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|—Conservation Law Form

m Definition: an equation (or set of equations) is said to be in
conservation law form — or more precisely, in divergence form — if
it is written as follows

ow
W+$>.?(W):5

m If S =0, the equation is said to be in strong conservation law form

m For example, many of the equations presented in Chapter 2 are
written in strong conservation form
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|—Conservation Law Form

m Recall that the transonic small disturbance equation discussed in
Chapter 2 was written as

A i S N
[Vl ) 052 T 0y2 " 022

(1—M§o—(7+1)/\/l§o Ox - | — + — + =0
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|—Conservation Law Form

m Recall that the transonic small disturbance equation discussed in
Chapter 2 was written as

9¢ a2¢ 82¢ 82¢
_ 2 Ox —
(1 M2 — (v +1)M °°H” ”> 2 ot ar 0

This equation can be re-written in strong conservation form using

) 00 2% 71 9g 09
F= ([(I_M Jax ~0 Y °°2|8;O|] ay 8z>
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|—Integral Form

m The integration over an arbitrary stationary volume Q enclosed by the surface 9Q of a
generic equation written in conservation form can be written as

ow
Q§d9+/n?-?(W)dQ:/QSdQ
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|—Integral Form

m The integration over an arbitrary stationary volume Q enclosed by the surface 9Q of a
generic equation written in conservation form can be written as

ow
Q§d9+/n?-?(W)dQ:/QSdQ

m Dividing by Q and using the divergence (Gauss, or Ostrogradsky) theorem leads to

1
—_— — S5dQ 1
8t+ﬂ 20 Q/Q &)

where W

1
— W dQ
2, )
e
m The above equation represents the rate of change of the mean value of W over the volume ||

€ caused by the net flux of ? crossing the surface 9 and the volume source S
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I—Relations at Discontinuities

LStatio:mary Discontinuities

fy,2) =0

Q
\%Z/

m Let f(x,y,z) = 0 represent a surface located at a possible
discontinuity within the fluid

m Assume that the flow is continuous within each of the two
subdomains shown in the figure above

D,

m Assume also that Q is placed symmetrically about an arbitrary
point of the surface and is allowed to shrink to zero &
ﬁ@n
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|—Relations at Discontinuities

LStatio:mary Discontinuities

f(xy,z)=0
Dy

o

m Now, for the case of a steady flow, Eq. (1) becomes

/m?-ﬁ:/ﬂsm
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I—Relations at Discontinuities

LStatio:mary Discontinuities

f(xy,z)=0
Dy

o

m Now, for the case of a steady flow, Eq. (1) becomes

/m?-ﬁ:/ﬂsm

m As Q — 0, the term on the right goes to zero at a faster rate than
. . 1
the surface integration term (h3 vs h2, where h ~ Q3 = 9Q?)
m It follows that for an infinitesimal Q

R ks
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|—Relations at Discontinuities

LStatio:mary Discontinuities

doaQs

6
0= F-dos=S"F, i doQ;, where [Allz=1,i=1,-,6
o0 i—1
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I—Relations at Discontinuities

LStatio:mary Discontinuities

doaQs

6
0= F-dos=S"F, i doQ;, where [Allz=1,i=1,-,6
o0 i—1

m Since the flow is continuous within each of subdomain D; and
subdomain D5, in the limit when 92 — 0

Pty dOQs + FaeflsdOQs =0 and  Fe-is dOQs + Fo-isddQ = 0
- ?'(m:?lﬁﬂdaﬂlJr?z~ﬁgd392:0
o

.Y

:>(?1—?2)~ﬁ'1:0 with m= = B
Fl e
— (F1— F)-VF=0
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I—Relations at Discontinuities

LStationary Discontinuities

dao,

doQy

daQ

m The jump of ? across the surface f is defined as and denoted by
2
(7. 7) - 7]
= [[?]]2 : ?f =0
1
which can also be written as

281‘

28f 28f

707 5, + AL y [Foly ;=0

m If ? is the flux vector of the Euler equations, the above steady jump . h
relations at surface f(x,y,z) = 0 represent the Rankine-Hugoniot |

relations across a shock wave
9/16
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I—Relations at Discontinuities
L Moving Discontinuities

m Consider now the surface f(x, y, z, t) = 0 representing a dynamic
surface located at a possible moving discontinuity within a volume Q

of a fluid
(20 0 o\
~ \ 0t Ox dy Oz

m Let
and -
Frw) = (WT FI(w) FJ (W) FT(W))

m Then %—Mt/ + v ?(W) — S can be rewritten as V' * - 7*(W) =S

m Using the above notation, which includes time as a dimension, the
previous discussion on stationary discontinuities can be generalized
to obtain the following unsteady jump relations for moving
discontinuities

28f 28f 281‘ 231‘

[#05 -9 = WD 5, +[ED o+ [RD 5 + 17D
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar

variable u
ou ou 0

ot Tax

B consider first the case of a stationary discontinuity surface of the form
f(x)=x—x =0
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar

variable u
ou ou 0

ot Tax

B consider first the case of a stationary discontinuity surface of the form

f(x)=x—x =0

B in this case, F* = (ucu)T and iy = A (01)7, and therefore the jump

AL

relation is

[{?*H??*f = [[cu]]f =clu1 —w)=0&u =uw

B this implies that no jump is possible, which is not surprising for a linear equation
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar
variable u (continue)
ou n ou 0
P
ot Ox

B consider next the case of a discontinuity surface moving at constant speed w,
f(x,t) =x —x —w(t—t°) =0

t1 slope= 1/w

ft)=0
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar
variable u (continue)
ou n ou 0
P
ot Ox

B consider next the case of a discontinuity surface moving at constant speed w,
f(x,t) =x —x —w(t—t°) =0

t1 slope= 1/w

ft)=0

*

B in this case, M = Sreo_ 1 —w 1)7, and therefore the jump relation is
Ll 2 v A jump

[[?*Hj-v*f: 7W|Iu]]§+[cu]]i = —w(u —w)+c(uy —w)=0

[
& (c—w)(un —w)=0 i %
- ¥ha

B this implies that any jump is possible, as long as it moves at the speed ¢
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I—Relations at Discontinuities
LShock Waves

Mach Waves

location of sound wave
at time t

bt Voot Vot L
\
\ \
location of beeper location of beeper
attimet > t’ attimet =0

X

Mach wave: pressure wave traveling with the speed of sound caused by a slight change of pressure
added to a compressible flow — these weak waves can combine in supersonic flow to become a
shock wave if sufficient Mach waves are present at any location

ino c 1 = tand sin 0 1
sin = — = —— anf = =
Voo Moo \/lfsinQG \/Mgcfl

13/16



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 14 /16
I—Relations at Discontinuities
LShock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

m Recall the linearized small-perturbation potential equation modeling
a two-dimensional steady flow in either the subsonic or supersonic
regime

P 0o T
2 _ 2 _
(1M Gt e =0 © Vo(a-m2)22 22) —o

m For My, > 1.2, this equation is hyperbolic and can describe purely

supersonic flows with small perturbations about a supersonic

free-stream with velocity Vo, = ||Vl € (recall also that in this
I q 99\ . , 99
case, V=V + ?(b = (||voo|| + 8X> & + a—yey>

m Consider as a possible stationary discontinuity surface
f(x,y) = a(x —xo) — b(y — y0) = 0, where a and b are constants
(stationary w.r.t the object generating it)
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I—Relations at Discontinuities
LShock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

. _ 209 0¢ T = _ Yf o_ 1 _pT
] Inthlscase,?f((l M”)ax By) and nlfH fuf\/m(a b)', and

therefore the jump relation is
9972 9972

a (17M;) H—ﬂ] b [[i’]] -
ox ]y Oy 14

N 06, 06, \ _
= (=) (Gl 50) =2 (5= 55k) =

R

m if a=0or b =0, there are no permissible jumps (why?)

B a small perturbation jump can occur across a Mach line f(x, y) with angle 6, in which

a
case the slope of the discontinuity surface is — = tan § = ———— (recall that
b VM2 -1 (

1
the Mach angle is given by sinf = M—) along this Mach line, the jump relation

oo

2 2
simplifies to —\/m [[%]] = [[%jj]]

1 1
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I—Relations at Discontinuities
LShock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

ach Wave

S

m (Continue)
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I—Relations at Discontinuities

LShock Waves

16 /16

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

vt
ach Wave
Voo s
«\‘%\\’\\‘N\\\%
x
m (Continue)
1
B along the Mach line with the slope 2_ tan = ——, where
b M2 —1

)

b} 2
= [[ﬁ]] , the flow can turn through an angle § (small value
1 oy 1,

because small perturbation) from the free-stream direction (see above figure, where

(o203 —tand —tand

? = 0) such that — Vao || = v and

¢"1 ) 6x‘2 tan§ + \/M?i I~ VM2 —1 Voo | 8
22, = VI~ tan 7 A
—_— = V, ~ tan V,

9y '?  tand + \/M2 > >
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