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|—Preliminaries

m Throughout this chapter — and as a matter of fact, this entire
course — the flow is assumed to be compressible and the fluid is
assumed to be a perfect gas (thermally and calorically)

m The Equation Of State (EOS) of a thermally perfect gas is

p=pRT = p=p(p,T)or T =T(p,p)

where p denotes the gas pressure, p its density, T its temperature,
and R is the specific gas constant (in SI units, R = 287.058
m? /s? /K)

m The internal energy per unit mass e of a calorically perfect gas is
given by

R
e= CVT:—1T:>e:e(T) or T=T(e)
v -
where C, denotes the heat capacity at constant volume of the gas
and v denotes the ratio of its heat capacities (C,/C,, where G,
denotes the heat capacity at constant pressure)
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L Nomenclature

¥ heat capacity ratio

P density

p pressure

T temperature

superscript T transpose

v velocity vector

e internal energy per unit mass

E = pe + %p\l\?”2 total energy per unit volume

H=E+p total enthalpy per unit volume

T (deviatoric) viscous stress tensor/matrix

p (7 = pdv/dy) (laminar) dynamic (absolute) molecular viscosity
— measure of force

v (laminar) kinematic molecular viscosity, p/p
— measure of velocity

K thermal conductivity

i identity tensor/matrix

M Mach number

R Reynolds number, p||V||Lc/p = ||V||Lc/v

Lo characteristic length

t time

t unitary axis for the time dimension

subscript t turbulence eddy quantity

subscripts x, y, z (or occasionally i, j) components in the x, y, and z directions

& (&, or &) unitary axis in the x (y, or z) direction

subscript co free-stream quantity
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|—Equations Hierarchy

m Navier-Stokes equations

m Reynolds-averaged Navier-Stokes equations (RANS)
m large eddy simulation (LES)

Euler equations

Full potential equation
m Linearized Small-Perturbation Potential Equation

m subsonic and supersonic regimes
m transonic regime
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L Navier-Stokes Equations

L Assumptions

m The fluid of interest is a continuum
m The fluid of interest is not moving at relativistic velocities

m The fluid stress is the sum of a pressure term and a diffusing viscous
term proportional to the gradient of the velocity

1 L1 .
o=—pl+7=—pl+2u §(V+VT)V—§(€-V)]I (1)
T
where Ovy Avy ov, Ovy Ovy [
ox Ox Ix Ox Ay oz
7] 7]
7 = (%y VZ)T, V= Ovy dvy v, ’ vTy— vy v, Oy
dy Oy Ay Ox dy oz
vy dvy v, v, v, v,
0z oz 0z Ox dy 22
o 9 o\T v, v, v,
v = < > =V.v=20 M z =
Ox Oy 0Oz v ox dy + oz M
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L Navier-Stokes Equations
LEquations

m Eulerian setting

m Dimensional form

‘%”V?(W):?Q(W)

W = (p pv T E)T

F(w) = (FT(w) F(w) FT(w))"

R(W) = (RT(W) RT (W) RT(W))"

z

m One continuity equation, three momentum equations and one energy
equation = five equations

m Closed system (p, v, e, T = T(e), p=p(p, T)) E ig
= Vh
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L Navier-Stokes Equations
LEquations
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L Navier-Stokes Equations
L Some Noteworthy Facts

m The Navier-Stokes equations are named after Claude-Louis Navier
(French engineer) and George Gabriel Stokes (Irish mathematician
and physicist)

m They are generally accepted as an adequate description for
aerodynamic flows at standard temperatures and pressures

m Because of mesh resolution requirements however, they are
practically useful “as is” only for laminar viscous flows, and low
Reynolds number turbulent viscous flows

m Today, mathematicians have not yet proven that in three dimensions
solutions always exist, or that if they do exist, then they are smooth

m The above problem is considered one of the seven most important
open problems in mathematics: the Clay Mathematics Institute
offers $ 1,000,000 prize for a solution or a counter-example &
ﬁ;v.-
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Motivations

m Consider the flow graphically depicted in the figure below

Incident shock
wave

Reflected shock

M, >1

Boundary layer

m an oblique shock wave impinges on a boundary layer
m the adverse pressure gradient (dP/ds > 0) produced by the shock
can propagate upstream through the subsonic part of the boundary
layer and, if sufficiently strong, can separate the flow forming a
circulation within a separation bubble
m the boundary layer thickens near the incident shock wave and then
necks down where the flow reattaches to the wall, generating two B
sets of compression waves bounding a rarefaction fan, which =
eventually form the reflected shockwave
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Motivations

m Consider the flow graphically depicted in the figure below (continue)

Incident shock
wave

Reflected shock
wave

M,>1

Boundary layer

m the Navier-Stokes equations describe well this problem

m but at Reynolds numbers of interest to aerodynamics (high R.), their
practical discretization cannot capture adequately the
inviscid-viscous interactions described above

m today, this problem and most turbulent viscous flow problems of
interest to aerodynamics require turbulence modeling to represent
scales of the flow that are not resolved by practical grids

m the Reynolds-Averaged Navier—Stokes (RANS) equations are one
approach for modeling a class of turbulent flows
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Approach

m The RANS equations are time-averaged equations of motion for fluid flow

_ 1 04T
W — W= lim 7/ W dt

T—oo T Js0

m The main idea is to decompose an instantaneous quantity into time-averaged and
fluctuating components o

W= W+ w

N~ ~~

time — averaged fluctuation

m The substitution of this decomposition (first proposed by the Irish engineer Osborne
Reynolds) into the Navier-Stokes equations, the averaging of the resulting equations and the
injection in them of various approximations based on knowledge of the properties of flow
turbulence lead to a closure problem induced by the arising non-linear Reynolds stress term

—_— p ov; 0V —_—
R,j:—v.’v.' —B+u - '+,J —v/v/
i P 0x; Ox; rJ
m Additional modeling of R;; is therefore required to close the RANS equations, which has led & i:
/el

to many different turbulence models
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Approach

m Many of these turbulence models are based on
m the Boussinesq assumption Rjj = Rjj(v:) — that is, on assuming that
the additional turbulence stresses are given by augmenting the
laminar molecular viscosity p with a (turbulence) eddy viscosity p.
(which leads to augmenting the laminar kinematic molecular viscosity
v with a (turbulence) kinematic eddy viscosity v;) (see Eq. (1))

m a parameterization vy = ve(Xx1, * 5 Xm)
m additional transport equations similar to the Navier-Stokes equations
for modeling the dynamics of the parameters x1, -+, Xm
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Equations

m In any case, whatever RANS turbulence model is chosen, W is
augmented by the m parameters of the chosen turbulence model
(usually, m =1 or 2)

Wiug < (P p‘7T Exi - Xm)T

and the standard Navier-Stokes equations are transformed into the
RANS equations which have the same form but are written in terms
of W and feature a source term S that is turbulence model
dependent

7W+€?( ? ﬁ W)+S(W, x1, -+, Xm)
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L Euler Equations
L Additional Assumptions

m The fluid of interest is inviscid (or the viscous effects are negligible)

m There are no thermal conduction effects (or they are negligible)

:>{ u=0=7=0 }:ﬁ(W):O

k=0
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L Euler Equations
LEquations

m Eulerian setting

m Dimensional form
LYV FW)=(0060)7

m One continuity equation, three momentum equations and one energy
equation
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L Euler Equations
L Some Noteworthy Facts

m The Euler equations are named after Leonhard Euler (Swiss
mathematician and physicist)

m Historically, only the continuity and momentum equations have been
derived by Euler around 1757, and the resulting system of equations
was underdetermined except in the case of an incompressible fluid

m The energy equation was contributed by Pierre-Simon Laplace
(French mathematician and astronomer) in 1816 who referred to it
as the adiabatic condition

m The Euler equations are nonlinear hyperbolic equations and their
general solutions are waves

m Waves described by the Euler equations can break and give rise to
shock waves
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L Euler Equations
L Some Noteworthy Facts

m Mathematically, this is a nonlinear effect and represents the solution
becoming multi-valued

m Physically, this represents a breakdown of the assumptions that led
to the formulation of the differential equations

m Weak solutions are then formulated by working with jumps of flow
quantities (density, velocity, pressure, entropy) using the
Rankine-Hugoniot shock conditions

m In real flows, these discontinuities are smoothed out by viscosity

m Shock waves with Mach numbers just ahead of the shock greater
than 1.3 are usually strong enough to cause boundary layer
separation and therefore require using the Navier-Stokes equations

m Shock waves described by the Navier-Stokes equations would
represent a jump as a smooth transition — of length equal to a few
mean free paths ! — between the same values given by the Euler

equations "
1The mean free path is the average distance over which a moving particle (such as an atom, a A
molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific v
context, other properties), typically as a result of one or more successive collisions with other
particles.
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I—FuII Potential Equation
L Additional Assumptions

m Flow is isentropic
= flow contains weak (or no) shocks and with peak Mach
numbers below 1.3

m And flow is irrotational — that is, ? xvV=0
— V= ?CD, where @ is referred to as the velocity potential

¥ x Vo =0
€><\7:O

—> not suitable in flow regions where vorticity is known to be
important (for example, wakes and boundary layers)
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I—FuII Potential Equation

LGoverning Equation

m Steady flow (but the potential flow approach equally applies to
unsteady flows)

m from the isentropic flow conditions (p/p” = cst) and V = ?CD, it

follows that
992 | 992 | 992
T o= Te|1-2Tiam (ot Te
= oo 0o =
2 | Voo [
992 | 9v2 | 992 74
y=1,- (& T3 ta
P = Ppo|l- Mz = -1
w{ 2 ( Ak
1
802 | 992 | 99?2 =1
P PR ey Vo (a2 R ’
2 [l Voo |2
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I—FuII Potential Equation
LGoverning Equation

m Steady flow (continue)
m non-conservative form (see later)

(1 3 sz) P (1 B I\/If) 9 (1_ Mf) B

o T By T 922
2o 2’0 2o
—2MM, —— —2M M, —— —2M, M ——— =
Y Ox Oy Y2 0y 0z 0z Ox 0
where
100 106 109

*TeoxT Y T cdy’ 7 coz
are the local Mach components and

P
p

Cc =

is the local speed of sound
m compare the above equation to the Euler equation

"
%—Vtv+?.?(W):(060)T &
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I—FuII Potential Equation

LGoverning Equation

m Steady flow (continue)

m conservative form (see later)

o(p2e) (e%)  a(p2e)

=0
ox + dy + 0z
where
1
902 | 902 | 902 -1
_ 1Y [ Ty Te
P 2 172
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I—Linearized Small-Perturbation Potential Equation

LTransonic Regime

Additional Assumptions

m Uniform free-stream flow near Mach one (say 0.8 < My, < 1.2 = transonic regime)
m Thin body and small angle of attack

— flow slightly perturbed from the uniform free-stream condition
= V= [ [l& + Vo

where ¢ — which is not to be confused with ®2 — is referred to as the small-perturbation
velocity potential

o¢ -9 =%

v = Vool + o=,

Vy = 3 vz =
Ox oy 0z ¥
O << Voo |l oy << Vool 9z | << (170 ||

2]t can be easily shown that ® = ¢ + [ Voo || x
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I—Linearized Small-Perturbation Potential Equation

LTransonic Regime

Small-Perturbation Potential Equation

m Steady flow (but the small-perturbation velocity potential approach
equally applies to unsteady flows)

CNsoll ] Ox2  dy?  9z?

9¢ 2 2 2
(1—M§O—(v+1)/\/l2 — >M+M+M:0

m The leading term of the above equation cannot be simplified in the
transonic regime (0.8 < M., < 1.2)

m The velocity vector is obtained from vV = ||V || & + ?qﬁ and the
pressure and density from the first-order expansion of the second
and third isentropic flow conditions as in the previous case

m The temperature is obtained from T = T(p, p) and the total energy ¥
per unit mass is obtained from e = ¢(T) G
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I—Linearized Small-Perturbation Potential Equation

LTransonic Regime

25 /29

Some Noteworthy Facts

m In the transonic regime, the small-perturbation potential equation is
also known as the “transonic small-disturbance equation”
m It is a nonlinear equation of the mixed type
m elliptic if

2¢
(1—M§o—(v+1)M§o ox >>o

Voo |

m hyperbolic if

99
GM@W+UM§8X><O

[[Veo




AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 26 /29
I—Linearized Small-Perturbation Potential Equation

L Subsonic or Supersonic Regime

Additional Assumptions (revisited)

m Uniform free-stream flow rear-Mach-one{say-0-8<M<123

= subsonic or supersonic regime

m If supersonic, preferrably when 1.2 < M, < 1.3 (why?)

m Thin body and small angle of attack = flow slightly perturbed
from the uniform free-stream condition

— 7= |[V]lE+ Vo

where ¢ is referred to as the small-perturbation velocity potential

v = |7 H"‘% V_aﬁ v_8£
e ox’ Y dy’ 7 oz
¢ _ ¢ " o9 o
52| <<l |oe] <<zl |52] <<l

£
— (17M§07(7+1)M2 ox )z(lfl\/lio)

Vool
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I—Linearized Small-Perturbation Potential Equation

L Subsonic or Supersonic Regime

Linearized Equation

m Steady flow
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I—Linearized Small-Perturbation Potential Equation

L Subsonic or Supersonic Regime

Linearized Equation

m Steady flow (continue)

m the velocity vector is obtained from vV = ||V || & + ?qﬁ and the
pressure and density from the first-order expansion of the second and
third isentropic flow conditions as follows

99
oo | 1 — yM3 2
P ( ! °°|voo||>

9¢
p = poo|l— M2
([ Voo |

m the temperature is obtained from T = T(p, p) and the total energy

per unit mass from e = e(T) & i
e

o
\
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I—Linearized Small-Perturbation Potential Equation

L Subsonic or Supersonic Regime

Some Noteworthy Facts

m The linearized small-perturbation potential equation

2% 62¢) 9%

— 2 _ =
(1-Me) g2t ay2 t 52 =

is much easier to solve than the nonlinear transonic
small-perturbation potential equation, or the nonlinear full potential
equation: it can be recast into Laplace's equation using the simple
coordinate stretching in the €&, direction

X

X=— subsonic regime
T ( gime)
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