mathcal{F}}_{i\star}^{n}\left(W_{Riemann}(0)\right) &= \quad \overrightarrow{\mathcal{F}}\left(W_{Riemann}(M_{i\star},t)\right) \cdot \int_{\partial C_{i\star}} \vec{\nu}_{i\star} \, d\Gamma_{i} \\ &= \quad \overrightarrow{\mathcal{F}}\left(W_{Riemann}(M_{i\star},t)\right) \cdot \left(l^{(1)} \vec{\nu}_{i\star}^{(1)} + l^{(2)} \vec{\nu}_{i\star}^{(2)}\right) \end{split}$$

are the 2D extensions of 1D upwind methods based on

$$\widehat{\mathcal{F}}^{n}_{x_{i+1/2}} = \mathcal{F}_{x} \left(W_{Riemann}(x_{i+1/2}, t) \right) = \mathcal{F}_{x} \left(W_{Riemann}(0) \right)$$

$$\blacksquare \text{ Let } \widetilde{\vec{\nu}}_{i\star} = \left(I^{(1)} \vec{\nu}^{(1)}_{i\star} + I^{(2)} \vec{\nu}^{(2)}_{i\star} \right) \text{ and } \widetilde{\vec{\nu}}^{\circ}_{ij} = \frac{\vec{\nu}_{ij}}{\|\widetilde{\vec{\nu}}_{ij}\|_{2}}$$

56/61

-Multidimensional Extensions

Recall that in three dimensions

$$(\mathcal{F}_{x}(W) \ \mathcal{F}_{y}(W) \ \mathcal{F}_{z}(W)) = \begin{pmatrix} \rho \vec{v}^{T} \\ \rho v_{x} \vec{v}^{T} + \rho \vec{e}_{x}^{T} \\ \rho v_{y} \vec{v}^{T} + \rho \vec{e}_{y}^{T} \\ \rho v_{z} \vec{v}^{T} + \rho \vec{e}_{z}^{T} \\ (E+p) \vec{v}^{T} \end{pmatrix}$$
$$(\mathcal{R}_{x}(W) \ \mathcal{R}_{y}(W) \ \mathcal{R}_{z}(W)) = \begin{pmatrix} \vec{0}^{T} \\ (\tau \cdot \vec{e}_{x})^{T} \\ (\tau \cdot \vec{e}_{y})^{T} \\ (\tau \cdot \vec{e}_{z})^{T} \\ (\tau \cdot \vec{v} + \kappa \nabla T)^{T} \end{pmatrix}$$

$$\vec{e}_x^T = (1 \ 0 \ 0), \quad \vec{e}_y^T = (0 \ 1 \ 0), \quad \vec{e}_z^T = (0 \ 0 \ 1), \quad \vec{0}^T = (0 \ 0 \ 0)$$

-Multidimensional Extensions

• Method #1 for computing $\widehat{\mathcal{F}}_{ij}(W_{Riemann}(0))$ using Roe's flux

extension of Roe's one-dimensional (1D) approximate Riemann solver to 3D

consider the multidimensional flux in the direction of $\tilde{\vec{\nu}}_{ii}^{\circ}$

$$\mathcal{F}_{\tilde{\nu}_{ij}^{\circ}} = \overrightarrow{\mathcal{F}}_{5\times3} \cdot \underbrace{\tilde{\nu}_{ij}^{\circ}}_{3\times1} = \left(\rho v_{\tilde{\nu}_{ij}^{\circ}} \rho v_x v_{\tilde{\nu}_{ij}^{\circ}} + \rho \tilde{\nu}_{ij_x}^{\circ} \rho v_y v_{\tilde{\nu}_{ij}^{\circ}} + \rho \tilde{\nu}_{ij_y}^{\circ} \rho v_z v_{\tilde{\nu}_{ij}^{\circ}} + \rho \tilde{\nu}_{ij_z}^{\circ} (E+\rho) v_{\tilde{\nu}_{ij}^{\circ}}\right)^{T}$$

where $v_{\tilde{\vec{\nu}}_{ij}^{\circ}} = \vec{v} \cdot \tilde{\vec{\nu}}_{ij}^{\circ} = v_x \tilde{\vec{\nu}}_{ij_x}^{\circ} + v_y \tilde{\vec{\nu}}_{ij_y}^{\circ} + v_z \tilde{\vec{\nu}}_{ij_z}^{\circ}$

Roe's averages are based in this case on the secant approximation defined by

$$\mathcal{F}_{\vec{\nu}_{ij}^{\circ}}(W_{j}) - \mathcal{F}_{\vec{\nu}_{ij}^{\circ}}(W_{i}) = \underbrace{\mathcal{A}_{\vec{\nu}_{ij}^{\circ}}}_{5\times5}(W_{ij})(\underbrace{W_{j}}_{5\times1} - \underbrace{W_{i}}_{5\times1})$$

where
$$A_{\vec{p}_{ij}^{\alpha}} = \frac{\partial \mathcal{F}_{\vec{p}_{ij}^{\alpha}}}{\partial W}$$
, which gives
 $v_{x_{ij}} = \frac{\sqrt{\rho_i}v_{x_i} + \sqrt{\rho_j}v_{x_j}}{\sqrt{\rho_i} + \sqrt{\rho_j}} \quad v_{y_{ij}} = \frac{\sqrt{\rho_i}v_{y_i} + \sqrt{\rho_j}v_{y_j}}{\sqrt{\rho_i} + \sqrt{\rho_j}} \quad v_{z_{ij}} = \frac{\sqrt{\rho_i}v_{z_i} + \sqrt{\rho_j}v_{z_j}}{\sqrt{\rho_i} + \sqrt{\rho_j}}$
 $h_{ij} = \frac{\frac{H_i}{\sqrt{\rho_i}} + \frac{H_j}{\sqrt{\rho_j}}}{\sqrt{\rho_i} + \sqrt{\rho_j}} = \frac{\sqrt{\rho_i}h_i + \sqrt{\rho_j}h_j}{\sqrt{\rho_i} + \sqrt{\rho_j}} \quad \rho_{ij} = \sqrt{\rho_i\rho_j}$
 $\Rightarrow c_{ij} = \sqrt{(\gamma - 1)\left(h_{ij} - \frac{1}{2}(v_{x_{ij}}^2 + v_{y_{ij}}^2 + v_{z_{ij}}^2)\right)} \Rightarrow W_{ij}$
The eigenvalues of $A_{\vec{p}_{ij}^{\alpha}}$ are: $v_{\vec{p}_{ij}^{\alpha}} \pm c$, and $v_{\vec{p}_{ij}^{\alpha}}$ with multiplicity 3, $v_{ij} = v_{ij}^{\alpha}$
58/61

-Multidimensional Extensions

- Method #1 for computing \$\hat{\mathcal{F}}_{ij}\$ (\$W_{Riemann}(0)\$) using Roe's flux
 - extension of Roe's 1D approximate Riemann solver to 3D (continue)
 - formulate Roe's multidimensional approximate Riemann problem: $\frac{\partial W}{\partial t} + \underbrace{A_{\vec{\nu}_{ij}^{\circ}}(W_{ij})}_{5\times 1} \underbrace{\frac{\partial W}{\partial s}}_{5\times 1} = 0, \text{ where } s \text{ is the abscissa along } \vec{ij}, \text{ with uniform initial}$

conditions on an infinite spatial domain, except for a single jump discontinuity

compute Roe's flux

$$\underbrace{\widehat{\mathcal{F}_{ij}}\left(W_{Riemann}(0)\right)}_{5\times1} = \left(\frac{1}{2}\left(\underbrace{\mathcal{F}_{\widetilde{\nu}_{ij}^{\circ}}(W_{i})}_{5\times1} + \underbrace{\mathcal{F}_{\widetilde{\nu}_{ij}^{\circ}}(W_{j})}_{5\times1}\right) - \frac{1}{2}\left|\underbrace{A_{\widetilde{\nu}_{ij}^{\circ}}(W_{ij})}_{5\times5}\right|\left(\underbrace{W_{j}}_{5\times1} - \underbrace{W_{i}}_{5\times1}\right)\right\|\widehat{\nu}_{ij}\|_{2}$$

-Multidimensional Extensions

- Method #2 for computing $\hat{\mathcal{F}}_{ij}$ ($W_{Riemann}(0)$) using Roe's flux
 - along the edge *ij*, "compress" the conservative fluid state vector to obtain $\underbrace{W^{comp}}_{3\times 1} = \left(\rho \quad \rho v_n \quad \rho e + \frac{1}{2}\rho v_n^2\right)^I$,

where $v_n = \vec{v} \cdot \vec{\tilde{\nu}}_{ij}^{O}$, \vec{v} denotes the fluid velocity vector, and *comp* stands for "compressed"

along the edge ij, formulate Roe's 1D approximate Riemann problem using W_i^{comp} and W_j^{comp} , and solve this

problem to obtain $W_{Riemann}^{comp}(M_{ij}, t) = W_{Riemann}^{comp} = \left(\rho_{Riemann} (\rho v_n)_{Riemann} \left(\rho e + \frac{1}{2}\rho v_n^2\right)_{Riemann}\right)^{I}$ now, given that the fluid velocity vector \vec{v} can be decomposed as $\vec{v} = v_n \tilde{\vec{v}}_{ij}^{\circ} + (\vec{v} - v_n \tilde{\vec{v}}_{ij})$, it follows

normal direction tangential direction

that (Roe's) 1D approximate Riemann problem along the edge ij acts only on v_n and therefore modifies only the component of \vec{v} along \vec{v}_{ii}^{0}

next, "expand" v_{Riemann} as

$$\vec{v}_{Riemann}^{exp} = v_{nRiemann} \tilde{\vec{\nu}}_{ij}^{\circ} + (\vec{v} - v_n \tilde{\vec{\nu}}_{ij}^{\circ})_{average} = v_{xRiemann}^{exp} \vec{e}_x + v_{yRiemann}^{exp} \vec{e}_y + v_{zRiemann}^{exp} \vec{e}_z$$

where exp stands for "expanded"

then, compute the "expanded" vector WRiemann

$$5 \times 1$$

$$W_{Riemann}^{exp} = (\rho_{Riemann} \qquad \rho_{Riemann} \lor_{xRiemann}^{exp} \rho_{Riemann} \lor_{yRiemann}^{exp} \rho_{Riemann} \lor_{zRiemann}^{exp} \rho_{Riemann}^{exp} \rho_$$

60 / 61

-Multidimensional Extensions

Note that

$$\hat{\mathcal{F}}_{ij}^{n} = \vec{\mathcal{F}} (W_{Riemann}(M_{ij}, t)) \cdot \left(l^{(1)} \vec{\nu}_{ij}^{(1)} + l^{(2)} \vec{\nu}_{ij}^{(2)} \right)$$

$$\hat{\mathcal{F}}_{ji}^{n} = \vec{\mathcal{F}} (W_{Riemann}(M_{ij}, t)) \cdot \left(l^{(1)} \vec{\nu}_{ji}^{(1)} + l^{(2)} \vec{\nu}_{ji}^{(2)} \right)$$

• Since $\vec{\nu}_{ji} = -\vec{\nu}_{ij}$, it follows that

$$\widehat{\mathcal{F}}_{ji}^{n} = -\widehat{\mathcal{F}}_{ij}^{n}$$

$$\Longrightarrow \widehat{\mathcal{F}}_{ij}^{n} + \widehat{\mathcal{F}}_{ji}^{n} = 0 \Longrightarrow \widehat{\mathcal{F}}_{ij} \text{ is a conservative numerical flux (explain)}$$