AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Computational Fluid Dynamics (CFD)

1/36

・ロト ・回ト ・ヨト ・ヨト

Outline

1 What is CFD?

2 Why CFD?

3 What for CFD?

- A Tool for Research
- A Tool for Design Analysis and Optimization

4 Anatomy of CFD

2/36

(日) (部) (注) (注) (言)

What is CFD?

- Abbreviation of Computational Fluid Dynamics
- Branch of fluid mechanics that uses mathematical models, numerical methods, and (powerful) computers to solve and analyze problems involving fluid flows
- Corresponding software is typically verified using academic problems, then validated using experimental (wind tunnel, flight test, etc.) data

Figure: NASA Common Research Model (CRM): Pressure contour plots and iso-lines

NASP (National AeroSpace Plane)

Figure: X-30 NASP: Early configuration (Rockwell, circa 1990)

president Reagan announced the NASP project in his 1986 State of the Union message, calling for the development of "... a new Orient Express that could, by the end of the next decade, take off from Dulles Airport and accelerate up to twenty-five times the speed of sound, attaining low earth orbit or flying to Tokyo within two hours..."

Why CFD?

 X-30 NASP (aka Copper Canyon Phase 2, HySTP (Hypersonic System Technology Program), Orient Express, X-30)

- SSTO (Single Stage To Orbit) winged orbital launch vehicle with air-breathing scramjet
- horizontal takeoff/horizontal landing
- **CFD** for modeling the scramjet and designing the aerodynamic shape
- cancelled in 1990 due to cost and technical challenges (composite hydrogen tank, carbon-carbon aerodynamic surfaces, high temperature heat pipes as sharp leading edges)

Why CFD for the X-30 NASP?

- ground test facilities (wind tunnels) do not exist in all flight regimes covered by the hypersonic flight of such a vehicle
- the prospect in the twenty-first century for wind tunnels that can simultaneously simulate the high Mach numbers and high flow field temperatures encountered by transatmospheric vehicles are not encouraging ¹
- flight testing is particularly challenging in this case, because of the speeds at which such a vehicle operates: When anything unexpected occurs, the time to react is so short that the tested system must be destroyed

6/36

¹See John D. Anderson Jr., Computational Fluid Dynamics, The Basics with Applications, Chapter 1, McGraw-Hill, Inc.

Why CFD?

Formula 1

- the most widely watched annual sport event in the world, with viewing figures of 490 million per race
- its commercial rights generate \$1.827 billion in annual revenue
- its top teams run on budgets of up to \$400 million backed by global corporations such as BMW, Mercedes, Red Bull, and Renault
- in 2022, 23 Grands Prix were held in Bahrain, Saudi Arabia, Australia, Italy (2), USA (2), Spain, Monaco, Azerbaijan, Canada, UK, Austria, France, Hungary, Belgium, Netherlands, Russia, Singapore, Japan, Mexico, Brazil, and UAE

Formula 1 (continue)

 "The first priority is aero, the second priority is aero, the third priority is aero, the fourth priority is tyres" (Sergio Rinland: Williams, Brabham, Benetton, Sauber)

Wind tunnels for Formula 1

- about \$100 million investment
- most are half-scale, but some are full-scale
- moving carpets can be used to include the effect of the rotation of the wheels

・ロ ・ ・ 回 ・ ・ 注 ・ ・ 注 ・ り へ ()

Why CFD for Formula 1?

- to gain understanding and insight into the behavior of the car in configurations that are difficult or impractical in a wind tunnel
 - yaw (cross-wind, cornering)
 - steer with the front wheels turned
 - roll (ride-height variations)
- wind tunnel models are usually (too) stiff, while the front and rear wings are (very) flexible

Why CFD for Formula 1? (continue)

- In 2007, Renault announced an investment of \$50 million in CFD because the work it would enable at the Formula 1 factory in Enstone, England, would find its way back to street car technology
- "Success in F1 requires world-class CFD and a cutting-edge aerodynamic team that is armed with the best tools available ..." (Willy Rampf, Sauber Petronas)

Why CFD?

- Modern viewpoint: Fluid dynamics has three pillars, namely, theory, experimentation, and computation
 - "Together with theory and experimentation, computational science now constitutes the 'third pillar' of scientific inquiry, enabling researchers to build and test models of complex phenomena"²
 - CFD is the third pillar of fluid dynamics

²United States President's Information Technology Advisory Committee, Computational Science: Ensuring America's Competitiveness, National Coordination Office for Information Technology Research & Development, 2005, Committee and Coordination

- Counter-view point: Fluid dynamics has two pillars which are thoroughly computational ³
 - Experimental Fluid Dynamics: Foundations were laid in France and England in the 17th century
 - today, computation is an integral part of experimentation (for example, for analyzing measurements)
 - today, a CFD simulation is by itself a virtual fluid dynamics experiment
 - Theoretical Fluid Dynamics: Foundations were developed primarily in Europe during the 18th and 19th centuries
 - to be useful, a theory should be able to explain some existing observation and/or generate a meaningful prediction
 - in fluid dynamics a theory is typically mathematical in nature, and its application for prediction typically requires a CFD simulation

13/36

14 / 36

What for CFD?

⊢A Tool for Research

Outline

2 Why CFD?

3 What for CFD?

- A Tool for Research
- A Tool for Design Analysis and Optimization

4 Anatomy of CFD

What for CFD?

⊢A Tool for Research

- "What if" numerical experiments
 - what if the flow was laminar?
 - what if the flow was turbulent?
- Numerical sensitivity analysis
 - what happens to the lift/drag ratio if the angle of attack is slightly increased?
 - what happens to the induced drag coefficient if the Reynolds number is slightly decreased?

15/36

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

What for CFD?

A Tool for Research

- Exploration of flow physics
 - the Knoller (1909, theory)-Betz (1912, theory), or Katzmayr (experimental verification, Vienna, 1922) effect: reduction in drag of an airfoil when the air stream is oscillating
 - low frequency plunging of an airfoil (momentum deficit, indicative of drag)

What for CFD?

A Tool for Research

- Exploration of flow physics (continue)
 - the Knoller (1909, theory)-Betz (1912, theory), or Katzmayr (experimental verification, Vienna, 1922) effect: reduction in drag of an airfoil when the air stream is oscillating
 - higher frequency plunging of an airfoil (momentum surfeit, indicative of thrust)

What for CFD?

⊢A Tool for Research

- Exploration of flow physics (continue)
 - the Knoller-Betz (or Katzmayr) effect (continue)
 - increasingly higher frequency plunging of an airfoil

What for CFD?

- ⊢A Tool for Research
 - Exploration of flow physics (continue)
 - the Knoller-Betz (or Katzmayr) effect (continue)
 - Iow frequency plunging of an airfoil: Positive drag

20 / 36

What for CFD?

⊢A Tool for Research

Exploration of flow physics (continue)

- the Knoller-Betz (or Katzmayr) effect (continue)
 - higher frequency plunging of an airfoil: Thrust production

21 / 36

What for CFD?

- ⊢A Tool for Research
 - Exploration of flow physics (continue)
 - the Knoller-Betz (or Katzmayr) effect (continue)
 - increasingly higher frequency plunging of an airfoil: Thrust production with nonsymmetric wake patterns

A Tool for Research

Exploration of flow physics (continue)

- the Knoller-Betz (or Katzmayr) effect (continue)
 - implications for flapping wing propulsion
 - applications for Micro Air Vehicles (MAVs)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

23 / 36

What for CFD?

A Tool for Design Analysis and Optimization

Outline

2 Why CFD?

3 What for CFD?

- A Tool for Research
- A Tool for Design Analysis and Optimization

4 Anatomy of CFD

23 / 36

E

ヘロン 人間と 人間と 人間と

What for CFD?

A Tool for Design Analysis and Optimization

- Today: Preliminary and detailed designs
- Today: Design and design optimization by analysis

- iterative process
- resource intensive
 - \implies component design
 - \Longrightarrow detail design
 - \implies model reduction (CME 345)

24 / 36

Э

・ロン ・雪 と ・ ヨ と ・ ヨ と

What for CFD?

A Tool for Design Analysis and Optimization

- Example: Formula 1 aerodynamic shape design
 - wind tunnels will probably remain the most important overall design tool for a relatively long time
 - however detail designs like wing mirrors and/or front/rear wings and end plates are currently designed using only CFD

25 / 36

・ロト ・日ト ・ヨト ・ヨト

What for CFD?

A Tool for Design Analysis and Optimization

Sample impact: Formula 1 arrangement optimization

■ simulation of the turbulent flow past a complete car configured in its wind tunnel ⇒ move the rear-view mirrors to the wake of the tires

What for CFD?

A Tool for Design Analysis and Optimization

- Sample impact: Formula 1 arrangement optimization (continue)
 - position of the rear-view mirrors before performing the turbulent flow simulations

Figure: CAD (Computer-Aided Design) model (initial)

・ロト・日本・モト・モー つう

What for CFD?

A Tool for Design Analysis and Optimization

- Sample impact: Formula 1 arrangement optimization (continue)
 - "optimized" position of the rear-view mirrors

Figure: CAD model (modified)

4 ロ ト 4 日 ト 4 日 ト 4 日 ト 2 の Q C
28 / 36

What for CFD?

A Tool for Design Analysis and Optimization

- Sample impact: Formula 1 arrangement optimization (continue)
 - car before design optimization

Figure: Rear-view mirrors are on the car body in the vicinity of the cockpit

< □ > < 部 > < E > < E > E のQC 29/36

What for CFD?

A Tool for Design Analysis and Optimization

- Sample impact: Formula 1 arrangement optimization (continue)
 - car after design optimization

Figure: Rear-view mirrors are on sticks in the wake of the tires

Anatomy of CFD

- Anatomy of an overall process
 - clean CAD model
 - specify mathematical models (inviscid, viscous laminar, viscous turbulent, turbulence model, etc.)
 - generate grid (or mesh) (discretize the computational domain)
 - structured grid
 - multi-block structured grid
 - unstructured
 - Chimera (overset) grids
 - specify equations of state
 - prescribe boundary conditions
 - select steady or unsteady flow solution
 - define initial conditions
 - specify output
 - specify semi-discretization process (spatial discretization)
 - finite difference approximation
 - finite volume approximation
 - finite element approximation
 - specify time or (pseudo-time) discretization
 - explicit ODE (Ordinary Differential Equation) solver
 - implicit ODE solver and equation solver
 - perform post-processing

31/36

Partial view of a CAD model and an unstructured grid

Partial view of an unstructured surface grid

Partial view of a structured grid

34 / 36

臣

Partial view of a multi-block structured grid

・ロ・・(部・・モ・・モ・・モ

Partial view of a set of overset grids

