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Abstract

Much progress in understanding the phenomenon of turbulent drag reduction by polymer

additives has been made since its first experimental observation. While the use of di-

rect numerical simulations has achieved significant success and dramatically improved our

understanding of the mechanisms associated with polymer drag reduction, a conclusive ex-

planation of the physics associated with the phenomenon is still lacking. In particular, the

stretching and relaxtion mechanisms of individual polymer molecules are still unclear since

the numerical simulations have relied on a continuum approach to compute the polymer

quantities, i.e., solving a constitutive equation in an Eulerian frame of reference. Moreover,

the accuracy of these simulations is limited by their need for artificial dissipation to stabilize

the simulations.

To overcome these difficulties, one can simulate the polymer phase in a Lagrangian

framework, which is well-suited for solving the hyperbolic polymer equations. The La-

grangian approach is characterized by tracking a large number of polymer molecules in the

turbulent flow and computing the polymer stresses along their trajectories. This allows

an exact description of the dynamics of single molecules and avoids any explicit artificial

diffusion - a great advantage over the previous techniques. Moreover, more complex and

accurate polymer models can be used to validate the constitutive models.

As a first step, this work attempts to uncover the mechanisms of polymer stretching

in turbulent flows using various polymer models with realistic parameters. A topological

methodology is applied to characterize the ability of the flow to stretch the polymers. It is

found, using conditional statistics, that highly stretched polymer molecules have experienced

a strong biaxial extensional flow between quasi-streamwise vortices in the near-wall regions.

The extended polymers then relax in regions where the flow is mainly rotational located in

and around the quasi-streamwise vortices.

v



In the second step, a novel numerical method is developed based on a Lagrangian ap-

proach to simulate drag reduction. This new method reproduces well all the characteristic

features of drag reduced flows. However, a large discrepancy between Eulerian and La-

grangian calculations is found in flows with limited drag reduction. The Eulerian simula-

tions show a much larger mean extension and damp the small scales. However, when the

amount of drag reduction is increased, this discrepancy tends to reduce.
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Chapter 1

Introduction

The phenomenon of drag reduction by polymer additives has been known for over 50 years

(Toms, 1948). In spite of intensive experimental, theoretical and computational studies,

complete understanding of the phenomenon is still lacking. Very large drag reductions, up

to 80% in some cases, have been observed with extremely dilute solutions of high molecular

weight polymers in the parts per million range. These concentrations are far below those

that result in a significant increase in shear viscosity, and therefore the drag reduction must

be due to factors other than shearing forces.

Friction drag accounts for about 50% of the total drag a ship or submarine encounters.

For such large vessels, the friction drag is dramatically increased by the turbulent nature of

the flow surrounding them. Therefore, the possibility of controlling turbulent friction drag

by injecting small amounts of polymeric material around a sea vessel could dramatically

increase its efficiency, e.g. , higher cruise speed, longer range and larger payload.

Key changes in the turbulent structure under drag-reducing conditions indicates that

the interactions between polymers and flow structures are at the heart of the mechanism of

drag reduction. Therefore, it is instructive to investigate the phenomenon not only from a

statistical approach but also to consider the turbulent structures from a more descriptive

point a view. First, a few key characteristics of wall bounded turbulent flows will be reviewed

in section 1.1. In section 1.2, our present understanding of polymer solution dynamics is

presented, since it is a necessary step to elucidate the mechanisms associated with polymer

drag reduction. Because polymer solutions are not the only way to achieve drag reduction,

a brief description of other drag reduction methods is then given in section 1.3. Finally,

previous studies on turbulent drag reduction by dilute polymer solutions are enumerated

1
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and the current state of knowledge is described. In particular, section 1.3.1 summarizes

the characteristic features of polymer drag reduction, while analytical and global studies

are presented in section 1.3.2. This is followed by a review of numerical and experimental

studies in section 1.3.3 and 1.3.4 respectively. The last two sections 1.4 and 1.5 of the

chapter briefly describes the objectives and organization of this work.

1.1 Wall bounded turbulent flows

In a flow over a flat plate, the velocity of the fluid at the surface of the plate must vanish

due to the fluid viscosity ν, which creates skin friction. The viscous effects are confined in

a layer close to the solid surface called the viscous boundary layer. The thickness of this

boundary layer depends on the Reynolds number, Re = UL/ν (U is a scale of variation of

velocity in a length scale L), which represents the ratio of inertial and viscous forces.

In a wall bounded turbulent flow, it is evident that close to the wall, the viscosity ν and

the wall shear stress τw are important parameters. The wall shear stress is defined by

τw = ρν
dU

dy

∣

∣

∣

∣

y=0

, (1.1)

where ρ is the density, y the distance from the wall in the wall-normal direction and U the

mean velocity profile. From these quantities, one can define the viscous velocity and length

scales that are appropriate in the near-wall region. These are the friction velocity,

uτ =

√

τw
ρ

(1.2)

and the viscous length scale,

δν = ν

√

ρ

τw
=

ν

uτ
. (1.3)

While the Reynolds number based on the viscous scales, Re = uτδν/ν, is identically unity,

a friction Reynolds number can be defined by

Re+ =
uτδ

ν
=

δ

δν
, (1.4)

where δ is some characteristic outer length.

The distance from the wall measured in viscous lengths (so called wall units) is denoted
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by

y+ =
y

δν
=
uτy

ν
. (1.5)

It is interesting to note that y+ corresponds to a local Reynolds number, determining the

relative importance of the viscous and turbulent processes. Based on y+, different layers

in the near-wall region have been identified (Pope, 2000). In the viscous sublayer, from

the wall up to y+ ≈ 5, the Reynolds stress is negligible compared to the viscous stress.

While there is a direct effect of molecular viscosity on the shear stress in the viscous wall

region, which extends through y+ < 50, this effect is negligible in the outer layer defined

by y+ > 50. The most vigorous turbulent activity is contained in the viscous wall region,

where the production, dissipation, turbulent kinetic energy and anisotropy all achieve their

peak values at y+ less than 20.

Another division can be defined based on the mean velocity. The viscous sublayer is

characterized by a linear relation between the distance from the wall and the velocity

U+ =
U

uτ
= y+, (1.6)

while the so-called log-law region extending from y+ > 30 to y/δ < 0.3 is characterized by

a logarithmic velocity profile

U+ =
1

κ
ln y+ +B, (1.7)

where κ ≈ 0.41 and B ≈ 5.1 have been determined experimentally. The two regions are

connected by the buffer layer, which is a transition region between the viscosity-dominated

and turbulence-dominated parts of the flow.

The near-wall region is also populated by quasi-coherent structures. They can be identi-

fied by flow visualization, conditional statistics or eduction schemes. In wall bounded flows,

one can find low- and high-speed streaks, ejections and sweeps, and vortices, to name just a

few (Kline et al., 1967; Kline and Robinson, 1988; Robinson, 1991). The streaks are regions

of the flow where the velocity is higher or lower than the mean velocity at a distance from

the wall and are usually found very close to the wall. They interact in a self-sustaining

way with the mean shear, and the transitory longitudinal vortices that, in their downward

regions (sweeps), carry high momentum fluid to the wall, increasing the local skin fric-

tion there. The weaker upwelling of fluid (ejection) also carries low momentum fluid away

from the wall, but the asymmetry between down-and-upwelling results in a net increase of
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drag. These streamwise oriented structures are unsteady, and are thought to arise from

secondary and inflectional instabilities of the primary flow. The secondary instabilities in

turn support the three-dimensional streaks, leading to a picture in which turbulence is in a

nonlinear dynamic statistically steady state. These quasi-coherent structures are important

in explaining the mechanism of the regeneration cycle of the near-wall turbulence (Jimenez

and Pinelli, 1999,), whose understanding is vital to achieving many engineering objectives.

1.2 Rheology of polymeric liquids

Polymer solutions are solutions of large macromolecules exhibiting a rich rheological be-

havior. They exhibit particularly strong viscoelastic effects because the molecules are long

and easily distorted, even in rather slow flows. At high velocity, the polymer molecule

is stretched to many times its undisturbed coiled state. Thus, a solution composed of

stretchable molecules can be highly springy. On the other hand, fluids containing a high

concentration of long polymer molecules become extremely viscous.

Research toward a molecular understanding of polymer solution dynamics in highly non-

equilibrium flows has made tremendous recent advances, helped primarily by two separate

occurrences: the development of efficient computer simulations of polymer molecules in

flows, and the development of single molecule fluorescence microscopy. The latter has

allowed researchers to examine in detail the dynamics of polymer chains in simple planar

extensional and shear flows (Perkins et al., 1995; Smith and Chu, 1998; Smith et al., 1999;

Babcock et al., 2000; Smith et al., 1996; Hur et al., 2001a). Two important results have

come from these studies. First, a wide spectrum of modes and time scales are present, even

in a mono-dispersed sample, and second, each molecule acts individually in its dynamics

such that small changes in configuration (e.g., those engendered by Brownian motion) can

qualitatively change the configurational trajectory of a molecule and therefore its associated

stress. This is the so-called molecular individualism of de Gennes (1997). The resulting wide

distribution of polymer configurations has been well documented in both strong extensional

flow (Larson et al., 1997, 1999) and to a higher degree, in shear flows (Hur et al., 2001a).

A parallel development is that of very detailed Brownian dynamic simulations of DNA

molecules in flow (Hur et al., 2001b; Larson et al., 1997, 1999; Doyle et al., 1997; Doyle

and Shaqfeh, 1998; Doyle et al., 1998; Hur et al., 2000; Dimitrakopoulos, 2004). Earlier

bead/spring models have been improved and supplanted by bead/rod models capable of
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directly modeling the DNA molecule at the level of a Kuhn step, i.e., the smallest length

of orientational persistence along the flexible backbone (Hur et al., 2000). These were

first examined using Kramers’ chain simulations (Babcock et al., 2000; Hur et al., 2001b,

2000), but Evans and Shaqfeh (1996) have developed Kratky-Porod chain simulations, which

include a bending energy for the chain and thus capture the worm-like nature of the DNA

molecule (Marko and Siggia, 1991). New fast algorithms for the calculation of Brownian

dynamics have allowed many hundreds of bead-springs or bead-rods to be included in steady

and time-dependent linear flows (Babcock et al., 2000; Kwan et al., 2001). These simulations

are fully predictive, involve no parameters that are not independently determined, and

quantitatively predict the observed polymer dynamics. Both ensemble-averaged properties

such as stress, in both time-dependent and steady flows, and configurational distributions -

an indicator of the molecular individualism - can now be predicted from molecularly realistic

models (Hur et al., 2001b; Doyle et al., 1997; Hur et al., 2000; Li et al., 2000).

Thus, there exists a hierarchy of molecular models which one can use to understand the

dynamics of polymer molecules under non-equilibrium flow conditions (see Section 2). Bead-

rod models are the most fine-grained that are usually considered in calculations of polymer

solution dynamics. At the next level of coarse-graining are the bead-spring models, where

the spring now represents a collection of rods which are presumably in a near-equilibrium

configuration such that the elastic restoring force can be represented by a nonlinear spring.

Recent calculations have shown that the dynamics of DNA can be well represented in

extension (Larson et al., 1999), shear (Hur et al., 2000) and the start-up of shear flow (Hur

et al., 2001a) with between 10 and 20 nonlinearly coupled worm-like springs. Indeed based

on the rule of thumb that at least 10-15 Kuhn steps are required to reproduce any of these

nonlinear spring laws, a simulation of 106 MW (molecular weight) polyethyleneoxide (PEO)

would require between 200 and 400 springs (Devanand and Selser, 1991). The most recent

algorithms allow the accurate simulation of a 200 bead-spring chain, including ensemble-

averaged stress and configuration distribution in extensional flow (Hur et al., 2001a; Kwan

et al., 2001), over a wide range in Hencky strain in two hours on a single processor.

At the next level of coarse graining, a single nonlinear dumbbell can be used to represent

the molecule. This model has been a work-horse for micro-macro simulation methods in

complex flows where either particle tracking is used in CONNFFESSIT schemes (Oettinger

and Laso, 1992; Laso and Oettinger, 1993) or small Brownian elements are employed in the

Brownian configuration fields method (Hulsen et al., 1997) to follow many such dumbbells
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in a flow coupled to the solution of the velocity field. At the level of constitutive modeling,

one may make further closure approximations and develop a constitutive equation for the

continuum polymer stress. For dilute solutions, this leads to a class of Oldroyd, FENE-P

or FENE-L models (Keunings, 1997; Lielens et al., 1998). To overcome the shortcomings of

the single mode models (Ghosh et al., 1998), Ghosh et al. (2002) introduced a new model

based on an adaptive length scale (ALS) to reproduce the fine scale physics of the Kramers

chain.

There are only a few studies on the dynamics of a realistic polymer model in a stochastic

flow field (Thiffeault, 2003; Eckhardt et al., 2002; Chertkov, 2000), but these provide some

insight into how a turbulent flow might engender large stretching and concomitant stress.

Evans and Shaqfeh (1996) completed Brownian dynamics simulations of a Kratky-Porod

chain in a steady, anisotropic Gaussian field and found large stress supported by only a

fraction of the molecules in the configurational distribution. More recently the mechanism

by which these molecules reach an extended state has been identified as a burst mechanism

(Shaqfeh et al., 1998) where a coiled molecule enters a region of uniaxial strain, becomes

highly extended, and even though the strain does not persist, the molecule fails to relax

before it samples another such region. This process creates an extended period of large

stretching periodically marked by high stress levels.

1.3 Turbulent drag reduction

Skin-friction reduction in turbulent flow has been investigated by several different passive

means such as riblets, large-eddy breakup devices, polymer additions or compliant walls,

and by active control, which either modifies the velocity at the wall (blowing, suction,

oscillation) or uses of magneto-hydro-dynamic (MHD) forces.

Among the passive means, the surface-mounted riblets have been shown to reduce drag

most successfully (as large as 8%). Choi et al. (1993) performed a direct numerical simula-

tion of turbulent flows over riblet-mounted surfaces. They observed an upward shift of the

log-law for the mean velocity profile, while Reynolds shear stresses, velocity and vorticity

fluctuations were decreased. They postulated that the riblets reduce drag by restricting the

location of the near-wall streamwise vortices, such that only a limited area of the riblets is

exposed to the downwash of high-speed fluid. Therefore, spacing between the riblets must

be smaller than the diameter of the vortices.
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Choi et al. (1994) have explored some concepts for active control of turbulent boundary

layers. They could achieve up to 40% drag reduction by partially suppressing the coherent

structures present in the near-wall region. Lim et al. (1998) investigated the effect of

magnetic fluxes in conducting flows. They demonstrated that the induced electromagnetic

force inhibits the motion of the streamwise vortices and reduces their strength. Skin-friction

drag reduction in a turbulent pipe flow was studied experimentally by Choi and Graham

(1998). They obtained up to 40% drag reduction by oscillating a section of the pipe in a

circumferential direction.

Despite significant drag reduction, active control is limited by its complexity, energy

input and the type of fluids in the case of the MHD. On the other hand, the use of riblets

decreases drag by only a small amount and has geometrical constraints. Therefore, there is

a strong practical motivation to study drag reduction by dilute concentrations of polymer

additives.

1.3.1 Main features of polymer drag reduction

As mentioned above, one can observe very significant amounts of drag reduction with ex-

tremely dilute solutions of high molecular weight polymers. These concentrations are far

below those that result in a significant increase in shear viscosity: in fact, measurement of

any viscoelastic and/or non-Newtonian effects at these concentrations is extremely difficult

and has eluded rheologists for some time. Yet the effect is striking and relatively easy to

measure in pipes and channels by observing the macroscopic force balance.

The effects on the structure of fully developed wall turbulence has been observed by

many experiments and simulations. Key structural changes include an increased spacing

and coarsening of streamwise streaks, damping of small spatial scales, reduced streamwise

vorticity, enhanced streamwise velocity fluctuations and reduced vertical and spanwise ve-

locity fluctuations and Reynolds stresses. The drag reduction is also characterized by a

parallel shift of the log-law portion of the mean velocity profile at Low Drag Reduction

(LDR). At High Drag Reduction (HDR) one observes a change in the slope of the log-law

(Warholic et al., 1999). There exists a critical Weissenberg number (ratio of the polymer

and flow time scales) for the onset of drag reduction, and mechanistic arguments indicate

that the effect is the largest when the time scales of turbulence and polymer dynamics are

commensurate.
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Drag reducing agents encompass a wide range of microstructures including high molec-

ular weight flexible polymers (primarily PEO and polyacrylamide (Sreenivasan and White,

2000; Luchik and Tiederman, 1988; Berman, 1986; Gyr and Bewersdorff, 1995)), semi-

flexible polymers (e.g., Xanthan gum, Gyr and Bewersdorff (1995)) and even non-Brownian

microfibers (Gyr and Bewersdorff, 1995; McComb and Chan, 1985; Moyls and Sabersky,

1978; Lee et al., 1974). While they all provide drag reduction, the high molecular weight

flexible polymers seem to out-perform the others in terms of reduction at a given concentra-

tion. Molecular understanding and design of turbulent drag reducing agents is still limited,

despite numerous experimental studies.

A remarkable feature of drag reduction by polymers is the apparent existence of a

Maximum Drag Reduction (MDR) asymptote (Virk et al., 1967; Virk, 1975), i.e., there

appears to be a limit to the degree of drag reduction possible which is independent of

polymer molecular weight and structure. There is currently no theoretical explanation for

the existence of the MDR, so it is unknown as to whether it represents a fundamental limiting

form of the physical laws governing drag reduction, or whether it is empirical observation

that, if understood, can be worked around in order to achieve even greater levels of drag

reduction.

1.3.2 Analytical and global studies

According to Lumley (1969), the turbulence outside the viscous sublayer stretches the poly-

mer chains at sufficiently large strain rates that leads to a higher effective viscosity in the

turbulent region, and therefore an increase in the thickness of the viscous sublayer, while

the viscosity in the viscous sublayer remains more or less that of the solvent since the poly-

mer chains are not extended by the shear flow. Drag reduction is then observed since the

velocity gradient at the wall decreases. For the polymers to have an effect on the flow,

the characteristic relaxation time of a polymer molecule must be longer than the relevant

Lagrangian turbulent time scale of the flow requiring almost fully stretched polymers in the

buffer layer, which has been shown not to be the case (Ryskin, 1987).

Tabor and de Gennes (1986) contested this explanation and argued that polymers in

turbulent flows exhibit elastic properties even at very low concentrations. Therefore, they

can store up some of the cascading energy of turbulence. This energy is thus not dissipated

by viscosity, and hence gives rise to an effective drag reduction. This theory also predicts the

existence of a critical concentration below which drag reduction cannot be observed. In the
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light of this theory, the onset of drag reduction and the maximum drag reduction asymptote

have been recently re-visited by Sreenivasan and White (2000). Using scaling arguments,

they suggested that when both the elastic energy stored by the polymers and the turbulent

energy become comparable, the elastic energy interferes with the usual turbulent cascade

mechanism. Therefore, the nonlinear action that generates small scales of turbulence is

terminated at some scale larger than the Kolmogorov scale. This leads to increased buffer

layer thickness and reduced drag. Moreover, the length scale at which the elastic and

turbulent energies are comparable depends on the concentration of polymers. At very low

concentration, this length scale is smaller than the Kolmogorov scale, and thus the polymers

have no effect on the turbulence. This defines a minimum concentration for the onset of drag

reduction. Based on similar arguments, they also interpret the maximum drag reduction

phenomenon. According to them, the turbulence is modified in such a way that even the

weakest rates of strain, characteristic of the large scales, render the polymer elastic energy

comparable to the turbulent kinetic energy.

Many other studies have suggested plausible mechanisms for the phenomenon. By ana-

lyzing vorticity disturbances in axisymmetric elongational flow, Rabin and Zielinska (1989)

showed that the enhancement of large-scale vorticity is a consequence of elastic energy stor-

age by the polymer molecules, thus inhibiting the energy cascade toward the dissipative

scales. Ryskin (1987) introduced the so-called yo-yo model, in which the polymer chain

does not deform affinely with the fluid but unravels if the strain rate exceeds a critical value

in extensional flows. During the unraveling process, the central portion produces large addi-

tional stresses by a dissipative mechanism. A peculiar aspect of this model is that it predicts

a very large polymer effect during the transient deformation, i.e., when the stretching is only

partial. Based on this theory, Thirumalai and Bhattacharjee (1996) and Bhattacharjee and

Thirumalai (1991) combined a Langevin equation description of polymer solution with the

randomly stirred turbulent model of Dominicis and Martin (1979). With this hydrodynamic

model for turbulence in dilute polymer solutions they demonstrated that additives lead to

an enhancement of the molecular viscosity at small scales, while at intermediate scales the

effective viscosity is increased if the concentration of the polymer exceeds a minimum value.

They also suggested that non-polymer solutes could also cause drag reduction, provided

that cRe2 is large enough (where c is the concentration of the polymer in the solvent and

Re the Reynolds number). Using an Oldroyd-B model, Fouxon and Lebedev (2003) analyt-

ically established a power-law spectrum for the elastic turbulence, looking at both the high
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Reynolds number turbulence of polymer solutions above the coil-stretch transition, and at

small Reynolds numbers where chaotic flow is excited by elastic instabilities.

Benzi and Procaccia (2003) introduced a one-dimensional version of the FENE-P model

with the aim of understanding in simple mathematical terms some of the prominent fea-

tures associated with the phenomenon of drag reduction. They showed that the arguments

concerning the turbulent cascade process proposed by de Gennes (1990) do not appear es-

sential. Moreover, drag reduction is a phenomenon which involves energy containing modes

rather than dissipative, small scale modes. Since an homogeneous increase in the effective

viscosity should lead to drag enhancement rather than reduction, they suggested that it is

the space dependence of the polymer stretching, and thus of the effective viscosity, which

should be the source of drag reduction. Benzi et al. (2003) introduced a shell model for

homogeneous viscoelastic flows which resembles the dynamical properties of the FENE-P

equations. The observation of drag reduction demonstrates that boundary effects are not

essential to capture the basic physics of the phenomenon. Moreover, they confirmed the

previous results of Benzi and Procaccia (2003), showing that drag reduction is a property of

large scales, which are therefore important for a quantitative theory. Hence, drag reduction

cannot be reduced to a simple increase of the dissipation length. In a similar approach,

Angelis et al. (2004) used a simple model with an effective viscosity growing linearly with

the distance from the wall and showed that the decrease in Reynolds stress overwhelms

the increase in viscosity, therefore reducing drag. The amount of drag reduction increases

with the increase of the slope of the viscosity profile. They also showed that the behav-

ior of the Reynolds stress and the velocity fluctuations in the elastic sublayer are in close

correspondence with the full FENE-P model.

Despite many promising results, these different theoretical models fail to give any quan-

titative prediction of drag reduction. Moreover, they propose very different, and sometimes

contradictory, mechanisms for the phenomenon. The more recent results seem to suggest

that the spatial and temporal dependence of polymer stretching play an essential role in

drag reduction. Therefore, it is obvious that a global analysis of the phenomenon cannot

alone lead to a satisfactory theory of polymer drag reduction. Only a more in depth study of

the local dynamics of the flow and polymer stretching can provide a conclusive explanation.

A very powerful tool towards this goal is provided by numerical simulations.
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1.3.3 Numerical simulations

In parallel to the experimental and theoretical investigations, many studies have been based

on the numerical solution of the viscoelastic equations, in particular the FENE-P model.

Beris and Sureshkumar (1996) were the first to do a direct numerical simulation of a vis-

coelastic turbulent channel flow and achieved drag reduction using a spectral code and

different rheological models. They observed numerical instabilities developing in the con-

formation tensor shortly after it looses its positive-definiteness. These instabilities induced

a break-down of the solution. This issue was addressed by adding a diffusive artificial term

to the equations governing the polymer conformation tensor (Sureshkumar et al., 1997).

To compensate for the relatively low Reynolds number, Re+ = 125, they simulating more

elastic fluids than the ones encountered in drag reduction experiments. In later works,

they investigated different models, the effects of the variations in elasticity and inertia,

budgets of Reynolds stress, kinetic energy and streamwise enstrophy, and the influence of

the artificial diffusion needed to stabilize the numerical simulation (Dimitropoulos et al.,

1998; Beris and Dimitropoulos, 1999; Dimitropoulos et al., 2001). They showed that an

increase of extensional viscosity induces a consistent decrease of Reynolds stress. The ef-

fect of the flow elasticity, which is associated with the reduction in the intensity of the

velocity-pressure gradient correlations, leads to a redistribution of the turbulent kinetic

energy among the streamwise, wall-normal and spanwise directions. Finally they demon-

strated that the viscoelasticity reduces the production of streamwise enstrophy. Angelis

et al. (2003) investigated the different modes of the velocity field in their spectral simula-

tions. They found that the spatial profile of the most energetic modes was hardly changed

between viscoelastic and Newtonian flows. As proposed in some previous theories, drag

reduction is seen in the energy containing modes rather than the dissipative modes.

Min et al. (2001) investigated spatial discretization schemes used in finite difference

methods to solve viscoelastic flows. They demonstrated that the traditional upwind dif-

ference and artificial diffusion schemes exhibit much more smeared stress fields that those

obtained by higher-order upwind difference schemes. They introduced a local artificial dif-

fusion to replace the traditional global diffusion, and demonstrated that their method is

stable and accurate for highly extensional flows at relatively high Weissenberg numbers. In

a later study, they interpreted the onset mechanism based on elastic theory and found that

in order to show drag reduction, the relaxation time of the polymer molecules has to be long

enough so that the energy stored in the very near-wall region is transported to, and released
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in, the buffer and log layers (Min et al., 2003). Using a finite difference method and the

FENE-P model, Baron and Sibilla (1997) and Sibilla and Baron (2002) suggested that poly-

mers can be effective in terms of drag reduction only if their relaxation time is comparable

to the characteristic time of their convection in the wall-normal direction within near-wall

turbulent structures. They argued that elongated polymers inhibit turbulence regeneration

by opposing pressure redistribution from streamwise to cross-flow velocity fluctuations.

At about the same time, Ptasinski et al. (2003) and Dubief et al. (2004b) were the first

to simulate the high drag reduction (HDR) regime, at which a change of the slope of the

log-law in the mean velocity profile is observed. They demonstrated a very good agreement

with experimental results using realistic values for the parameters describing the polymer.

They further showed that the Reynolds shear stress is strongly reduced and compensated

for partly by a polymer stress. A reduction of energy transfer from the streamwise direction

to the other directions was also observed. Moreover, a substantial part of the energy

production by the mean flow is transferred directly into the elastic energy of the polymers,

which is subsequently dissipated by polymer relaxation. Dubief et al. (2005) used numerical

experiments to isolate certain features of the interaction between polymers and turbulence.

They found that polymers reduce drag by damping near-wall vortices and sustain turbulence

by injecting energy into the streamwise velocity component in the very near-wall region.

Those findings on the coherent storage and release of energy lead to a new autonomous

regeneration cycle of polymer wall turbulence in the spirit of Jimenez and Pinelli (1999,).

Their work was expanded by Dimitropoulos et al. (2005), who simulated the first viscoelastic

turbulent boundary layer. They observed an initial development length, which is followed

by a quasi-steady region where variations in drag reduction are weak. Based on their work,

Paschkewitz et al. (2004) investigated drag-reduced channel and boundary layer flows by

rigid fibers (Paschkewitz et al., 2005a,b). Although the amount of drag reduction is much

lower than in the flexible polymer case, they could show that elasticity is not necessary to

reduce drag and demonstrated that all the flow features are similar to those of polymer

drag-reduced flows. Based on their results, they proposed a mechanism for turbulent drag

reduction by rigid fiber additives which is somewhat different from the one by flexible

polymer molecules.

To avoid the complication brought by the randomness of a turbulent flow, Stone et al.

(2002, 2004) investigated a polymer solution in plane Couette flow containing exact coherent

states (ECS). Despite the simplicity of those flows, it was possible to reproduce all the main
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features of polymer turbulent drag reduction. It was found that the polymer molecules

become highly stretched in the streamwise streaks, then relax as they move from the streaks

into and around the streamwise vortices. This relaxation of the polymer molecules produces

a force that directly opposes the fluid motion in the vortices, weakening them.

Direct numerical simulations are very well-suited to assess the different models and to

analyze the mechanisms of polymer drag reduction. However, the computational costs pre-

vent simulation at high Reynolds numbers. Therefore, in order to solve complex engineering

problems of interest, it is necessary to rely on other methods, such as Large Eddy simula-

tions (LES) and the Reynolds Averaged Navier-Stokes (RANS) approaches. The traditional

issues of closure of nonlinear terms are even more complicated in the case of viscoelastic

flows since many new terms require closure models. Cruz et al. (2004) improved a previous

model (Cruz and Pinho, 2003) based on a low Reynolds number k−ε model to compute the

new viscoelastic stress term in the momentum equation. However, comparison with DNS of

pipe flows showed a large overprediction of drag reduction. Leighton et al. (2003) developed

a Reynolds-stress transport equation model for turbulent drag-reducing viscoelastic flows.

Although the model could predict the mean velocity profile quite well, it relies on param-

eters which must be calibrated, and was not able to accurately reproduce the anisotropy

of the turbulent normal stresses in the near-wall region. Dubief et al. (2004a) modified

the v2− f turbulence model introduced by Durbin (1995) and were able to accurately cap-

ture the behavior of the mean velocity profile for the low and high drag reduction regimes.

Their model was derived from the current understanding of the mechanisms of near-wall

turbulence in drag-reduced polymer flows.

While most of the progress made in understanding the mechanisms of polymer drag re-

duction stemmed from direct numerical simulations and experimental studies, other works

approached the problem from a different point of view. Ahlrichs and Duenweg (1998) com-

bined a lattice Boltzmann approach for the fluid and a continuum molecular dynamics

model for the polymer chains to solve polymer-solvent systems. Similarly, Ispolatov and

Grant (2002) relied on a lattice Boltzmann model for viscoelastic fluids, where elastic ef-

fects are taken into account within the framework of a Maxwell model. However, these

approaches are limited to low Reynolds number flows and simple geometries, and thus are

not practicable for engineering applications.

All the listed studies relied on an Eulerian framework to compute the polymer stress.

However, this approach is limited in the number of polymer models which can be used since
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it requires a constitutive model such as the FENE-P or Oldroyd-B. It is known that the

Oldoyd-B model demonstrates unphysical behavior at large extensions, while the FENE-P

model is based on a closure approximation.

The constraint on the models used in the Eulerian approach can be relaxed using the

Brownian configuration fields (Oettinger et al., 1997; Hulsen et al., 1997). Another issue

related to the Eulerian framework is the need for the addition of artificial dissipation to the

constitutive equations to ensure that the conformation tensor associated with the polymer

configuration remains positive definite. Because of the hyperbolic nature of the FENE-

P equations, it is natural to rely on a Lagrangian framework to compute the quantities

associated with the polymer phase. It should be stressed that most of the Lagrangian

studies of turbulent polymer solutions are based on uncoupled simulations where only the

flow impacts the polymers without any feed-back. Therefore, the flow remains Newtonian.

This is evidently an important limitation, although many qualitative features can still be

demonstrated.

Massah et al. (1993) and Massah and Hanratty (1997) were the first to investigate

Lagrangian polymer molecules in a turbulent channel flow. They found that a coil-stretch

transition takes place intermittently only in the buffer zone where extensional flows are

strong enough to unravel the molecules, and the polymers tend to align at a 7◦ angle with

the direction of mean flow. They also postulated that polymers cause drag reduction by

altering the structure of the eddies that produce Reynolds stresses. Their findings were

confirmed by Ilg et al. (2002), who compared the microscopic and macroscopic descriptions

of polymer dynamics and demonstrated that the stretching of the polymers is characterized

by a broad distribution of polymer extensions. Zhou and Akhavan (2003) have compared

different models and shown that the dominant contributions to the polymer stress arise from

patches of biaxial and uniaxial elongational flow encountered in the buffer layer. Stone and

Graham (2003) demonstrated in a model of the turbulent buffer layer that stretching of the

polymers is determined by the largest Lyapunov exponent for the velocity field and that

polymers become highly stretched in the near-wall streaks and relax as they move into and

around the streamwise vortex cores. It was demonstrated by Terrapon et al. (2003) that

the FENE chain, the FENE dumbbell and the FENE-P models give qualitatively similar

results. Terrapon et al. (2004) showed that the polymers that are stretched to a large

fraction of their maximum extensibility have experienced a strong biaxial extensional flow

in the near-wall regions around the quasi-streamwise vortices.
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Unfortunately, all Lagrangian studies have been limited by the fact that the flow remains

Newtonian since the extra polymer stress is not coupled with the flow. To overcome this

difficulty, Halin et al. (1998) introduced the Lagrangian particle method (LPM) to compute

the start-up flow between slightly eccentric rotating cylinders. They extended their method

to the adaptive Lagrangian particle method (ALPM) (Gallez et al., 1999; Wapperom et al.,

2000), where the local number of particles is adapted dynamically by creating and destroying

particles to improve the efficiency and accuracy of their original method. However, only

laminar flows have been computed with this method so far.

1.3.4 Experimental studies

In addition to the numerical studies, many experimental works have studied turbulent drag

reduction by polymer additives since its first discovery by Toms (1948). Virk et al. (1967)

were the first to demonstrate in a turbulent pipe flow the existence of a maximum drag

reduction asymptote which is independent of polymer type and pipe diameter. They also

determined that the onset of drag reduction occurs at a well-defined wall shear stress. Also

for pipe flow, Achia and Thompson (1977) and Oldaker and Tiederman (1977) studied

the effect of polymer additives on the near-wall turbulent structures and found that the

addition of drag-reducing polymers suppresses the formation of streaks and the eruption

of bursts. A recent experiment in pipe flow was performed by Ptasinski et al. (2001) who

used laser-Doppler velocimetry (LDV) to measure turbulence statistics and the components

of the total shear stress. They observed a thickening of the buffer layer and an increase

in the slope of the logarithmic profile of the mean velocity. While the Reynolds stress is

drastically reduced, it remains non-zero and an important contribution to the total shear

stress comes from the polymer stress.

Luchik and Tiederman (1988) used LDV to measure velocity components in a drag-

reduced channel flow. They observed a damping of the velocity fluctuations normal to

the wall in the buffer region, an increase in average time between the so called bursts and

an increase of the mean streak spacing. In a later work, Harder and Tiederman (1991)

observed a reduction of the Reynolds shear stress, but the presence of the added polymer

stress was only found at higher concentrations. In a different study, Warholic et al. (1999)

observed approximatively zero Reynolds shear stresses in regimes close to maximum drag

reduction over the whole cross section of the channel, but with an added polymer stress,

contradicting the previous results. In subsequent work, Warholic et al. (2001) confirmed the
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existence of a turbulent flow with zero Reynolds shear stress at maximum drag reduction

using particle-image velocimetry (PIV). Many studies in channel flows have been mainly

concentrated on cases with a homogeneous distribution of polymers, i.e., an ocean of polymer

flowing through the channel. These flowfields are not practical, as applications involving

external flows often use polymer solutions injected through the wall. Walker and Tiederman

(1990) investigated the role of polymer this injection. They observed a general increase

in the streamwise velocity fluctuations and an initial increase in the wall-normal velocity

fluctuations and Reynolds shear stress due to the injection. However, the action of the

polymer solution subsequently reduced the wall-normal velocity fluctuations and Reynolds

shear stress significantly below the levels present in a Newtonian flow

Several studies have considered polymer drag reduction in turbulent boundary layers.

Fontaine et al. (1972) combined LDV and concentration profile measurements by laser-

induced-fluorescence techniques. They observed an immediate deceleration of the flow near

the wall and a dramatic decrease of the vertical velocity fluctuations and Reynolds shear

stress. These effects substantially relax with increasing streamwise distance from the injec-

tion slot, becoming similar to the effects observed for dilute homogeneous polymer flows.

Petrie and Fontaine (1996) compared the effects of homogeneous drag-reducing polymer

solutions using slot-injection. While effects of the homogeneous polymer are noticeable

across the boundary layer, effects of injected-polymer are restricted to the near-wall re-

gion. Despite these differences, modifications of the near-wall region and the amount of

drag reduction appear similar in both cases. These findings were confirmed by White et al.

(2004) who performed PIV measurements in a turbulent boundary layer with polymer injec-

tion. They found a significant modification of the near-wall structure of turbulence, with a

coarsening of the low-speed velocity streaks and a reduction in the number and intensity of

near-wall vortical structures. They demonstrated, using planar laser-induced-fluorescence

(PLIF), that polymers in the near-wall region are responsible for drag reduction (Somande-

palli et al., 2003; White et al., 2005) and decomposed the friction drag into four dynamical

contributions, following Fukagata et al. (2002). They also showed that polymer drag reduc-

tion is achieved by either an attenuation of the Reynolds stress or a reduction in the total

stress gradient near the wall, or some combination of the two. Somandepalli et al. (2005)

investigated the streamwise evolution of drag reduction in a turbulent boundary layer and

observed three distinct regions: development, sustenance and depletion of drag reduction

downstream of the additional injection, suggesting that injection in a fully turbulent flow
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might be beneficial in maintaining a longer drag reduction region. Petrie et al. (2003)

studied the effect of surface roughness on polymer drag reduction in a zero-pressure gradi-

ent flat-plate boundary layer, comparing both slot-injected polymers and a homogeneous

polymer ocean. They observed that higher polymer concentration is required as rough-

ness increases to achieve the same drag reduction, but for injection, the percentage of drag

reduction on rough surfaces is often substantially larger than on smooth plates.

1.4 Objectives

Despite much progress made to elucidate the mechanisms of turbulent drag reduction by

polymer additives, there are still many open questions remaining. A fundamental under-

standing of these mechanisms is required in order to develop predictive tools for practical

applications. Moreover, direct numerical simulations are still limited by numerical issues,

such as the need for artificial diffusion. The first objective of this work is to deepen the cur-

rent knowledge of polymer stretching mechanisms in turbulent flows using accurate polymer

models and Brownian dynamics. The second objective is to develop new numerical tech-

niques to take advantage of the Lagrangian framework in order to overcome the numerical

difficulties encountered by the traditional DNS methods used to simulate viscoelastic flows.

1.5 Thesis organization

Following the introduction presented in this chapter, the models and equations used to

simulate viscoelastic flows are derived and described in chapter 2. Chapter 3 presents the

numerical implementation chosen to solve those equations. Issues related to the advection

of polymers are discussed from both the Eulerian and Lagrangian perspectives. In chapter

4, the numerical methods are validated in model problems, e.g., the inception of steady

flows or the Taylor vortex cells. Results for the uncoupled simulations are presented in

chapter 5. First, the different models are compared in a turbulent channel flow. Then

the topological methodology and conditional statistics are introduced in order to elucidate

the mechanisms of polymer stretching in both Newtonian and viscoelastic flows. Chapter

6 introduces the Lagrangian coupled simulations and compares both the Eulerian and La-

grangian approaches. The interaction between the polymer molecules and the turbulence

structures is discussed and a mechanism for turbulent drag reduction by polymer additives is
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proposed. Finally, the results are summarized in chapter 7, which also contains suggestions

for future work.

1.6 Accomplishments

The following list summarizes the important contributions of this work:

• Development of a computer code using distributed-memory parallelism combining

Eulerian flow calculation and Lagrangian particle tracking.

• Implementation of various polymer models in the particle tracking code.

• Development of an algorithm to transfer polymer information between Lagrangian

and Eulerian frameworks.

• Demonstration of the qualitative similarities of different polymer models in turbulent

flow.

• Identification of biaxial extensional flow as main contributor to polymer stretching.

• Identification of rotational flow as characteristic flow type during the polymer relax-

ation.

• First Lagrangian simulation of turbulent drag reduction.

• Identification of large discrepancies between Eulerian and Lagrangian simulations.

• Identification of the nonlinear advection term as the source of discrepancy due to the

creation of small scales.

• Demonstration of better agreement between Eulerian and Lagrangian simulations in

drag-reduced flows.



Chapter 2

Description of the models

The classical Navier-Stokes equations are extended to account for the additional stress

created by the polymer molecules which needs to be modeled. This chapter will present

the origin and derivation of different models used to represent the action of the polymers,

followed by the incorporation of these models into the Navier-Stokes equations.

The section treating the polymer models is not intended to be exhaustive but aims at

giving an overview of the different models often used and a brief esquisse of their derivation.

For a more complete treatment of their derivation and implied assumptions, the reader is

refered to the book by Bird et al. (1987). In general, each model relies on a force balance

for a single molecule in its specific configuration and leads to an expression for the polymer

stress tensor. One usually is interested in the average stress over all configurations, which

requires the average to be taken over a large number of realizations. This technique is

called Brownian dynamics. In some cases it is possible to derive directly an expression for

the average stress and in some other cases a closure approximation is required to obtain

the constitutive equation. Both the Brownian dynamics and the constitutive equation

approaches are used. The former is computationally much more expensive since a large

number of realizations is needed to obtain a converged average value, but it allows the use

of much more accurate models. The latter is much cheaper but subject to some closure

approximations.

The incorporation of these models into the Navier-Stokes equations can follow two dif-

ferent paths. While the Navier-Stokes equations themselves are cast in an Eulerian frame,

the computation of the polymer stress through the aforementioned models can either be

done in the same Eulerian frame or in a Lagrangian frame, for which a particle tracking

19
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Figure 2.1: Coarse graining; (a) polymer chain, (b) bead-rod chain, (c) bead-spring chain,
(d) dumbbell.

algorithm is needed. This work focuses mainly on the Lagrangian approach but both will

be described in section 3.4.

2.1 Polymer models and Brownian Dynamics

A polymer molecule consists of long sequences of identical chemical units called monomers.

Typical polymers used for drag reduction are linear macromolecules such as polystyrene or

polyethylene. Since these macromolecules are in general very flexible, they permit rotational

motions of one bond about another, so that a large number of configurations is accessible.

Because the polymer molecules in solutions are long and flexible, they can be easily

distorted and stretched by the flow (see Fig. 2.1 (a)). Therefore, polymeric liquids often

demonstrate strong viscoelastic properties.

2.1.1 A large range of scales

While the polymer molecules are much larger than the solvent molecules they are also

much smaller that the smallest scale found in a turbulent flow, i.e. the viscous or Kol-

mogorov scale. Therefore, in order to simulate turbulent flows of such solutions, contin-

uum/mesoscopic simulations are used. The derivation of micro-structural models is based

on the coarse graining from an atomistic level to a mesoscopic level. The first level corre-

sponds to the bead-rod description (see Fig. 2.1 (b)) which consists of NK beads of mass m

and friction coefficient ζ connected by NK − 1 rigid rods of length bK . The beads serve as
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interaction points with the solvent and the massless rods act as rigid constraints in the chain

that keep every bead at a constant distance bK away from its neighboring beads. bK is often

referred as a Kuhn length while NK is the number of Kuhn steps, giving a contour length

of L = (NK − 1)bK . Further coarse graining leads to the bead-spring chain description

(see Fig. 2.1 (c)) which assumes that a number of bead-rods can be replaced by an entropic

spring. Finally, in the most coarse-grained approximation, the internal structure of the

chain is neglected and the whole molecule is represented by a single dumbbell (Hermans,

1943; Fraenkel, 1952) with an entropic spring (see Fig. 2.1 (d)).

2.1.2 The freely jointed bead-rod chain model

In the freely jointed bead-rod chain model, or Kramer’s chain (Kramers, 1944), the config-

uration distribution is represented by a random walk; that is, the polar angles θi and φi for

the ith link in the chain are completely random and independent of the previous and next

link. The probability of finding the ith link in a small range around θi and φi is then given

by

ψi,eq(θi, φi)dθidφi =
1

4π
sin θidθidφi, (2.1)

and the configurational distribution function for the entire chain at equilibrium by

ψeq(θ
NK−1, φNK−1) =

(

1

4π

)NK−1 NK−1
∏

i=1

sin θi. (2.2)

The probability distribution function of the end-to-end vector R is then

Peq(R) =

∫ ∫

δ

(

R− bK
∑

i

ui

)

ψeqdθ
NK−1dφNK−1, (2.3)

where δ is the delta function and ui, the unit vector in the direction of the ith link. Now, if

NK is large and the end-to-end distance is smaller than about 0.5L, one can approximate

the previous expression by

Peq(R) =

(

3

2π(NK − 1)b2K

)3/2

e−3R
2/2(NK−1)b2K . (2.4)

This is known as the Gaussian distribution for the end-to-end vector of the freely jointed

chain. Therefore, one obtains for the equilibrium mean-square end-to-end distance 〈R2〉0 of
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the molecule

〈R2〉eq =

∫

R2Peq(R)dR

=

∫ 2π

0

∫ π

0

∫ ∞

0
R2

(

3

2π(NK − 1)b2K

)3/2

e−3R
2/2(NK−1)b2KR2 sin θdrdθdφ

= LbK = (NK − 1)b2K .

(2.5)

The average tension F (c) in the polymer chain at constant temperature T is given by

the change in the Helmholtz free energy A

F (c) =
∂A

∂R
. (2.6)

At equilibrium at temperature T , the free energy is given as

A = U − TS = −kT lnΩ, (2.7)

where U is the internal energy, S the entropy, k the Boltzmann constant and Ω is the par-

tition function which is proportional to the configuration distribution function Peq. Hence,

the Helmholtz free energy of the polymer chain with end-to-end vector R is

A(R) = A(0) − kT lnPeq(R). (2.8)

Therefore, the average tension in a polymer chain for large values of NK and for |R| < 1/2L

is

F (c)(R) =
3kT

(NK − 1)b2K
R = HR, (2.9)

which corresponds to a linear spring force law with H = 3kT/(NK − 1)b2K as the Hookean

spring constant. As stated above, this is only valid for small extensions. In reality, the

spring must stiffen with increasing extension. Some more realistic force laws have been

proposed:

• Inverse Langevin Force Law (Treloar, 1975):

F (c)(R) =
kT

a
L−1

[

R

(NK − 1)bK

]

, (2.10)

where L(x) = (cothx)− x−1.
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• Warner Force Law (Warner, 1972):

F (c)(R) =
3kTR/(NK − 1)b2K

[1− (R/(NK − 1)bK)2]
. (2.11)

Note that both laws give an infinite force in the limit of when the magnitude of the end-to-

end vector tends to its maximum value, (NK − 1)bK .

2.1.3 The general dumbbell model

A dumbbell model idealizes the polymer molecule as a spring dumbbell (Fraenkel, 1952;

Hermans, 1943), i.e., two beads, each of mass m, joined by a non bendable spring as

illustrated in Fig. 2.2. It is a very crude representation of a polymer molecule and does

not have any internal degrees of freedom. Nonetheless, it is orientable and stretchable and

can therefore reproduce many of the rheological properties of dilute solutions of polymers.

Each dumbbell model is then characterized by a specific spring force law.

Equations of motion

Each bead is presumed to experience the following three forces (see Fig. 2.2):

• the hydrodynamic drag force F (h) representing the drag experienced by the bead as it

moves through the solute;

• the Brownian force F (b) due to the thermal fluctuations in the solution;

• the entropic force or spring force F (φ) which tends to bring the polymer molecule back

into a coiled configuration.
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With the assumption that the inertial term can be neglected, the equation of motion for

each bead becomes a simple force balance:

F (h)
ν + F (b)

ν + F (φ)
ν = 0 (ν = 1, 2). (2.12)

The hydrodynamic drag force is proportional to the difference between the bead velocity

ṙν and the velocity u(rν) of the solution at bead ν:

F (h)
ν = ζ(u(rν)− ṙν), (2.13)

where ζ is the friction coefficient. Moreover, it is assumed that the flow field is homogeneous,

i.e., the velocity gradients do not change appreciably over a distance comparable to the size

of the polymer molecule. Therefore, the local velocity can be written as

u(rν) = u±∇u · q
2
, (2.14)

where u and ∇u are the velocity, and velocity gradient tensor at the location of the center

of mass of the polymer molecule and q = r1 − r2 is the end-to-end vector.

After some non-trivial algebra, the contribution of the Brownian motion can be written

in the form F
(b)
ν = −kT (∂lnΨ/∂qν) where the configuration-space distribution function

Ψ(r1, r2, t) = nψ(q, t).

Finally the spring force F (φ) resulting from the intra-molecular potential is given by

F (φ)
ν = − ∂

∂rν
φ, (2.15)

which is equal and opposite for each bead. Therefore, we can define a new connector force

F (c) = F
(φ)
1 = −F (φ)

2 .

By adding and subtracting the equation of motion (2.12) for each bead, one gets an

equation of motion for the center of mass r = (r1 + r2)/2 and one for the dumbbell

connector vector q:

dr

dt
= u,

dq

dt
= ∇u · q − 2kT

ζ

∂

∂q
lnψ − 2

ζ
F (c),

(2.16)

where the diffusion of the center of mass of the polymer molecule has been neglected.
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Constitutive equation

The time-evolution of the probability density ψ(q, t) is given by the Fokker-Planck

∂ψ

∂t
= − ∂

∂q
(q̇ψ), (2.17)

which becomes using Eq. (2.16)

∂ψ

∂t
+

(

∇u · q ∂

∂q
ψ

)

=
2kT

ζ

(

∂

∂q

∂

∂q
ψ

)

+
2

ζ

(

∂

∂q
F (c)ψ

)

. (2.18)

Multiplying Eq. (2.18) with any function χ(q) and integrating over all the configuration

space leads to an equation for 〈χ〉 =
∫

χ(q)ψ(q)dq3. In particular, if χ(q) = qq, the

equation of change for the configuration tensor 〈qq〉 becomes

d

dt
〈qq〉 − ∇u · 〈qq〉 − 〈qq〉 · ∇u† =

4kT

ζ
δ − 4

ζ
〈qF (c)〉, (2.19)

where δ is the identity matrix and † represents the transpose. If the system is at equilibrium,

i.e., no flow, Eq. (2.19) gives

〈qF (c)〉eq = kTδ. (2.20)

Stress tensor

The total stress tensor of a polymer solution is assumed to be the sum of a contribution

from the solvent and another resulting from the presence of polymer molecules

σ = σs + σp (2.21)

= (psδ + τ s) + (ppδ + τ p) (2.22)

= pδ + τ , (2.23)

where p = ps+ pp is the isotropic pressure, τ = τ s+τ p is the part of the total stress tensor

which is zero at equilibrium and δ is the identity matrix.

If one assumes a Maxwellian velocity distribution, Kramers’ (Kramers, 1944) form for
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the polymeric stress tensor is obtained

σp = n〈qF (c)〉 − 2nkTδ,

τ p = n〈qF (c)〉 − nkTδ,
(2.24)

where n is the number of dumbbells per unit volume. The stress is composed of the contri-

bution from the intermolecular potential and the contribution due to the Brownian motion.

Brownian Dynamics

In a Brownian dynamics simulation (Bird and Wiest, 1995; Laso and Oettinger, 1993), the

Brownian force F (b) is represented by a random variable with the following properties

〈F (b)
i 〉 =0, (2.25)

〈F (b)
i (t)F

(b)
j (t+ dt)〉 =2kTζδijδD(dt) ≈

2kTζδij
dt

, (2.26)

where deltaD(x) is the Dirac delta function. If one uses a Hookean spring law (see Eq. 2.9)

and introduces the 3-dimensional Wiener process Ŵ , Eq. (2.16) can be written as:

dq =

(

∇u · q − 2

ζ
Hq

)

dt−
√

2kT

ζ
dŴ t, (2.27)

where the increment dŴ t = Ŵ t+dt − Ŵ t is a Gaussian random variable with zero mean

and variance dt and is independent of any other increment.

To determine the stress tensor as defined in Eq. (2.24) requires an average over all

possible configurations of the end-to-end vector q. Therefore, many realizations must be

computed from Eq. (2.27) in order to obtain good statistics.

2.1.4 The Oldroyd-B model

The Oldroyd-B model is characterized by a linear or Hookean force law as found in Eq. (2.9).

Therefore, it is also limited by the same assumptions as those of Section 2.1.2.
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Non-dimensionalization

One can introduce the dimensionless end-to-end vector q̂ =
√

H
kT q. Moreover, since two

different time scales are present, i.e., the flow and the polymer time scales, it is possible to

use two different dimensionless times tf and tp = t/λH , where λH = ζ/4H is the longest

relaxation time of the polymer molecule. The superscript f and p denote quantities non-

dimensionalized by the flow and polymer times respectively. The two times are related to

each other by the Weissenberg number Wi = tf

tp . The dimensionless stress depends also on

the time scale chosen for the non-dimensionalization:

τ pp =
τ p

nkT
, τ fp =

1

Wi
τ pp.

Equations

With these new definitions, Eq. (2.16) becomes

dq̂

dtp
= Wi · ∇uf · q̂ − 1

2
q̂ − 1

2

∂

∂q̂
lnψ, (2.28)

and Eq. (2.27)

dq̂ =

(

Wi · ∇uf · q̂ − 1

2
q̂

)

dtp −
√

1

2
dŴ tp

or

dq̂ =

(

∇uf · q̂ − 1

2Wi
q̂

)

dtf −
√

1

2Wi
dŴ tf .

(2.29)

The polymeric stress tensor can then be written as

τ̂ p = 〈q̂q̂〉 − δ, (2.30)

and combined with Eq. (2.19), it leads to a constitutive equation for the polymeric stress

(Larson, 1999):

d

dtf
τ fp −∇uf · τ fp − τ fp · ∇uf† +

1

Wi

(

τ fp − δ
)

= 0. (2.31)

The closed form of the constitutive equation is only possible because of the linearity of the

force law implied by the Oldroyd-B model. However, as it was mentioned earlier, such a
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spring law is only valid for smaller extensions since the model permits infinite extension

which leads to an unphysical behavior at large extensions.

2.1.5 The FENE dumbbell model

To overcome this aforementioned problem, other spring force laws have been proposed as

was already mentioned in section 2.1.2. In particular, the Warner force law was used to

approximate the Inverse Langevin function (see Eq. (2.10-2.11))

F (c) =
Hq

1− q2/q20
, (2.32)

where the extensibility parameter q0 determines the maximum extension of the polymer

molecule (Peterlin, 1961). For small extensions, Eq. (2.32) exhibits the expected linear

behavior of the Hookean spring and a finite length q0 in the limit of an infinite force. Springs

obeying this force law are often called FENE (Finitely Extensible Nonlinear Elastic) springs.

If one introduces the Warner force law with the dimensionless extensibility parameter b =

Hq20/kT into Eq. (2.29), the FENE dumbbell model is obtained:

dq̂ =



∇uf · q̂ − q̂

2Wi
(

1− q̂2

b

)



dtf −
√

1

2Wi
dŴ tf . (2.33)

The calculation of the stress must be modified accordingly

τ fp =
1

Wi

〈

qq

1− q̂2/b − δ

〉

. (2.34)

2.1.6 FENE-P

For a nonlinear force law like the FENE spring, one cannot define a closed constitutive

equation as derived for the Hookean spring in section 2.1.3, since the term 〈qF (c)〉 in

Eq. (2.19) cannot be expressed directly as a function of 〈qq〉. However, if one approximates

the configuration-dependent nonlinear factor in the FENE spring force by a self-consistently

averaged term called the FENE-P spring force, Eq. (2.19) can be closed and reads in the
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its non-dimensional form

d

dtf
〈q̂q̂〉 = ∇uf · 〈q̂q̂〉+ 〈q̂q̂〉 · ∇uf† − 1

Wi

( 〈q̂q̂〉
1− tr〈q̂q̂〉/b − δ

)

, (2.35)

where tr〈q̂q̂〉 is the trace of the configuration tensor 〈q̂q̂〉.

2.1.7 Brownian FENE-P

The Brownian FENE-P is a combination of the FENE and FENE-P models. It relies on

Eq. (2.33) where the term q̂2 of the spring force is replaced by the trace of the conformation

tensor 〈q̂q̂〉 from Eq. (2.35):

dq̂ =

(

∇uf · q̂ − q̂

2Wi (1− tr〈q̂q̂〉/b)

)

dtf −
√

1

2Wi
dŴ tf . (2.36)

Since the spring force is computed from the average conformation, some realizations can

exceed the maximum extension.

2.1.8 The bead-spring chain models

The dumbbell model is oversimplified since it accounts for polymer-solvent interaction only

at two points. It is therefore natural to consider a more realistic model which contains

Ns+1 beads and Ns corresponding springs (see Fig. 2.1 c). The derivation of the equations

of motion for the bead-spring chain model are a simple generalization of the equations

derived in section 2.1.3. With similar assumptions, a force balance leads to the equation for

the center of mass of the molecule and the equations for each connecting vector qν between

beads ν and ν + 1:

dr

dt
= u, (2.37)

dqν
dt

= ∇u · qν −
1

ζ

Ns
∑

k=1

Aνk

(

kT
∂

∂qk
lnψ + F

(c)
k

)

, (2.38)
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where Aνk are the elements of the Rouse matrix defined as

Aij =



















2 if i = j,

−1 if i = j ± 1, i, j = 1, ..., Ns

0 otherwise.

(2.39)

The diffusion equation corresponding to Eq. (2.18) becomes

∂ψ

∂t
= −

Ns
∑

ν=1

∂

∂qν

(

(∇u · qν)ψ −
1

ζ

Ns
∑

k=1

Aνk

[

kT
∂

∂qk
ψ + F

(c)
k ψ

]

)

, (2.40)

which can be used to find ξ =
〈

∑

j

∑

k Cjkqjqk

〉

(Hassager and Bird, 1972)

dξ

dt
−∇u · ξ − ξ · ∇u† = −2

ζ

〈

∑

k

F
(c)
k qk

〉

+
2kT

ζ
Nsδ, (2.41)

where Cjk is the Kramer’s matrix

Cjk =







i(Ns + 1− j)/(Ns + 1) if i ≤ j,

j(Ns + 1− i)/(Ns + 1) if j ≤ i, i, j = 1, ..., Ns,
(2.42)

which gives at equilibrium
Ns
∑

k=1

〈

F
(c)
k qk

〉

eq
= NskTδ. (2.43)

In a similar way, we find for the stress tensor

τ p = n

Ns
∑

k=1

〈qkF
(c)
k 〉 − nNskTδ. (2.44)

The bead-spring chain with Hookean springs

In the case of Hookean springs, the model is called a Rouse chain (Rouse, 1953). Since the

model is linear, one can find a constitutive equation for the different stress components

τ fp =

Ns
∑

k=1

τ
f
pk, (2.45)
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where each normal-mode stress contribution satisfies

d

dtf
τ
f
pk −∇uf · τ

f
pk − τ

f
pk · ∇uf† +

1

Wi λ̂k

(

τ
f
pk − δ

)

= 0. (2.46)

The relaxation times λk depend on the eigenvalues ak of the Rouse matrix:

λk =
ζ/2H

ak
=

ζ/2H

4 sin2(kπ/2(Ns + 1))
, (2.47)

λ̂k =
1

2 sin2(kπ/2(Ns + 1))
, (2.48)

which reduces, as expected, to the previously derived result of Eq. (2.31) in the dumbbell

case since the dimensionless relaxation time λ̂ = λ̂1 = 1.

Moreover, if the hydrodynamic interactions among the various beads in one chain are

also included, one finds the Zimm model (Zimm, 1956).

Relaxation time and stress

While there exists only one relaxation time λ = λH for a dumbbell, the bead-spring chain

model incorporates internal modes, each associated with a relaxation time. Therefore, it is

not obvious which polymer time should be used in the definition of the Weissenberg number,

which is the ratio of polymer and flow times. Different relaxation times can be used, i.e.,

the zero-shear relaxation time, the Rouse relaxation time (see Eq. (2.48)) or the longest

relaxation time λ̂ (Somasi et al., 2002). For all the following results and calculations, the

longest relaxation time was chosen, which is the time the slowest relaxation mode takes

to recoil from a full extension. It can be computed by examining the long time relaxation

of the stress of an ensemble of chains starting with initial configuration in which every

chain is fully stretched in the x-direction. λ̂ is then given by the inverse of the slope of the

tangent as illustrated in Fig. 2.3. The longest relaxation time for different parameter values

is summarized in table 2.1.
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Figure 2.3: Calculation of the longest relaxation time for a FENE chain with Ns = 10 and
b = 3600.

Table 2.1: Longest relaxation times.

Ns = 10 b = 3600 λ̂ = 21.6

Ns = 5 b = 3600 λ̂ = 7.2

Ns = 5 b = 10000 λ̂ = 7.4

Ns = 5 b = 900 λ̂ = 6.66
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The bead-spring chain with FENE springs

With a nonlinear spring force, one gets the FENE multi-chain model which reads in its

Brownian dynamics form:

dq̂ν =



∇uf · q̂ν −
1

4

ν+1
∑

k=ν−1

Aνk
q̂k

Wi λ̂
(

1− q̂2
k

bs

)



 dtf

+

√

1

2Wi λ̂

(

dŴ
ν+1
tf − dŴ

ν
tf

)

, ν = 1...Ns

(2.49)

where λ̂ is the longest relaxation time and bs corresponds to the individual maximum

extension parameter of each spring. It is related to the the maximum extension of a FENE

dumbbell through:

bs =
b

Ns
=
HsQ

2
0

NskT
, (2.50)

where Hs = HNs.

2.2 Turbulent flow and particle tracking

2.2.1 Modified Navier–Stokes equations

We are interested in the flow of dilute solution of polymers. It is assumed in this work that

the polymer concentration is uniform. The polymer effects are modeled via an additional

term, the polymer body force, which is the divergence of the polymer stress tensor τ fp ,

∂u

∂t
+ u∇u = −∇p+ β

Re
∇2u+

1− β
Re
∇ · τ fP , (2.51)

where β is the ratio of the solvent viscosity ν to the total viscosity and consequently depends

on the concentration of polymers and τ P is the Eulerian polymer stress as opposed to the

Lagrangian polymer stress τ p. Simulations are performed in a minimal channel (Jimenez

and Moin, 1991,) at a constant mass flow. The Reynolds number is defined as Re = Uch/ν,

where Uc is the centerline velocity of the corresponding Poiseuille flow and h is the half height

of the channel. This non-dimensionalization also defines the flow time scale mentioned in

section 2.1.4.
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2.2.2 Particle tracking

Most viscoelastic simulations of polymer drag reduction assume that the polymer phase is a

continuum and therefore use an Eulerian approach. In that case the time derivative in each

constitutive equation for the stress must be regarded as a total time derivative. However,

this work adopts the Lagrangian point of view, i.e., single polymer molecules are tracked

individually in an Eulerian flow simulation. The first equation of (2.16) governs the evolution

of the particle positions. The integration of the polymer molecules trajectories assumes that

the molecule center-of-mass motion is characterized by no inertia and an infinite Peclet

number. Therefore, these trajectories represent an exact Lagrangian description of the

flow. The equation for the position of their center of mass can be rewritten:

dxp
dt

= up(xp), (2.52)

where up is the velocity of the polymer molecule at its position xp which needs to be

interpolated from the velocity field given by the Eulerian flow calculation.



Chapter 3

Numerical implementation

Chapter 2 introduced different models which can be used to describe viscoelastic flows

of dilute polymer solutions. In addition, it was mentioned that the usual Navier-Stokes

equations need to be modified to account for the effect of the polymers. This chapter focuses

on the numerical implementation of the aforementioned equations. In the first part, the

numerical algorithms for specific polymer models are presented. Although many polymer

models have been described previously, this work focuses on three Brownian models, i.e., the

FENE and FENE-P dumbbells and the FENE bead-spring chain, and on one constitutive

model, the FENE-P.

The numerical implementation used to solve the modified Navier-Stokes equations is

discussed in section 3.2, followed by the presentation of the particle tracking algorithm.

The chapter concludes with the discussion of the computation of the Eulerian polymer

stress in both the Eulerian and Lagrangian frameworks. The related issue of the advection

in the Eulerian approach is also mentioned.

3.1 Algorithm for polymer stress

3.1.1 FENE dumbbell model

To advance Eq. (2.33) from time tfn to tfn+1, a second-order semi-implicit predictor-corrector

algorithm is used (Oettinger, 1996). The predictor step is explicit, while the corrector step

treats the spring force term semi-implicitly.

35
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Predictor step

q̂∗ = q̂n +

(

∇ûfn · q̂n −
q̂n

2Wi (1− q̂2n/b)

)

dtf − 1√
2Wi

dŴ n. (3.1)

Corrector step

(

1 +
dtf

4Wi
(

1− q̂2n+1/b
)

)

q̂n+1 = q̂n+

1

2

(

∇ûfn+1 · q̂∗ +∇ûfn · q̂n −
q̂n

2Wi (1− q̂2n/b)

)

dtf − 1√
2Wi

dŴ n,

(3.2)

where dŴ n is a three-dimensional Gaussian random variable with mean zero and variance

dtf . Let’s refer to the known right hand side of this equation, F̂ ∗:

(

1 +
dtf

4Wi
(

1− q̂2n+1/b
)

)

q̂n+1 = F̂ ∗. (3.3)

This equation cannot be directly solved because it is a vector equation and in the left

hand side, the norm of the unknown vector is also needed. To avoid this difficulty, we

square the equation, where the square of a vector is understood to be the scalar product

with itself. Eventually we take the square root and solve for the norm q̂n+1.

(

1 +
dtf

4Wi
(

1− q̂2n+1/b
)

)

q̂n+1 = ||F̂ ∗|| = F̂∗. (3.4)

Rearranging, we get a third order equation

q̂3n+1 − F̂∗q̂2n+1 − b
(

1 +
dtf

4Wi

)

q̂n+1 + F̂∗b = 0, (3.5)

for which a closed solution exists. We define A = −F̂∗, B = −b
(

1− dtf

4Wi

)

and C = F̂∗b. We

can now rewrite the equation x3+Ax2+Bx+C = 0 into its normal form y3+3Py+2Q = 0

using the transformation y = x+ A
3 . and the coefficients:

2Q =
2A3

27
− AB

3
+ C, 3P = B − A2

3
. (3.6)

The discriminant is defined as D = P 3+Q2, and since the coefficients are all real and both
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P and D are negative, we get the solutions:

y1 = −2R cosβ, y2,3 = 2R cos
(

β ± π

3

)

, (3.7)

where R = (sgn Q)
√

|P | and β = 1
3 arccos(Q/R

3).

Using the root q̂n+1 in Eq. (3.3) and solving it for the elements of q̂n+1, we finally find

the end-to-end vector:

q̂n+1 =
F̂ ∗

(

1 + dtf

4Wi(1−q̂2n+1
/b)

) . (3.8)

Finally the polymer stress is computed with Eq. (2.34) by averaging over many realiza-

tions.

3.1.2 FENE-P model

As mentioned in chapter 2, instead of averaging over different realizations, one can also solve

directly for a conformation tensor 〈q̂q̂〉 and therefore obtain an expression for the average

stress. Eq. (2.35) for the evolution of this conformation tensor consists of six equations due

to the symmetry of the tensor. To integrate these equations, we use an iterative implicit

scheme based on the scheme used for the FENE model. The spring force is treated explicitly

at each step of the iteration and the stretching term is semi-implicit. The first step computes

the trace of the tensor, which is used in the second step to calculate the spring force for

each component of the tensor.

In index notation, Eq. (2.35) can be written as

∂tf 〈q̂iq̂j〉 = ∂ku
f
i 〈q̂kq̂j〉+ 〈q̂iq̂k〉∂ku

f
j −

1

Wi

( 〈q̂iq̂j〉
1− 〈q̂iq̂i〉/b

− δij
)

, (3.9)

where ∂tf = ∂
∂tf

and ∂k = ∂
∂xk

.

Trace of the conformation tensor 〈q̂iq̂j〉

We obtain an equation for the trace by adding the three equations corresponding to i = j:

∂tf 〈q̂iq̂i〉 = ∂ku
f
i 〈q̂kq̂i〉+ 〈q̂iq̂k〉∂ku

f
i −

1

Wi

( 〈q̂iq̂i〉
1− 〈q̂iq̂i〉/b

− 3

)

(3.10)
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and if we define Rij = ∂ku
f
i 〈q̂kq̂i〉+ 〈q̂iq̂k〉∂ku

f
i to be the stretching term, we get:

∂tf 〈q̂iq̂i〉 = Rii −
1

Wi

( 〈q̂iq̂i〉
1− 〈q̂iq̂i〉/b

− 3

)

. (3.11)

We introduce now a new variable, χ = 1−〈q̂iq̂i〉/b, so that the trace becomes 〈q̂iq̂i〉 = b(1−χ).
The equation for the trace can be converted into an equation for the new variable χ:

−b dχ
dtf
−Rii + b

1− χ
Wiχ

− 3

Wi
= 0, (3.12)

which can be rewritten as

χ
dχ

dtf
+
χRii

b
+
χ− 1

Wi
+

3χ

Wib
= 0. (3.13)

The time derivative is then discretized at n+ 1

χ
dχ

dtf
≈ χ2n+1 − χn+1χn

dtf
(3.14)

Using this last relation, we obtain a polynomial equation of the second degree

χ2n+1 +

[

Rii,∗
dtf

b
− χn +

3dtf

bWi
+

dtf

Wi

]

χn+1 −
dtf

Wi
= 0, (3.15)

where Rii,∗ is the stretching term computed with the approximation 〈q̂iq̂j〉∗ from the pre-

vious iteration. The two solutions are

χn+1 = −
β

2
±
√

β2 + 4dtf/Wi

2
, (3.16)

where

β = Rii,∗
dtf

b
− χn +

3dtf

bWi
+

dtf

Wi
. (3.17)

The trace of the tensor 〈q̂iq̂j〉 may not be greater than the extensibility parameter b, so that

χ must be greater than 0. Therefore, the only valid solution is

χn+1 = −
β

2
+

√

β2 + 4dtf/Wi

2
. (3.18)
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Individual components of the conformation tensor 〈q̂iq̂j〉

Having the trace, the temporal discretization of Eq. 3.9 can be solved now for the individual

components

〈q̂iq̂j〉n+1 =
〈q̂iq̂j〉n + (Rij,∗ + δij/Wi)dtf

1 + dtf/(Wiχn+1)
, (3.19)

where Rij,∗ is the stretching term computed with the approximation 〈q̂iq̂j〉∗. This process

is repeated iteratively until convergence to treat the stretching terms implicitly. The first

iteration uses the conformation tensor 〈q̂iq̂j〉n at step n and the velocity gradients at step

n + 1 to compute Rij,∗, then the subsequent steps use the new value of the conformation

tensor 〈q̂iq̂j〉n+1. The iteration is performed until the difference between two iterations is

smaller than a desired convergence value ε.

The presented algorithm is a robust numerical method to solve the FENE-P equation,

ensuring that the trace never exceeds its maximal value b. The time step can be chosen so

that the positive components of the conformation tensor 〈q̂iq̂i〉 are always greater than 0.

If an arbitrary time step is chosen, a clipping method can be used to avoid negative values

of the diagonal elements of 〈q̂iq̂i〉.

3.1.3 Brownian FENE-P model

To compute the extension vector q̂ of the Brownian FENE-P model (see Eq. (2.36)), the

same scheme as for the FENE equations is used, but using the trace of the conformation

tensor 〈q̂iq̂j〉ii calculated with the above algorithm for the spring force. The predictor step

is

q̂∗ = q̂n +



∇ûfn · q̂n −
q̂n

2Wi
(

1− 〈q̂iq̂i〉n+1

b

)



dtf − 1√
2Wi

dŴ n. (3.20)

The corrector step can be written as



1 +
dtf

4Wi
(

1− 〈q̂iq̂i〉n+1

b

)



 q̂n+1 = q̂n+

1

2



∇ûfn+1 · q̂∗ +∇ûfn · q̂n −
q̂n

2Wi
(

1− 〈q̂iq̂i〉n+1

b

)



dtf − 1√
2Wi

dŴ n

(3.21)
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Unlike the scheme for the FENE model, Eq. (3.21) can be solved directly since 〈q̂iq̂i〉 is
already known. However, this implies that Eq. (2.35) needs to be solved first.

3.1.4 FENE springs model

We use a similar semi-implicit predictor-corrector scheme as introduced by Somasi et al.

(2002) to solve for q̂ν . In the predictor step, q̂ν,n is explicitly updated to obtain q̂ν,∗ as

q̂ν,∗ = q̂ν,n +

(

∇ûfn · q̂ν,n +
1

4Wi λ̂
(F̂

(c)
ν−1,n − 2F̂

(c)
ν,n + F̂

(c)
ν+1,n)

)

dtf

+
1

√

2Wi λ̂

(

dŴ ν+1,n − dŴ ν,n

)

,
(3.22)

where F̂
(c)
ν,n =

q̂ν

(1−||q̂ν ||
2/bs)

is the spring force for the νth segment at time tfn.

In the first corrector step, the spring forces F̄
(c)

for segments ν and ν − 1 are treated

implicitly when solving for the approximation q̄ν such that

q̄ν +
dtf

2Wi λ̂
F̄
(c)
ν = q̂ν,n +

(

1

2
(∇ûfn+1 · q̂ν,∗ +∇ûfn · q̂ν,n) +

1

4Wi λ̂
(F̄

(c)
ν−1 + F̂

(c)
ν+1,n)

)

dtf

+
1

√

2Wi λ̂

(

dŴ ν+1,n − dŴ ν,n

)

,

(3.23)

which upon rearrangement results in the following cubic equation for the magnitude of q̄ν

for each νth spring in the chain

|q̄ν |3 −R|q̄ν |2 − bs
(

1 +
dtf

2Wi λ̂

)

|q̄ν |+ bsR = 0 (3.24)

where R is the magnitude of the right hand side vector of Eq. (3.23). This equation has

one unique solution between 0 and
√
bs, and thus by choosing this root, we can ensure that

|q̄ν | is never greater than
√
bs.

In the final corrector step, again the spring forces for segments ν and ν − 1 are treated
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implicitly, while the spring force for segment ν + 1 is obtained from step 2

q̂ν,n+1 +
dtf

2Wi λ̂
F̂
(c)
ν,n+1 = q̂ν,n

+

(

1

2
(∇ûfn+1 · q̄ν +∇ûfn · q̂ν,n) +

1

4Wi λ̂
(F̂

(c)
ν−1,n+1 + F̄

(c)
ν+1)

)

dtf

+
1

√

2Wi λ̂

(

dŴ ν+1,n − dŴ ν,n

)

(3.25)

The above equation results in a cubic equation similar to the previous one. Once every

q̂ν,n+1 is known, the residual ε is calculated as the difference between the solutions q̄ν and

q̂ν,n+1

ε =

√

√

√

√

Ns
∑

ν=1

(

q̂ν,n+1 − q̄ν
)2

(3.26)

If this residual is greater than a specified tolerance (e.g., 10−6), q̂ν,n+1 is copied onto q̄ν

and step 3 is repeated until convergence.

3.2 Algorithm for the Navier–Stokes equations

The flow solver uses classical second-order central finite differences on a staggered grid.

In the first step, the polymer stress for the chosen polymer model is computed from both

the solution at the previous time-step and the actual velocity field, which is subsequently

advanced. The time advancement scheme of the velocity field relies on a semi-implicit

fractional step method (Kim and Moin, 1985). The Newtonian viscous stress in the wall-

normal direction is advanced in time with the Crank-Nicolson scheme, while all other terms

in Eq. (2.51) are advanced with a third-order Runge-Kutta (RK3) method:

u
(∗)
i − u

(l−1)
i

dt
= −γlN (l−1)

i − ζlN (l−2)
i + αl

(

L
(l)
i + L

(l−1)
i + T

(l)
i + T

(l−1)
i

)

, (3.27)

∂k∂kφ =
1

αldt
∂ku

(∗)
k , (3.28)

u
(l)
i = u

(∗)
i − αldt∂iφ, (3.29)

where N , L and T are respectively the non-linear, diffusive and polymer terms. The index

l is the sub-step of the Runge Kutta scheme, and γl, ζl and αl are the corresponding

coefficients: γ1 = 8/15; ζ1 = 0; α1 = 4/15; γ2 = 5/12; ζ2 = −17/60; α2 = 1/15; γ3 = 3/4;
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ζ3 = −5/12; α3 = 1/6. To maintain good resolution, the polymeric stress derivatives are

calculated with a non-dissipative fourth-order compact scheme while the other gradients

are computed with a second-order finite difference scheme (Min et al., 2001).

3.3 Particle tracking

Solving Eq. (2.52) requires the computation of the velocity, up, of the center-of-mass of the

polymer molecule at its location, xp. Since the velocity field is computed in an Eulerian

frame, it needs to be interpolated at the location xp from the computational grid. The

problem of the interpolation has already been extensively studied and it has been shown

that a linear interpolation produces less accurate results than higher order schemes (Yeung

and Pope, 1988; Kontomaris et al., 1992). The method of choice is the cubic spline, which

produces smooth velocity and velocity gradients over the grid cells. However, it cannot

ensure a divergence free velocity gradient tensor inside the cells. In this study, the trilinear,

the tricubic spline and a higher order interpolation (based on a Taylor expansion) have

been tested. No significant differences have been found between results obtained from these

schemes and therefore the trilinear interpolation was chosen, since it is faster than the other

two methods and it preserves the zero divergence condition inside the cells. The relative

insensitivity of the results on the interpolation scheme can be explained by the fact that

the flow field calculation itself is based on a second order scheme while all other studies

which showed that the trilinear interpolation performs poorly used spectral methods. A

brief summary of these interpolation schemes can be found in appendix A.

In the uncoupled case, the polymer equations are solved on a smaller time scale than

the time scale of the flow field calculation. Therefore, the velocity at the intermediate time

steps is obtained by linearly interpolating two consecutive flow fields in time. The particle

itself is advanced using a second order Runge-Kutta scheme. A fourth order scheme has

also been tested, but the results are similar.

In the coupled case, both the flow and the polymer equations are advanced simultane-

ously. Therefore, the same third-order Runge-Kutta scheme is used to advance the particles

as the one used for the flow.
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3.4 Polymer stress and the problem of advection

As stated in the previous chapter, the polymer stress can be computed in either an Eulerian

or a Lagrangian framework. Although this work is based on the Lagrangian approach, it is

interesting to consider the Eulerian approach as well, in order to understand the challenges

which arise when solving the FENE-P equations.

3.4.1 Eulerian framework

All the previous studies have relied on the Eulerian method to solve the equations for

the polymer phase. However, they all faced similar numerical issues which arise from the

advection term of the FENE-P equations casted in the Eulerian framework:

∂

∂tf
〈q̂q̂〉+ u · ∇〈q̂q̂〉 = ∇uf · 〈q̂q̂〉+ 〈q̂q̂〉 · ∇uf† − 1

Wi

( 〈q̂q̂〉
1− tr〈q̂q̂〉/b − δ

)

. (3.30)

One can notice that the second term on the left-hand side of Eq. (3.30) represents the

advection of the configuration tensor by the flow. However, Eq. (3.30) does not contain

any diffusive terms. In reality diffusion takes place, but at much smaller scales than the

Kolmogorov scale. Typically, the Schmidt number Sc = ν/κ associated with drag reducing

polymers is of the order of 106, where ν is the kinematic viscosity of the solution and κ is the

diffusion coefficient. As it was shown by Batchelor (1959), when ScÀ 1 the spectrum of the

advected quantity decreases with a slope of −1 beyond the Kolmogorov scale. Therefore,

at high Schmidt numbers the convected quantity still possesses energy at very small scales.

This is exactly the case for the FENE-P equation. The absence of any diffusion implies that

the energy cut-off scale tends to infinity. This means that it is impossible to compute a true

Direct Numerical Simulation (DNS) of the polymer phase, and that numerical artifices are

needed to ensure a stable computation on the chosen mesh.

The advection problem explains why all the previous simulations needed to add a so-

called Artificial Dissipation (AD) term. Studies having opted for a spectral-like approach

used a Global Artificial Diffusion (GAD) (Beris and Sureshkumar, 1996; Beris and Dim-

itropoulos, 1999; Dimitropoulos et al., 2001), while it is possible to introduce a Local Ar-

tificial Diffusion (LAD) in studies based on finite differences (Min et al., 2001; Dubief and
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Lele, 2001). With this AD, Eq. (3.30) becomes

∂

∂tf
〈q̂q̂〉+ u · ∇〈q̂q̂〉 =∇uf · 〈q̂q̂〉+ 〈q̂q̂〉 · ∇uf†

− 1

Wi

( 〈q̂q̂〉
1− tr〈q̂q̂〉/b − δ

)

+AD.
(3.31)

This artificial diffusion was historically introduced to avoid a loss of positive- definitiveness

of the configuration tensor 〈q̂q̂〉. However, the influence of this additional term is not

fully understood. Although activation of AD is very limited in high-drag reduction regimes

(HDR), this is not the case at low-drag reduction (LDR) and during the transient phase.

Moreover, even at HDR, the impact of inadequate resolution of the polymer phase is totally

unknown.

The Eulerian method is in general constrained to using constitutive equations and is

therefore limited in its accuracy. However, the constraint can be relaxed if one relies on the

Brownian Configuration Fields method (Oettinger et al., 1997; Hulsen et al., 1997).

3.4.2 Lagrangian framework and the modified Adaptive Lagrangian Par-

ticle Method

Because of the nature of the Lagrangian approach, the aforementioned problem can be

avoided. However, the polymer stress in the Lagrangian framework is only known at the

particles’ location by solving the polymer equations with any algorithm discussed in sec-

tion 3.1, and a method is needed to transfer this information back to the Eulerian grid in

order to advance the flow in time. Such a transfer between the Lagrangian and Eulerian

frameworks was already needed to compute the particles’ velocity and velocity gradient

tensor from the Eulerian flow field as explained previously in section 3.3. This transfer of

the polymer stress is not needed in the uncoupled case but is necessary in order to simulate

drag reduction. One method which can be applied is a modified version of the Adaptive

Lagrangian Particle Method (ALPM) (Halin et al., 1998; Gallez et al., 1999; Wapperom

et al., 2000).

The basic idea of the ALPM is to compute the polymer stress at the center of a cell

of the mesh from the particles within this cell. This implies that a minimum number of

particles need to be present in each grid cell. In a uniform mesh, one could simply seed a

large enough number of particles at the beginning of the simulation and since the particles
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are Lagrangian tracers, there should statistically always be a minimum number of particles

in each cell since the particles tend to have a uniform volume distribution. However, if

the mesh is non-uniform, the initial number of particles needed to ensure a good particle

distribution in each grid cell is constrained by the smallest cells. This implies that in the

bigger cells a very large number of particles might be present, which causes a huge increase

in computation time. Moreover, the bigger cells are usually located where less resolution is

needed. To overcome this issue, one can constrain the number of particles within each cell

between a minimum (to ensure good resolution to compute the cell value) and a maximum

value (to avoid computation costs and load unbalance in parallel computation).

While the main idea behind the ALPM is trivial, the implementation turns out to be

more complicated. Namely, the constraint on the number of particles implies that particles

need to be created in some cells and destroyed in others. Therefore, one has to develop an

algorithm for the creation and destruction of particles and for the calculation of the cell

value of the polymer stress.

Computation of the cell value of the polymer stress

The original ALPM by Gallez et al. (1999) uses a least-squares fit of trilinear interpolation

of the Lagrangian stress values within the cell to compute the cell stress value. However,

the flow Gallez et al. (1999) investigated was the start-up flow between two highly eccentric

rotating cylinders at very low Reynolds number. The flow was smooth enough to lead to

a very smooth polymer stress distribution. In the case of a turbulent channel flow, the

distribution of the polymer stress over the particles within a cell is very broad due to the

strong turbulent mixing and the presence of small scales. The use of a least-squares fit

turned out to be impossible because it led to unphysical values, i.e. negative components

of the diagonal of the polymer stress tensor τ P .

Therefore, the method chosen was to do a cell average of the Lagrangian stress τ p,i to

obtain the Eulerian stress τP

τP =
1

Ncell

Ncell
∑

i=1

τ p,i, (3.32)

where Ncell is the actual number of particles within the cell.

Other methods could be developed but this one has the advantages of being very simple

and preserves the positiveness of the diagonal elements of the tensor.
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(a) Destruction (b) Creation

Figure 3.1: Schematic of the creation and destruction of particles within a cell.

Destruction of particles

If the number Ncell of particles within the cell is greater than the maximum number of

particles, Ncell,max, the two closest neighbors are found and replaced by one particle at

mid-distance of them. The new particle is given the average stress of the two it replaces.

This is schematically illustrated in Fig. 3.1. The procedure is repeated iteratively until the

number of particles in the cell is equal to the maximum number of particles allowed.

Creation of particles

If too few particles are present in a cell, new ones need to be created. The first step is to

determine the quadrant (in three dimension) of the cell with the least number of particles

and to randomly define the position of the new particle as depicted in Fig. 3.1. Different

options are available to assign the value of the polymer stress to the newly created particle.

One can give it for instance the mean cell value or use a trilinear interpolation using the

neighbor cell values to determine the polymer stress at the location of the new particle.

Both methods have been implemented.

Obviously the creation and destruction of particles induces an uncontrolled diffusion.

But the nature and level of this diffusion can be investigated in the uncoupled simulations.

Moreover, one has the freedom to choose the bounds for the number of particles.



Chapter 4

Validation of the numerical

methods

The previous chapter introduced the algorithms used to solve the equations presented in

chapter 2. This chapter focuses on the validation of the implementation of these algorithms.

First, the polymer models are tested in simple flows and results are compared to those found

in the literature. Then the accuracy of the particle tracking scheme is illustrated by sample

trajectories and the comparison of the Lagrangian and Eulerian statistics. Finally, the

modified Adaptive Lagrangian Particle Method is validated in a model flow, i.e., the Taylor

vortex cells.

4.1 Polymer solution in simple flows

A very good test case to validate the numerical method for the polymer stress calculation

is simple shear and elongational flows. As a first step, both the FENE and FENE-P models

are investigated, i.e., Eq. (2.33) are solved numerically using 50000 realizations and the

stress is then computed as an ensemble average over all realizations. The time step ranges

from dt = 0.001 to dt = 0.005, depending on the Weissenberg number. The results for

the dimensionless shear viscosity, 〈τxy〉/Wi , and the first normal stress coefficient, 〈τxx −
τyy〉/Wi2, in a shear flow are shown in Fig. 4.1 and 4.2 while the dimensionless elongational

viscosity 〈τxx−τyy〉/Wi in an elongational flow is shown in Fig. 4.3. Each case was computed

for different Weissenberg numbers and maximum extensibility parameter, b. The results

compare very well with published data (Herrchen and Oettinger, 1997) (not shown).

47
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Figure 4.1: Dimensionless viscosity in shear flow for the FENE (——) and FENE-P (– – –)
models at different Wi for b = 20, 50 and 100.
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Figure 4.2: Dimensionless first normal stress coefficient in shear flow for the FENE (——)
and FENE-P (– – –) models at different Wi for b = 20, 50 and 100.



50 CHAPTER 4. VALIDATION OF THE NUMERICAL METHODS

10-2 10-1 100 1010

1

2

3

4

5

6

PSfrag replacements

tp

b

〈τ
x
x
−
τ y
y
〉/
W
i

(a) Wi = 0.3

10-2 10-1 100 1010

50

100

150

200

PSfrag replacements

tp

b

〈τ
x
x
−
τ y
y
〉/
W
i

(b) Wi = 3

10-2 10-1 100 1010

50

100

150

200

PSfrag replacements

tp

b

〈τ
x
x
−
τ y
y
〉/
W
i

(c) Wi = 30

Figure 4.3: Dimensionless elongational viscosity in elongational flow for the FENE (——)
and FENE-P (– – –) models at different Wi for b = 20, 50 and 100.
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Figure 4.4: First normal stress difference in elongational flow at Wi = 6 for b = 3600.
FENE 10 springs (——) and FENE dumbbell (– – –).

In the case of shear flow, both models exhibit an overshoot at increasing shear rates

before reaching their steady value. The maxima in the viscosity and in the first normal

stress coefficient occur at a later time with increasing b. The value of these maxima as

well as the steady values also increase with b. It is interesting to note that the discrepancy

between the FENE and FENE-P models increases with the Weissenberg number. This

is also a well documented feature of the FENE-P model and suggests that the FENE-P

model might not be adequate to represent correctly the polymer phase for drag reduction.

The discrepancy is also noticeable in the case of inception of elongational flow. There,

the FENE-P model reaches its steady value at much earlier time than the FENE model.

However, it has the great advantage of being a constitutive equation, which explains why

all of the previous works on polymer drag reduction were based on the FENE-P model.

In a similar way, the FENE bead-spring chain model (see Eq. 2.49) is compared to the

FENE dumbbell model. The results for the first normal stress in an elongational flow are

shown in Fig. 4.4. One can notice that the steady values agree very well, but as it has

already been observed, the transient phase demonstrates a much larger stress in the case of

a multi-mode simulation. This is well known (Ghosh et al., 2001) and accurately reproduced

here. This discrepancy is caused by the fact that the FENE model accounts for only one

relaxation mode and suggests that representation of internal modes might be important to
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accurately simulate polymer drag reduction.

4.2 Newtonian turbulent flow and particle tracking

In order to validate the particle tracking and flow solver algorithms, one can compare the

flow statistics obtained from both approaches. Moreover, sample trajectories of particles

are also analyzed. Results are obtained from the simulation of a channel flow at constant

mass flux in a minimal channel (Jimenez and Moin, 1991,) for a Reynolds number Re =

Uh/ν = 7500, where U is the corresponding center line velocity of the Poiseuille flow, h

is the half height of the channel and ν is the kinematic viscosity. The flow time scale is

therefore defined as tf = h/U . The channel is periodic in the x- and z-directions and has

dimension πh × 2h × h. The simulation has been carried out on a grid of 64 × 129 × 32

points giving a Reynolds number in wall units of Re+ = uτh/ν = 318 (where the friction

velocity uτ = 0.042) so that ∆x+ = 15.9, ∆y+ = 0.3 − 13 (the grid is non-uniform in the

wall-normal direction) and ∆z+ = 9.9. Finally a constant time step of ∆tf = 0.001 was

chosen, ensuring a CFL number much smaller than one. To achieve converged statistics,

a large number of particles were needed. In this case, Np = 105 particles homogeneously

distributed were used with each of them having a different trajectory.

4.2.1 Comparison of Eulerian and Lagrangian statistics

In order to validate the particle tracking algorithm, one can compare flow statistics ob-

tained from classical Eulerian statistics and from the Lagrangian calculation. To compute

Lagrangian statistics, one groups the particles in layers as a function of the distance from

the wall y+ and computes the mean value for each of the layers. Results for the velocity

statistics are shown in Fig. 4.5. The agreement for the mean streamwise velocity U+ is

very good. The very small discrepancy is mainly due to the averaging introduced by the

binning used for the Lagrangian statistics. The agreement is also very good for the Root

Mean Square (rms) values of the velocity fluctuations, although the Lagrangian statistics

tend to show slightly smaller values. This is most probably due to the way the statistics

are computed, and to a lesser extent to the low pass filtering characteristics of the trilin-

ear interpolation scheme. But overall one can conclude that the Lagrangian and Eulerian

statistics are in very good agreement.
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Figure 4.5: Velocity statistics for Lagrangian (– – –) and Eulerian (——) simulations in a
channel flow at constant mass flow and Re = 7500. 2: u (streamwise), O: v (wall-normal)
and ◦: w (spanwise).
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4.3 Advection of a passive scalar in a Taylor vortex cell

In order to validate the Lagrangian method described in section 3.4.2, the advection of a

passive scalar in a Taylor vortex cell is considered. This model problem is of the same

hyperbolic nature as the FENE-P equation as discussed in section 3.4.1. However, it has

no source terms, which makes it easier to analyze. Moreover, the two-dimensional flow field

u is known analytically so that only the passive scalar equation

∂c

∂t
+ u

∂c

∂x
= 0 (4.1)

needs to be solved for the scalar value c(x, y, t), thus allowing a direct comparison between

different numerical approaches.

4.3.1 Taylor-Green vortex and problem formulation

The Taylor-Green vortex is an exact solution of the Navier-Stokes equations consisting of a

two-dimensional array of counter-rotating vortices (Taylor and Green, 1937). The analytical

solution is given on the periodic domain (0, 0) ≤ (x, y) ≤ (2π, 2π) by

u =F (t) sinx cos y, (4.2)

v =− F (t) cosx sin y, (4.3)

p =− 1

4
F 2(t) (cos 2x+ sin 2y) , (4.4)

where u and v are the velocities in the x and y directions, respectively, and p is the pressure.

The time dependence is given by the function F (t) = F0 exp(−2νt), thus in the inviscid case

(ν = 0) the flow becomes time-independent. The streamlines are shown in Fig. 4.6 (a). One

can see that each of the four cells are independent. Moreover, the streamlines are closed

loops. Therefore, it is expected that the passive scalar only travels along these loops. F0

was chosen arbitrarily to be unity so that the velocity is bounded by −1 and 1.

We seek a solution to Eq. 4.1 given the inviscid flow described by Eq. 4.2. While

the velocity field is steady, the passive scalar will develop in time from the chosen initial

condition

c0(x, y) = c(x, y, t = 0) = sin(y) (4.5)

shown in Fig. 4.6 (b). The problem is 2π-periodic in both the x and y directions. While
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Figure 4.6: Streamlines of a Taylor-Green vortex cell and initial distribution of the passive
scalar c0(x, y).

c contains only one wave number in the y direction, in its initial distribution, it will be

redistributed by the flow and higher wave numbers will be created through the convective

term in Eq. 4.1.

4.3.2 Spectral analysis

The system being completely 2π-periodic and because the initial condition is real, symmetric

in the x direction and antisymmetric in the y direction, one can assume a solution to the

problem of the form

c(x, y, t) =
∞
∑

m=0

∞
∑

n=1

ĉm,n(t) cosmx sinny, (4.6)

and substitute it into Eq. 4.1. After some algebra, one finds a system of coupled ordinary

differential equations (ODE) of infinite dimension:

4
dĉm,n
dt

= (m− n)ĉm+1,n+1 + (m+ n)ĉm+1,n−1

− (m+ n)ĉm−1,n+1 − (m− n)ĉm−1,n−1,

(4.7)
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with the initial condition

ĉm,n(t = 0) =







1 if m = 0, n = 1,

0 otherwise.
(4.8)

It can be noticed that because the wave number (m,n) depends only on the corner values

(m+ 1, n+ 1), (m− 1, n+ 1), (m+ 1, n− 1) and (m− 1, n− 1), every ĉm,n where m and n

are either both even or odd will remain zero.

From Eq. 4.7, one can see that the initial energy contained in a lower wave number

diffuses through the convective term to higher wave numbers. Moreover, since the assumed

solution is an infinite series (see Eq. 4.6), there is no cut-off wave number in the spectrum.

With increasing time, smaller scales will contain increasingly more energy. This represents

an enormous challenge for any numerical simulation, since the smallest scales resolved will

be determined by the finite grid. Yet it is an interesting and insightful test for any numerical

method aiming at solving the FENE-P equation.

To evaluate the different numerical methods, it is useful to monitor the conserved quan-

tities. If one integrates Eq. 4.1 over the whole volume and uses the Gauss theorem, using

the periodicity of the boundary conditions, the conservation law for the passive scalar, c, is

obtained:
∂

∂t

∫

V
cdV = 0. (4.9)

Similarly, if one multiplies Eq. 4.1 by c before the volume integration, the conservation of

c squared is obtained
∂

∂t

∫

V

1

2
c2dV = 0, (4.10)

if the flow is divergence free, which is the case here.

4.3.3 Discretization of the velocity field

While the velocity field is known analytically, Eq. 4.1 needs to be solved on a discrete grid.

In order to ensure the conservation properties of traditional schemes, it is necessary to

enforce the zero divergence condition discretely. However, this condition is not satisfied by

the analytical velocity field. Therefore, one has to discretize the flow field on the discrete

grid (xi, yj).

If one defines u∗
i,j and ui,j to be the analytical and discretized velocity at the location
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(xi, yj), respectively, it is clear that

∂xu
∗
i,j + ∂yv

∗
i,j = 0 6= δxu

∗
i,j + δyv

∗
i,j , (4.11)

where ∂ and δ are the continuous and discretized operators, respectively. However, one

can apply a projection method identical to the one used in the traditional fractional steps

method (Le and Moin, 1991), i.e., one corrects the divergent velocity field through a so-called

pressure correction Φ

ui,j = u∗i,j − δxΦ, (4.12)

vi,j = v∗i,j − δyΦ, (4.13)

where Φ satisfies the Poisson equation

δ2xΦ+ δ2yΦ = δxu
∗
i,j + δyv

∗
i,j . (4.14)

It can be verified that the new discretized velocity is indeed divergence free by applying

the divergence operator to Eq. 4.12. In the case where the discretized operator is a stan-

dard central finite difference operator of second order, one has to solve a linear system of

equations, which can easily be done.

4.3.4 Comparison of different numerical methods

In order to evaluate the different numerical methods considered in this work, Eq. 4.1 is

solved on a 1282 grid using a 3rd order Runge-Kutta time advancement. Both the ALPM

(see section 3.4.2) and the traditional Eulerian method are compared. The grid is chosen

to be uniform in both directions. Two different Eulerian approaches are investigated: the

traditional second order finite difference with the convective term in the skew-symmetric

form, and the higher order upwind compact scheme introduced by Min et al. (2001) and

modified by Dubief and Lele (2001).

4.3.5 Lagrangian solution

In order to validate the ALPM, it is necessary to investigate every source of numerical errors,

i.e., the time integration, the interpolation scheme, the number of particles, the resolution
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of the grid and the creation/destruction algorithm. The following parameters are chosen as

the basic case for comparison. The time integration is performed with the aforementioned

third order Runge-Kutta method and a time step of dt = 10−2, the grid is uniform and

contains 128 points in each direction, the velocity of each particle is interpolated from the

discretized flow field with a trilinear scheme, and each cell initially containsN = 20 particles.

Moreover, the number of particles per grid cell is not constrained, so particles do not need

to be created or destroyed. In order to compare the different solutions, the ’energy’, 1/2c2,

is recorded as a function of time up to tfin = 100. Moreover, a one-dimensional profile of the

solution c through the one of the four vortices is plotted as a function of x at time t = 50

and location, y = π/2.

In order to visualize the solution, a three-dimensional view of c at t = 50 is shown in

Fig. 4.7. The solution was computed with the same parameters as the base case but on a

2562 grid. One can see the four different cells each corresponding to a vortex. As expected

the solution shows a symmetry and antisymmetry between the different cells.

As mentioned above, the total energy of the physical system should be conserved but the

spectral analysis showed that energy transfers from the larger scales to the smaller ones.

In the Lagrangian method, the transfer of information, i.e. c, from the particles to the

Eulerian grid involves a cell average

ce =
∑

ncell

cp/ncell, (4.15)

where cp and ce are the passive scalar values at the particle locations and at the cell centers

of the Eulerian grid respectively. If no creation or destruction occur, the total energy 1/2c2p

over all particles remains constant. However, the scales which are smaller than the ones

resolved by the mesh will contain increasingly more energy with time, which is lost by

the averaging involved in the transfer from Lagrangian to Eulerian mesh.. Therefore, the

resolved energy 1/2c2e is expected to decrease with time, the missing energy being contained

in the unresolved scales. This is well illustrated by Fig. 4.8(a), where the total energy 1/2c2p

contained in the particles remains constant while the resolved energy 1/2c2e decreases.

The time integration is validated by reducing the time step by a factor of 10 to dt = 10−3.

Both the time evolution of the energy and the solution are compared to the base case and

shown in Fig. 4.8. One can observe that the solutions are identical, demonstrating the

accuracy of the time integration.
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Figure 4.7: Solution of the passive scalar equation in the Taylor-Green vortex at t = 50 on
a 2562 grid and N = 20 initial particles per cell without creation or destruction.
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The spatial interpolation scheme of the velocity is validated by comparing the results

given by the base case to a simulation where the velocity is computed directly from the

analytical expression. One can see in Fig. 4.9 that both results compare almost exactly.

While the initial number of particles per cell chosen in the base case is somehow arbi-

trary, an increase of the number of particles does not change the solution dramatically, as

illustrated in Fig. 4.10. One can observe a very small change in the energy evolution and

some small quantitative differences at a few points, particularly at the edge of the vortex.

However, the general features of the solution are well captured and a good quantitative

agreement is observed.

When the solution is computed on a finer mesh, smaller scales can be resolved. There-

fore, the energy content of these scales is also captured leading to a higher total resolved

energy. This is illustrated in Fig. 4.11. As expected, the solution exhibits higher levels of

fluctuations. However, if the more resolved solution is filtered onto the coarser grid, one

obtains almost exactly the same coarser solution. Moreover, the energy of the filtered so-

lution corresponds to that of the base case. This is a powerful property of the Lagrangian

method in the case of a linear problem, i.e., the lack of resolution of the small scales does

not impact the computation of the larger ones. A refinement of the mesh only adds new

information without altering the already known solution.

Although the mesh is in this case uniform, it is interesting to evaluate the diffusion

induced by the creation and destruction of particles. Therefore, the base case is compared

to the solution obtained when the number of particles within a cell is constrained. Results for

the creation of particles based on the mean value of the cell are shown for different bounds in

Fig. 4.12, while the results obtained from the interpolation of the neighbour cells are shown

in Fig. 4.13. One observes that the tighter the bounds are, the more diffusive the solution is.

This can be expected since tight bounds implies a larger number of particles destroyed and

created. However, it is interesting to note that the general qualitative characteristics of the

solution are conserved if the number of particles in a cell is not too constrained. Moreover,

it seems that the creation method based on the mean value of the cell gives better results

then the interpolation method (see section 3.4.2) and is less diffusive, at least in this simple

case.

It is also important to note that the maximum and minimum values of the scalar c,

i.e., 1 and −1, are conserved with the Lagrangian method. This is a great property of the

method which is not, in general, shared by Eulerian methods.
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Figure 4.8: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for both dt = 10−3 (· · · ·) and dt =
10−2 (——) velocity and N = 20 initial particles per cell without creation or destruction.
Symbols represent the total energy 1/2c2p contained in the particles.
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Figure 4.9: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for both the analytical (· · · ·)
and interpolated (——) velocity and N = 20 initial particles per cell without creation or
destruction. Symbols represent the total energy 1/2c2p contained in the particles.
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Figure 4.10: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for N = 20 (——), N = 40 (– – –)
and N = 80 (· · · ·) initial particles per cell without creation or destruction.
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Figure 4.11: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for N = 20 initial particles per cell
and a 1282 (——) and a 2562 (– – –) grid. The symbols 2 correspond to the solution of the
finer mesh filtered onto the coarser.

4.3.6 Eulerian solution

In this section the Lagrangian method is compared to the more traditional Eulerian meth-

ods. The first method considered is a centered 2nd order finite difference scheme. Because

of the advective nature of the equation, it is expected that a central scheme will perform

poorly, which it indeed does. Therefore, an artificial diffusion is added to the equation

∂c

∂t
+ u∇c− κ∇2c = 0 (4.16)

to control large oscillations. The convective term is discretized using the skew-symmetric

form (Morinishi et al., 1998) in order to have an energy conservative scheme. However,

since the total energy 1/2c2 is conserved, the energy which should cascade to the smaller,

unresolved scales actually remains in the resolved ones. Therefore, an unphysical amplifica-

tion of larger scales is observed. This results in an unphysical increase of the maximum and

minimum values of c, which can only be controlled by the addition of artificial diffusion.

Results with different diffusion coefficients κ are compared in Fig. 4.14. One can see that



4.3. ADVECTION OF A PASSIVE SCALAR IN A TAYLOR VORTEX CELL 65

0 20 40 60 80 100
0.44

0.45

0.46

0.47

0.48

0.49

0.5

PSfrag replacements

1/
2c

2

t
x
c

(a) Energy 1/2c2

0 1 2 3
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

1/2c2

t

x

c

(b) Passive scalar c

Figure 4.12: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for N = 20 initial particles per cell
and Nmin,max = (0,∞) (——), Nmin,max = (10, 30) (· · · ·), Nmin,max = (15, 25) (– – –) and
Nmin,max = (18, 22) (– · –). The creation of new particles is based on the mean value of c
in the cell. Symbols represent the total energy 1/2c2p contained in the particles.
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Figure 4.13: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for N = 20 initial particles
per cell. Creation based on the mean cell value: Nmin,max = (15, 25) (——), Nmin,max =
(18, 22) (· · · ·); creation based on the interpolation of the mean value of the neighbour cells:
Nmin,max = (15, 25) (– · –), Nmin,max = (18, 22) (– – –). Symbols represent the total energy
1/2c2p contained in the particles.
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Figure 4.14: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for the centered finite difference
method and different diffusion coefficient. κ = 10−5: ——, κ = 10−4: – – – and κ = 2 · 10−4:
· · · ·, κ = 10−3: – · · –.

with a very small diffusion, the solution still exhibits an overshoot of the maximum values

and large oscillations. This is even true for κ = 10−4, which leads to a larger energy loss

than the Lagrangian method. If κ is increased, the solution becomes much smoother and

remains within the bounds, but does not show any of the small scales present in the physical

solution.

Another scheme investigated is the modified upwind compact scheme introduced by

Min et al. (2003) and modified by Dubief and Lele (2001) to solve the FENE-P equation.

Artificial dissipation is not needed in this case due to the dissipative nature of any upwind

scheme. It is important to notice that the advective term is discretized using the convective

form. The use of the skew-symmetric form would not ensure energy conservation since the

upwind character of the scheme induces dissipation; moreover, the velocity field is discretely

divergence free with respect to a central finite difference scheme but not with the compact

scheme. The results found are compared to the Lagrangian base case in Fig. 4.15. One

can see that the scheme is much more diffusive than the Lagrangian method, even when
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Figure 4.15: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for the upwind compact scheme
(– – –) and the Lagrangian method (——) with N = 20 initial particles per cell and no
creation or destruction.

creation and destruction of particles is implemented (see Fig. 4.12 and 4.12). Moreover, the

solution is much smoother and does not replicate accurately the small scales found with the

Lagrangian method. If a finer mesh is used (see Fig. 4.16), smaller scales are captured in

the center of the vortex but not on its sides.

4.3.7 Discussion

The advection of a passive scalar in a Taylor-Green vortex cell is a very valuable model

problem since it exhibits similar characteristics to the FENE-P model in a flow. The vali-

dation of the Lagrangian method shows that the method is naturally adequate for this type

of problem. It surpasses the traditional Eulerian methods in terms of accuracy, stabiltity

and robustness. It is important to emphasize that the Lagrangian method is much more

expensive in terms of computation cost on a given mesh. However, to reach the same accu-

racy as the Lagrangian method, the Eulerian requires a much finer mesh, and thus becomes

more computationally expensive.
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Figure 4.16: Comparison of the resolved energy 1/2c2e as a function of time and the passive
scalar value c as a function of x at y = π/2 and t = 50 for the upwind compact scheme on
a 1282 grid (——) and a 2562 grid (– – –).
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The principal disadvantage of the Lagrangian method is the uncontrolled diffusion in-

troduced by the creation and destruction of particles. However, as was demonstrated above,

this diffusion does not alter significantly the qualitative behaviour of the solution. More-

over, the diffusion can be reduced by larger bounds on the minimum and maximum number

of particles within each cell. Another disadvantage is the non-smoothness of the solution.

While the Lagrangian approach produces great results in this simple model problem, it

can be questioned whether it is also well suited for the polymer drag reduction case. The first

issue is that the velocity field is much less smooth than the Taylor-Green vortex, and thus

the velocity and velocity gradient interpolations will introduce more significant diffusion.

Moreover, the mesh used to solve the channel flow is in general not uniform, thus increasing

the need for creation and destruction of particles, which again increases the diffusion. Yet

in light of the previous results, it should be expected that the Lagrangian method will

outperform the Eulerian approach. Also note that the advection of a passive scalar is an

extreme case since the value of each particle only depends on its initial value. Therefore,

the solution is strongly history dependent, while in the polymer case, the stretching term

depends on the local velocity gradient, rendering the solution much less history dependent.

It can be expected that the error introduced at particle creation decreases with time.



Chapter 5

One-way coupling calculations

Before simulating drag reduced flows, it is of interest to first consider uncoupled simulations,

i.e., simulations where the polymer dynamics is driven by the flow but where the polymer

stress does not couple back to it. Therefore, the flow is not modified by the polymers. This

allows a very good comparison of the different polymer models and a better understanding of

the mechanisms of polymer stretching in turbulent flow. Moreover, the algorithm is simpler

and therefore less sensitive to numerical issues since one does not need to implement the

complete ALPM introduced in section 3.4.2.

In this chapter we first provide a comparison of different polymer models. Then the

topological methodology is introduced to explain the mechanisms of polymer stretching.

Finally, conditional statistics are used to test the hypothesis made using the topological

methodology approach.

5.1 Comparison of polymer models

Because in an uncoupled simulation the flow is not modified by the polymers, a single

polymer molecule will experience exactly the same flow history, independently of the model

chosen. This allows a more precise comparison of the models. This comparison is obtained

in a channel flow identical to the one used in section 4.2 but on a slightly finer grid, i.e.

96 × 151 × 64 points, giving a Reynolds number in wall units of Re+ = 290 (Terrapon

et al., 2003). To achieve converged statistics, a large number of particles is needed. In this

case, Np = 105 particles were used with each of them having a different trajectory. The

extensibility parameter was chosen to be b = 3600 in order to simulate real molecules. Other

71
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Figure 5.1: Comparison of the mean square extension 〈q̂iq̂i〉/b as a function of the distance
y+ from the wall for different polymer models with b = 3600 and Wi = 3. FENE-P: ——;
Brownian FENE-P: – – –; FENE: – . –; FENE bead-spring chain with Ns = 5: · · · ·.
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Figure 5.2: Comparison of the polymer stress in the near-wall region for different polymer
models with b = 3600 and Wi = 3. FENE-P: ——; Brownian FENE-P: – – –; FENE: – . –;
FENE bead-spring chain with: · · · ·.
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Figure 5.3: Probability Density Function of the extension q̂/b for different polymer models
at different distances y+ from the wall. ¤ : 0.0 ≤ y+ ≤ 2.9; M : 11.6 ≤ y+ ≤ 14.5; O :
26.2 ≤ y+ ≤ 29.1; ◦ : 52.3 ≤ y+ ≤ 55.2; C : 287.8 ≤ y+ ≤ 290.7.
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Figure 5.4: Comparison of the extension history of a single particle for different polymer
models with b = 3600 and Wi = 3. FENE-P: ——; Brownian FENE-P: – – –; FENE: – . –;
FENE bead-spring chain with Ns = 5: · · · ·.

calculations were also performed with b = 900 and b = 10000, which gave qualitatively

similar results. The polymer models used are the FENE-P, the Brownian FENE-P, the

FENE and the FENE bead-spring chain models. The bead-spring chain used had 5 springs

corresponding to 5 relaxation modes. In all simulations we used Wi = 3 corresponding to

a Weissenberg number based on the wall shear Wi+ = λHuτ/ν = 34.

The sensitivity of the results on different parameters was investigated. The mesh was

refined, the time step was decreased and the number of particles was increased, but no

significant alteration of the results was found.

Figure 5.1 shows the mean square extension 〈q̂iq̂i〉 non-dimensionalized by the maximum

extensibility parameter b as a function of the distance y+ from the wall. It can be seen that

all models give qualitatively the same profile. The FENE-P models give a higher extension,

which can be expected from the results shown in section 4.1. The identical behavior is

shown in Fig. 5.2 for the first normal stress, τp,xx − τp,yy, and shear stress τp,xy. One

can conclude from these results that internal modes don’t seem to be very important to

capture the dynamics of the polymer. Moreover, the FENE-P model gives a good qualitative

approximation of more realistic models (FENE, bead-spring chain), although it tends to

overpredict extension and stress.
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One can observe that the main action of the polymers is confined to a region near

the wall (approximatively 0 ≤ y+ ≤ 100) with a maximum extension and stress at a

distance y+ = 10 − 20. This can be expected since it is more or less the location of the

quasi-streamwise vortices which are a major player in the coil-stretch transition of polymer

molecules, as will be demonstrated in a subsequent section.

The Probability Density Function (PDF) of the extension q̂/
√
b at different distances

from the wall (see Fig. 5.3) demonstrates again a very good qualitative agreement between

the different models (except for Fig. 5.3(a)). However, it should be noticed that higher ex-

tensions than allowed (i.e.,
√
b) are seen for the Brownian FENE-P model. This is explained

by the fact that the spring force is controlled by the average extension computed from the

FENE-P model, but individual realizations can overshoot this value. On the other hand,

the FENE-P model demonstrates a much narrower distribution close to the wall. This is

expected since the FENE-P model already describes the average conformation of the poly-

mer molecules and not single individual realizations. The flow near the wall corresponds

approximatively to a simple shear flow. Therefore, the FENE-P model should give a very

sharp distribution centered around its analytical value for a simple shear flow, which for the

considered parameters is q̂/
√
b = 0.5. Since the flow is only approximatively a simple shear

flow near the wall, the actual distribution of the constitutive FENE-P model is broader

because of flow fluctuations. However, as soon as the particles are away from the wall,

the distribution becomes very broad. One can conclude that the broad distribution of the

extension in the near-wall region is mainly due to the different flow types present there. It

is therefore very instructive to investigate the constitutive FENE-P model since one could

otherwise conclude that the broad distribution shown by the FENE model is only due to

the Brownian term, as it is in the case for a simple shear flow. In the center of the channel,

most of the chains are in a coil state.

A comparison of the different models along the same trajectory for a given particle is

shown in Fig. 5.4. One can see that despite a very different history, each model reacts

qualitatively similarly to the same events. But it is clear that on an individual basis, the

actual extension history of a realization can vary greatly.
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5.2 Topological methodology

It was found in the previous section that the main action of the polymers takes place in the

near-wall region. However, the exact mechanisms associated with the coil-stretch transition

of a polymer are not clear yet. Therefore, it is instructive to analyze in depth the FENE

model. As mentioned in chapter 2, the second term on the right hand side of Eq. (2.33)

corresponds to the spring force which tends to bring back the polymer molecule to its coil

configuration. It opposes the tendency of the flow to stretch the polymer and therefore

ensures a bounded extension. Its nonlinearity becomes important when it approaches its

maximal extension. The third term on the right hand side of Eq. (2.33) represents the

Brownian motion and has a zero mean. This term only adds a stochastic character to

the dynamics and becomes less important at high Wi . Thus the stretching of a polymer

molecule is mainly driven by the first term on the right hand side of Eq. (2.33), unless the

polymer is sitting near regions of simple shear flow where Brownian motion and advection

balance in the configuration dynamics.

The use of the topological methodology introduced by Chong et al. (1990) is motivated

by the analogy of Eq. (2.33) and the equation for the flow patterns at a critical point

dy

dt
= ∇u · y, (5.1)

where y determines the shape of the local flow field seen by an observer traveling with a fluid

particle (like the polymer molecules in this case) and ∇u is the velocity gradient tensor.

Equation (5.1) would represent the trajectories of the dumbbell beads in the absence of

the spring and Brownian forces. Indubitably the entropic and Brownian forces alter these

dynamics, but since the spring force only constrains the stretching of the molecule, the

unraveling of the polymer molecule is driven by the first term on the right hand side of

Eq. (2.33). Therefore, it is very instructive to analyze this term in more detail.

The topological methodology is based on the solutions of Eq. (5.1) rewritten in its canon-

ical form. The flow topologies of an incompressible flow can then be classified according to

the eigenvalues of the velocity gradient tensor (Chong et al., 1990; Blackburn et al., 1996)).

These eigenvalues define the three dimensional flow type seen by a polymer molecule at its

location. For an incompressible flow the eigenvalues, σ, are obtained as solutions of the

characteristic equation

σ3 +Qσ +R = 0, (5.2)
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Figure 5.5: Normalized extension (a) and stress (b) for a flow Wi = 3 with Q = 0.5,
R = 1.25 and D = 10.67, corresponding to the eigenvalues σ1,2 = 0.5 ± i and σ3 = −1;
FENE: ——, FENE-P: – – –.

with the tensor invariants Q and R given by

Q = −1

2
tr
(

(∇u)2
)

, (5.3)

R = −det(∇u). (5.4)

The nature of the eigenvalues is determined by the discriminant, D = (27/4)R2 + Q3.

D > 0 gives rise to one real and two complex-conjugate eigenvalues, D < 0 gives three

real distinct eigenvalues, and D = 0 corresponds to three real eigenvalues, of which two are

equal. A further classification can be made according to the values of Q and R (see Fig. 2

in Blackburn et al. (1996)), e.g. , Q measures the difference between rotation and strain

of the local flow. One can think of the imaginary part of the eigenvalues as a measure of

the local rotational character of the flow, whereas the real part quantifies its extensional

character, i.e., a negative/positive real part indicates respectively a compression/extension

in the corresponding direction. Note that this classification does not give any information

on the axis of extension/compression or on the planes of rotation, which are in general not

orthogonal.
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Figure 5.6: (a) PDF plots of Q vs. R in the buffer layer (exponential scale from 3.5 · 10−5
to 0.16); (b) isosurfaces of σ∗ as a function of Q and R.

It was postulated that the coil-stretch transition of a polymer molecule in a three-

dimensional steady flow is determined by the positive real eigenvalues of the velocity gradient

tensor (de Gennes, 1974). However, because the sum of the eigenvalues vanishes in an

incompressible flow due to the continuity condition, a compression axis/plane is always

associated with an extension plane/axis. Thus, in the case of D > 0, even if the real

eigenvalue is negative (compression), the real part of the two other complex conjugate

eigenvalues is positive. Therefore, the motion induced by these complex eigenvalues involves

both rotation from their imaginary parts and an extensional character dictated by their real

parts. It follows that a flow with D > 0 and R > 0 in a (Q,R) plot (implying a negative

real eigenvalue and two complex-conjugate eigenvalues with positive real parts) will unravel

the polymer molecule at a sufficiently high Weissenberg number, as illustrated in Fig. 5.5.

In this particular case, the stretching does not occur along a specific direction but in the

rotation plane associated with the complex-conjugate eigenvalues. This phenomenon is

well illustrated in Fig. 5.5 (b) where the stress computed with the FENE model shows an

oscillating behavior, characteristic of the rotation of the polymer molecules. It should be

noticed though, that this oscillating behavior is only visible if a small number of particles

are used (here Np = 2000). When a large number of particles is used, this behavior is
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averaged out.

This shows that the stretching of the polymer is driven by the extensional character

of the flow quantified by the positive real part of the eigenvalues. From this topological

analysis, one can conclude that a polymer molecule will only fully unravel if it experiences

a flow with a strong extensional character, i.e., one of the eigenvalues of the local velocity

gradient tensor has a large positive real part. Accordingly, we introduce

σ∗ ≡ max
i

(Re(σi)) , (5.5)

as a measure of the ability of the flow to stretch the polymer molecule.

A similar analysis for the two-dimensional case has already been proposed by Hur et al.

(2002), who examined the percentage of straining relative to the vorticity. According to this

analysis, a shear flow can be seen as a limiting case, since it does not show a real coil-stretch

transition but rather a tumbling dynamic as demonstrated by Smith et al. (1999) and Hur

et al. (2001b). This tumbling is caused by the Brownian motion, which displaces extended

molecules out of the extensional axis toward the compression axis, leading to a recoil of the

molecule. Such tumbling dynamics can also be expected in a three dimensional case when

the compression and extension axes are very close to each other.

These previous considerations are only based on the start-up of steady flows. In a turbu-

lent flow, the velocity gradient tensor constantly changes with time, so that the application

of the above analysis becomes more complicated. Not only the flow type is important but

also its duration. Even a strong flow will not unravel a polymer molecule if it does not last

long enough. Therefore, these considerations motivate the analysis of the flow topologies

in a turbulent channel flow. Blackburn et al. (1996) have shown that the joint probability

distribution function of Q and R has a characteristic teardrop shape (see Fig. 5.6 (a)). The

isovalues of σ∗ calculated from Eq. 5.2 are shown in Fig. 5.6 (b). Combining these two

plots indicates that strong events, i.e., large σ∗, are most likely to correspond to positive

R, negative Q and negative D, i.e., biaxial extension (Terrapon et al., 2004).

5.3 Conditional statistics

The stretching mechanisms of polymer molecules are investigated through statistics condi-

tioned on the polymer extension. In particular, statistics are gathered for particles whose

dimensionless extension q/
√
b crosses a given threshold r, which is referred to as a burst of
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extension. For each of these particles, different flow and polymer quantities are averaged

over a period of three time units before crossing the threshold, during the burst and for

three more time units after the burst (Terrapon et al., 2004).

In order to generalize the findings, Newtonian and viscoelastic flows are investigated.

Since the Lagrangian method developed for coupled calculations is limited by the creation

and destruction of particles, the viscoelastic flows are computed using the Eulerian approach

(Dubief and Lele, 2001; Dubief, 2002, 2003) in which Np = 105 particles are tracked. In

particular, a πh × 2h × h channel flow at Re = 7500 is investigated on a 64 × 129 × 32

grid. Two different cases were computed for the viscoelastic cases, i.e., a low drag reduction

regime (LDR), for which b = 10000 and Wi = 3, and a high drag reduction regime (HDR)

with b = 3600 and Wi = 7. In the Newtonian case, the Reynolds number in wall units

was Re+ = uτh/ν = 318, while for the viscoelastic case Re+ = 233 and Re+ = 181,

corresponding respectively to drag reductions of approximatively 46% and 67%. The mean

velocity profile is shown in Fig. 5.7(a), where one can see the parallel shift of the log-law

in the LDR case and the change of slope of the log-law in the HDR case. The velocity

fluctuations shown in Fig. 5.7(b) reproduce the qualitative behavior of drag reduced flows

with an increase of the streamwise fluctuations and a decrease of the wall-normal and

spanwise fluctuations.

The choice of the threshold is somehow arbitrary; it was chosen to isolate the tail of the

distribution of extensions. The percentage of particles being on average above the threshold

is summarized in tables 5.1-5.3. Because the duration of a burst of extension varies for each

polymer molecule, statistics gathered for each particle during a burst are normalized by

their burst time, which is given in tables 5.1-5.3. The tables also report the streamwise

distance traveled by the particles during the three time units before the burst and during

the burst, as well as the strain Γ experienced before and during the burst, where the strain

is defined respectively for the FENE-P and FENE models as

Γ =

∫ t1

t0

1

2

〈qiqj〉
〈qkqk〉

(

∂ui
∂xj

+
∂uj
∂xi

)

dt, (5.6)

Γ =

∫ t1

t0

1

2

qiqj
q2

(

∂ui
∂xj

+
∂uj
∂xi

)

dt. (5.7)

As expected, the burst time decreases with increasing threshold and therefore, the stream-

wise distance traveled by the particles during the burst decreases as well. On the other
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Figure 5.7: Mean velocity profile (a) and velocity rms (b) for DR = 0% (——), DR = 46%
(– – –) and DR = 67% (· · · ·). Streamwise: ¤, spanwise: M, wall-normal: ◦.

hand the distance traveled before the burst remains constant since the time is maintained

constant. The strain is responsible for extending the polymer molecules, thus the amount

of strain experienced by the particles increases with the threshold. It is interesting to notice

that when the strain experienced during a burst is multiplied by the corresponding Weis-

senberg number Wi , it then depends only on the threshold r and not on the flow itself.

In other words, the strain in polymer time unit needed to maintain the polymer molecule

extension above a threshold value r is only a function of r.

Figure 5.8 shows the dimensionless mean-square extension of the particles crossing the

threshold value r before, during and after the burst for the three different flows investigated.

One can observe that the polymer reaches its maximum extension in the early phase of the

burst and then contracts slowly until crossing the threshold in the other direction to reach

again a coiled state. As stated in the previous section, σ∗ can be used to quantify the

extensional character of the flow. Figure 5.9 illustrates this mechanism, where the particles

experience a maximum value of σ∗ shortly before crossing the threshold. However, during

the burst, σ∗ decreases constantly to reach a steady value after the burst. It is interesting

to notice that the maximum value of σ∗ experienced before the burst happens much earlier
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Table 5.1: Newtonian flow.

r 0.65 0.75 0.85 0.95

n > r (%) 5.9 3.2 1.0 0.02
〈t〉burst 2.63 1.78 1.03 0.46
〈x〉before burst 1.37 1.33 1.31 1.42
〈x〉burst 1.15 0.81 0.49 0.21
〈Γ〉before burst 1.22 1.40 1.65 2.13
〈Γ〉burst 0.37 0.49 0.74 1.99
Wi〈Γ〉burst 1.11 1.47 2.22 5.97

Table 5.2: Viscoelastic flow (LDR).

r 0.45 0.55 0.65 0.75

n > r (%) 0.20 0.07 0.025 0.006
〈t〉burst 4.31 3.4 2.51 1.61
〈x〉before burst 1.27 1.29 1.31 1.29
〈x〉burst 1.84 1.48 1.10 0.69
〈Γ〉before burst 1.20 1.33 1.49 1.69
〈Γ〉burst 0.22 0.26 0.32 0.43
Wi〈Γ〉burst 0.66 0.78 0.96 1.29

Table 5.3: Viscoelastic flow (HDR).

r 0.55 0.65 0.75 0.85

n > r (%) 2.3 1.03 0.42 0.11
〈t〉burst 9.0 5.63 3.58 1.90
〈x〉before burst 1.42 1.41 1.42 1.35
〈x〉burst 3.87 2.63 1.72 0.90
〈Γ〉before burst 0.63 0.72 0.85 1.03
〈Γ〉burst 0.12 0.15 0.21 0.32
Wi〈Γ〉burst 0.84 1.05 1.47 2.24
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Figure 5.8: Conditional average of the mean square extension q2/b for the polymer molecules
crossing the threshold value q/

√
b = r as a function of the time, ∆t, before the burst (left

column), during the burst (middle column) and after the burst (right column). Top row:
DR = 0%, r = 0.65: ——; r = 0.75: – – –; r = 0.85: — ·—; r = 0.95: · · · ·; middle row:
DR = 46%, r = 0.45: ——; r = 0.55: – – –; r = 0.65: — ·—; r = 0.75: · · · ·; bottom row:
DR = 67%, r = 0.55: ——; r = 0.65: – – –; r = 0.75: — ·—; r = 0.85: · · · ·.
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Figure 5.9: Conditional average of σ∗ for the polymer molecules crossing the threshold value
q/
√
b = r as a function of the time, ∆t, before the burst (left column), during the burst

(middle column) and after the burst (right column). Same labeling as in Fig. 5.8.
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Figure 5.10: Conditional average of Q for the polymer molecules crossing the threshold
value q/

√
b = r as a function of the time, ∆t, before the burst (left column), during the

burst (middle column) and after the burst (right column). Same labeling as in Fig. 5.8.
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Figure 5.11: Conditional average of R for the polymer molecules crossing the threshold
value q/

√
b = r as a function of the time, ∆t, before the burst (left column), during the

burst (middle column) and after the burst (right column). Same labeling as in Fig. 5.8.
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Figure 5.12: Conditional average of the velocity gradient ∂u/∂x for the polymer molecules
crossing the threshold value q/

√
b = r as a function of the time, ∆t, before the burst

(left column), during the burst (middle column) and after the burst (right column). Same
labeling as in Fig. 5.8.
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Figure 5.13: Conditional average of the streamwise velocity fluctuation, u′, for the polymer
molecules crossing the threshold value q/

√
b = r as a function of the time, ∆t, before the

burst (left column), during the burst (middle column) and after the burst (right column).
Same labeling as in Fig. 5.8.
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Figure 5.14: Conditional average of the distance from the wall, y+, for the polymer molecules
crossing the threshold value q/

√
b = r as a function of the time, ∆t, before the burst (left

column), during the burst (middle column) and after the burst (right column). Same
labeling as in Fig. 5.8.
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Figure 5.15: Conditional average of the strain rate dΓ/dt for the polymer molecules crossing
the threshold value q/

√
b = r as a function of the time, ∆t, before the burst (left column),

during the burst (middle column) and after the burst (right column). Same labeling as in
Fig. 5.8.
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tonian (——) and viscoelastic flow at LDR (– – –) for a threshold r = 0.65. The line D = 0
is also shown for comparison.

Figure 5.17: Instantaneous view of the lower half of the channel showing the isosurface
Q = 1.9 (grey) representing the vortices, the isosurface (turquoise) of σ∗ = 1.6 and the
polymer molecules (red) with q/

√
b > 0.8 at Wi = 3 in a Newtonian flow.
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Figure 5.18: JPDF of the invariants Q and R.
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for the LDR case, i.e. at about one time unit before crossing the threshold while for the two

other cases, the maximum is reached just before the beginning of the burst. This could be

explained by the fact that the number of particles used for the statistics in the LDR cases

is much lower than for the two other cases. As expected, the value of σ∗ increases with

the threshold. Therefore, one can conclude that only rare, strong events, i.e. large σ∗, can

produce a large stretching of the polymer molecule at low Wi ; at high Wi weaker events

are needed but a large σ∗ is more efficient and achieves a larger extension of the polymer

molecule.

The average of the invariants Q and R of the velocity gradient tensor are showed in

Fig. 5.10 and 5.11. One can observe a similar behaviour to the one described above; particles

experience an extremum of negative Q and positive R before the burst, then a decrease

during the burst to finally reach a steady value around zero after the burst. This implies

that the particles have experienced, on average, a biaxial extensional flow, which is stronger

for larger threshold values r. These results are in agreement with Fig. 5.6, which shows

that the largest eigenvalues are rare events found at negative Q. It is also found that

these events are in general characterized by a negative velocity gradient ∂u/∂x, a negative

streamwise velocity fluctuation, u′, and a positive wall-normal velocity fluctuation, v′, as

illustrated in Fig. 5.12, 5.13 and 5.14. It can therefore be deduced that these strong events

are correlated with ejections of low-speed fluid away from the wall. The predominance of

ejection events versus sweeps can be understood by the fact that the polymer molecules

experience a pre-stretching by the shear at the wall. Figure 5.16 shows the trajectory of

the polymer molecules in a (Q,R) plot parametrized by the time before, during and after

the burst. While the flow is very different between the Newtonian and viscoelastic case,

the shape of the trajectory looks similar. The particles experience first some straining

going towards negative Q and positive R until they reach an extremum in σ∗ shortly before

crossing the threshold. Then they move back towards positive Q and negative R. Finally,

during the relaxation, the particles reach a positive Q and tend towards a simple shear flow.

The generality of these results has been demonstrated by Terrapon et al. (2004) who

used also the FENE model and a bead-spring chain model with Nb = 11 beads to conduct

similar statistical studies. They showed that the results were independent of the model

used.

Dubief and Delcayre (2000) showed that vortices can be detected by positive isosurfaces

of Q, where Q can also be computed as the difference between vorticity Ω and straining S.
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It is therefore interesting to note that polymer stretching is associated with negative values

of Q, i.e., straining, whereas vortices are associated with positive values, i.e., rotation. Flow

visualizations also demonstrate that the regions of large σ∗ are always located next to the

vortices and can also be seen as structures advected by the mean flow. This is illustrated

in figure 5.17, which shows isosurfaces of Q representing the vortices, isosurfaces of σ∗

and the polymer molecules, which are highly stretched. The correlation between σ∗ and

the vortices is striking and can provide new insight into the mechanisms of polymer drag

reduction. Dubief et al. (2004b) have shown by continuum calculations that polymers act

on vortices by damping them. From the present results, it seems clear that the polymer is

first stretched in these regions of large σ∗ that are associated with the vortices, and then

coil-back in the regions of positive Q corresponding to the vortices (see Fig. 5.10).

Since in a viscoelastic flow the polymer molecules significantly modify the fluctuations of

the turbulent velocity field, it can be surprising that the stretching mechanisms of polymers

are similar to those in a Newtonian flow. However, the analysis of the topology of viscoelastic

flows shows the same teardrop-like shape of the joint probability distribution function of

the velocity gradient tensor invariants Q and R, as illustrated in Fig. 5.18. The main

difference between Newtonian and drag reduced flows lies in the magnitude of Q and R and

in the more symmetric upper part (Q > 0) of the distribution in the drag reduced case.

Therefore, the only events which are strong enough to unravel the polymers correspond to

biaxial extensional flows.

In terms of the onset of drag reduction, only very strong events can stretch the polymers

at very low values of Wi . It is not obvious that a coil-stretch transition is necessary for

the polymers to reduce drag, but a sufficiently large extension is needed to produce stress.

Bird et al. (1987) showed that the inequality Wi · σ > 0.5 must be satisfied for a coil-

stretch transition to occur. This gives an absolute lower bound for the Weissenberg number,

Wi cr = 0.5σ∗max, below which no molecule can unravel. Assuming that drag reduction scales

nearly linearly with the number of polymers stretching, one would see an important increase

of drag reduction near what is apparently a critical Wi , since the number of molecules

achieving a coil-stretch transition increases dramatically with Wi around this critical value

(as illustrated in figure 5.19). This dramatic increase of the number of stretched molecules

can be understood by the distribution of flow types shown in figure 5.6 (a), where the

probability of finding weaker events increases exponentially.



Chapter 6

Coupled flow and polymer

calculations

Our ultimate goal is to predict drag reduction. Therefore, the uncoupled simulations must

be extended to integrate the effect of the polymer stresses into the flow. Many previous

studies based on Eulerian approaches have demonstrated the ability to reproduce the char-

acteristics of polymer drag reduction. However, all of these studies make use of numerical

artifices like artificial diffusion to stabilize the computation. Lagrangian simulations provide

an alternate approach to investigate the effect of these numerical artifices.

As a first step, the polymer stresses computed from both approaches are compared.

Discrepancies between the two methods are analyzed and their impact on the amount of

drag reduction is investigated in coupled simulations (section 6.2). Finally, a discussion of

the results is presented in section 6.3.

6.1 Uncoupled simulations

For the comparison between different methods to be meaningful, it is important to compute

the polymer stresses in an identical turbulent flow. Therefore, an uncoupled simulation is

performed by setting the concentration parameter β in Eq. 2.51 to zero. The polymers have

no effect on the flow and the polymer statistics should, therefore, be independent of the

numerical method used.

A turbulent channel flow of size 10h× 2h× 5h at constant mass flowrate is investigated,

95
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Figure 6.1: Dimensionless polymer square extension in a Newtonian flow at Re = 2760.
a) Eulerian calculation: LAD = 0.1 (——); LAD = 10 (– – –); LAD = 0.1 on a 1283

grid (· · · ·). b) Lagrangian calculation without creation or destruction: Nini = 20 (——);
Nini = 10 (· · · ·); Nini = 20 on a 1283 grid (– · –); Eulerian calculation: LAD = 10 (– – –).

where h is the half height of the channel. The domain is discretized on a 64× 65× 64 non-

uniform grid and the Reynolds number is Re = 2760, corresponding to Re+ = 125. The

Eulerian calculation is based on the method developed by Dubief and Lele (2001), while

the Lagrangian computation relies on the algorithm described in section 3.4.2, where both

methods proposed for the creation of particles are investigated. For the sake of simplicity

and conciseness, the first method to create particles based on the mean polymer stress of the

actual cell is denoted by M(Nini, Nmin, Nmax) and the method based on the interpolation

of the mean polymer stress from the adjacent cells is denoted by I(Nini, Nmin, Nmax), where

Nini is the initial number of particles per grid cell at the start of the simulation and Nmin

and Nmax are the minimum and maximum number of particles per grid cell at all times

respectively. The polymer parameters are chosen to be Wi = 7 and b = 10000.

To illustrate the impact of the artificial diffusion used in the Eulerian approach, two

different artificial diffusion coefficients, LAD = 0.1 and LAD = 10 are compared. The

mean dimensionless square extension 〈q̂iq̂i〉/b of the polymers as a function of the distance
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Figure 6.2: Dimensionless polymer square extension in a Newtonian flow at Re = 2760.
(a) Eulerian calculation: LAD = 10 (– – –). Lagrangian calculation: I(18, 15, 21) (· · · ·);
M(18, 15, 21) (——); M(18, 8, 28) (– · –); M(28, 8, 48) (– · · –); M(20, 0,∞) (——). (b) La-
grangian calculation M(18, 8, 28): 643 grid (– · –); 1283 grid (– · · –); M ′(18, 8, 28): (– – –).
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Figure 6.3: Spectrum of the dimensionless extension along the streamwise direction at
y+ = 11 in a Newtonian flow. Lagrangian M(20, 0,∞): ——; Lagrangian M(18, 8, 28):
– – –; Eulerian (LAD = 0.1): · · · ·; symbols correspond to a 1283 grid.
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from the wall y+ is shown in Fig. 6.1 (a). One can see that the two diffusion coefficients

give very similar results. However, it is important to note that the artificial dissipation is

local, i.e., it is used only where the conformation tensor loses its positive-definitiveness. As

a consequence, a decrease of the diffusion coefficient increases the number of grid points

affected by the artificial diffusion (in this case, from 1% to 15.5%). Therefore, it is impossible

to conduct a systematic investigation of the impact of the artificial diffusion. Also shown on

Fig 6.1 (a) are the results for a similar simulation computed on a refined mesh (1283 grid

points) and with a diffusion coefficient of 0.1. The solution is very similar to the one on the

coarse mesh. It is also interesting to note that a refinement of the mesh does not decrease

the number of grid points affected by the artificial dissipation. In fact, in this case 17%

of the grid points are affected by it. This illustrates the difficulty of solving the FENE-P

equations because of the small scales created by the nonlinear advection term.

The Lagrangian method was developed to overcome this difficulty, thus avoiding use

of artificial dissipation. Fig. 6.1(b) compares the polymer extension computed with the

Eulerian and Lagrangian methods, without creation or destruction of particles. The solu-

tions are quantitatively very different, with the Lagrangian extension being smaller by a

factor of two. The Lagrangian solution also shows no sensitivity on the total number of

particles, as illustrated in Fig. 6.1(b). This indicates that the discrepancy between Eulerian

and Lagrangian cannot be attributed to the lack of particle resolution. If the mesh is re-

fined, a higher extension is observed, due to a better resolution of the velocity and velocity

gradient fields. As mentioned in section 4.3, the creation and destruction of particles in

the Lagrangian method induces some dissipation. Different cases of creation/destruction

give very different results, as illustrated in Fig. 6.2(a). It is interesting to notice that the

more dissipative the method is (according to the results found in section 4.3.5), the more

is the extension. Fig. 6.2(b) also shows a higher extension for M(18, 8, 28) when the mesh

is refined. While all methods give the correct polymer extension at the wall, the solution

away from the wall is strongly dependent on the numerical method, which is an undesirable

characteristic for any numerical method.

In light of these results, it could be concluded that dissipation creates more extension,

which is counter intuitive. Also, it was shown by Min et al. (2001) and Yu and Kawaguchi

(2004) that Eulerian methods which are less dissipative produce more polymer extension.

Moreover, it is not clear if the discrepancy between the different Lagrangian cases and

between Lagrangian and Eulerian calculations can be attributed to the same cause. The
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analysis of the power spectrum of the extension at y+ = 11, corresponding to the peak

value of extension (see Fig. 6.3), shows very different behaviour at small scales in the two

approaches. The Eulerian spectrum shows the expected drop in the energy at small scales,

which is due to the dissipative nature of the method. On the other hand, the small scales are

much more energetic in the Lagrangian case. This is, however, expected since the FENE-

P equations do not have any diffusive terms. A refinement of the mesh does not alter

significantly the energy content of the small scales in the Lagrangian case but increases it

in the Eulerian case, while decreasing it for large scales.

Fig. 6.3 also illustrates the spectrum of a Lagrangian simulation with creation and

destruction of particles. It is observed in this case that small scales are slightly less energetic

than the case without creation/destruction. This is explained by the diffusive nature of the

creation and destruction process. However, it cannot explain the larger energy content of

the large scales and, in particular, the higher mean extension. This is possibly due to an

overprediction of the polymer stress during particle creation as a result of the nonlinearity of

the relation between the conformation and stress tensors. In particular, when a new particle

is created in a cell, it is assigned the average stress of all other particles in the cell. Since the

function, which computes the stress from the conformation tensor, is nonlinear, monotonic

and convex, the stress average of two particles is always larger than the stress corresponding

to their average conformation tensor. Therefore, conserving the cell mean stress during the

particle creation process always leads to a larger extension than conserving the cell mean

conformation tensor. Fig. 6.2(b) shows the results of a simulation, M ′(18, 8, 28), where

particles where created by conserving the conformation tensor and not the polymer stress.

Although the mean extension is smaller than the M(18, 8, 28) case, it is still much higher

than for the case without creation/destruction of particles. This demonstrates that the

nonlinearity of the stress function does not explain completely the overprediction of mean

extension when particles are created.

Because creation and destruction of particles is an important part of the Lagrangian

method, it is interesting to analyze it in more detail. Fig. 6.4(a) shows the global distribu-

tion of the number of particles in the channel. When particles are created and destroyed,

the distribution is very symmetric and bounded between Nmin and Nmax. In the case

M(20, 0,∞) the distribution is much broader, with some cells having no particles. This

justifies the need for particle creation. The average number of particles created per plane

at each time step is illustrated in Fig. 6.4(b). Most of the particles are created at y+ ≈ 11,
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Figure 6.4: (a) Global distribution function of the number of particles per cell;M(20, 0,∞):
——;M(18, 8, 28): · · · ·. (b) Plane and time average of the number of particles created (——)
and destroyed (· · · ·) at each time step for M(18, 8, 28).
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Figure 6.6: Polymer extension and velocity field in a plane perpendicular to the streamwise
direction for the case M(20, 0,∞). The particles are colored according to their extension.
The colored background corresponds to the cell average of the extension.
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Figure 6.7: Polymer extension and velocity field in a plane perpendicular to the streamwise
direction for the case M(18, 8, 28). The particles are colored according to their extension.
The colored background corresponds to the cell average of the extension.
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where the mean extension reaches its peak, while particle destruction happens mostly at

y+ ≈ 20, where the turbulence intensity is the highest. This could provide another expla-

nation for the discrepancy between the different Lagrangian methods. Because particles are

created in regions where their extension is high, it induces a positive flux of highly extended

particles away from these regions, increasing the average extension. The plane average and

rms number of particles per cell is shown in Fig. 6.5. While the case M(18, 8, 28) has a very

uniform distribution along the wall-normal direction, the case without creation/destruction

shows accumulation of particles in the center of the channel, where the cells are much big-

ger, and depletion close to the wall, where the cells are much smaller. It is interesting to

note that, at the wall, there is still a relatively large number of particles. This is due to

very small velocities near the wall.

Fig. 6.6 and 6.7 show the particles colored by their extension in a plane perpendicular to

the stremwise direction for the cases M(20, 8,∞) and M(18, 8, 28). The background color

corresponds to the cell mean extension. Also shown is the y−z velocity field. While the case

with creation/destruction shows a very homogeneous distribution of the particles, a large

spatial accumulation of particle is observed close to the wall in the second case. Although

the number of particles per cell is approximately uniform, the cells are much smaller close

to the wall, which leads to this inhomogeneous volume distribution of particles. These

two figures also illustrate clearly the small scales present in the solution of the FENE-P

equations. Particles with different histories and different extensions can be found next to

each other.

Based on these results, one can conclude that the more physical solution of the FENE-P

equations is given by the Lagrangian method without creation or destruction of parti-

cles. However, this method is not suited for coupled calculations unless a prohibitively

large number of particles is used to ensure a reasonable number of particles in every grid

cell. Therefore, one has to compromise between accuracy and computational costs. The

M ′(18, 8, 28) case seems to be a good trade-off between both requirements and surpasses

by far the Eulerian method in terms of accuracy.

6.2 Coupled simulation

As mentioned in the previous section, the polymer stress, and thus the amount of drag re-

duction achieved, is directly dependent on the polymer extension. Therefore, it is important
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Figure 6.8: Mean pressure gradient as a function of time for a Newtonian flow at Re =
2760 (– – –), a viscoelastic flow at DR = 29% computed with the Lagrangian method
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method (· · · ·).

to quantify the difference in drag reduction with the different methods. To achieve this goal,

similar simulations as in the previous section have been performed with the concentration

parameter β = 0.9, thus allowing the polymers to modify the turbulent flow.

Figure 6.8 represents the mean pressure gradient, driving the flow in the channel, as

a function of time for the different cases tested. One can notice that the three different

methods considered here, i.e., Eulerian, M(18, 15, 21) and M(28, 8, 48), produce drag re-

duction. The mean pressure gradient, wall shear stress and amount of drag reduction are

summarized for each case in table 5.3, where the amount of drag reduction is defined as

DR =
dp/dxnewtonian − dp/dxviscoelastic

dp/dxnewtonian
(6.1)

An initial increase in drag followed by a large drag reduction is observed, until the pressure

gradient reaches a statistical steady value which is slightly higher than the minimum value

reached during the transient phase. This is consistent with previous simulations of poly-

mer drag reduction. As expected, the Eulerian method produces a larger amount of drag
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Table 6.1: Coupled calculation with β = 0.9, Wi = 7 and b = 10000.

Method dp/dx τwall δ+ %DR

Newtonian 2.0150 · 10−3 2.032 · 10−3 124.4 -
Eulerian 1.3048 · 10−3 1.326 · 10−3 100.5 35.2
M(18, 15, 21) 1.3622 · 10−3 1.383 · 10−3 102.6 32.4
M(28, 8, 48) 1.4362 · 10−3 1.462 · 10−3 105.5 28.7
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Figure 6.9: Dimensionless polymer square extension (a) and mean velocity profile (b). Same
labeling as in Fig. 6.8.
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reduction, due to the higher polymer extension computed with it, while the Lagrangian

method with the least number of particles created or destroyed shows the least amount of

drag reduction. A better agreement in the drag reduced case is observed as compared to the

uncoupled casees. The turbulence in the viscoelastic flow is much weaker, thus decreasing

the strength of the nonlinear advection and the creation of very small scales, leading to

better agreement in the polymer extension, as illustrated in Fig. 6.9(a). The discrepancy

observed at the wall is simply due to the difference in wall shear rates between the different

viscoelastic flows.

The mean velocity profiles in Fig. 6.9(b) show the well-known shift of the log-law, while

the velocity fluctuations in Fig. 6.10(a) reproduce well the increase in streamwise direction

and decrease in spanwise and wall-normal directions compared to the Newtonian flow. There

is very good agreement amont the drag-reduced flows for the spanwise and wall-normal

velocity fluctuations, while the Eulerian approach seems to overpredict the increase of the

velocity fluctuations in the streamwise direction. Fig. 6.10(b) shows the decrease in the

Reynolds stress which is observed in any polymer drag reduced flow. The additional polymer

shear stress produced in viscoelastic flows and the viscous stress are also shown in the same

figure. Finally, the spectrum of the dimensionless extension along the spanwise direction

at y+ = 11 is shown in Fig. 6.11. The same behaviour is found as in the uncoupled case,

where the Eulerian method shows a much lower energy at small scales.

6.3 Discussion

The comparison between the Eulerian and Lagrangian methods without creation or de-

struction of particles has shown an important discrepancy in the uncoupled case. Although

a rigorous explanation is not available, we have attributed it to the nonlinearity of the

advection term and the resulting production of small scales in the Eulerian formulation.

The dissipative schemes and artificial diffusion used in Eulerian simulations for numerical

stability dissipate the small scales but not the larger ones, leading to an overprediction of

the mean polymer stress. The Lagrangian method allows a more accurate prediction, since

the nonlinear advective term does not appear in its formulation. However, creation and

destruction of particles is needed in coupled simulations to ensure a reasonable number of

particles in each grid cell. This process introduces numerical errors. The energy of the

small scales is reduced by the diffusive nature of the process and the creation of particles
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increase the polymer stress. Two possible reasons for this are the nonlinearity of the stress

function and a non-zero flux of highly extended particles from the near-wall region. An easy

remedy for this problem is to limit the number of particles created and destroyed. This

can be achieved by choosing loose bounds on the imposed number of particles within a cell.

Another approach could be to conserve the polymer conformation tensor and not stress

during the creation process. This lead to a small improvement but did not compensate

completely the discrepancy.

Despite these shortcomings, the Lagrangian approach has demonstrated the ability to

reproduce the characteristic features of drag reduction. Comparison of the different meth-

ods shows good qualitative agreement in drag reduced flows, but it is difficult to assess

the accuracy of the Lagrangian or Eulerian approaches, since no comparable work exists

and a direct comparison to experimental data is extremely difficult, i.e., the Schmidt and

Reynolds numbers are too high for computations, the Weissenberg number of the solution

is complicated to characterize due to polydispersity, the polymer stress cannot be measured

experimentally.



Chapter 7

Conclusion

The phenomenon of turbulent drag reduction by polymer additives has been investigated

using a Lagrangian approach. The goal of this work was to better understand the dynamics

of single polymer molecules in a turbulent flow and to develop a numerical method to

simulate the effect of polymer additives on turbulence. The latter goal was motivated by

the fact that the accuracy of traditional Eulerian simulations of viscoelastic flows is limited

by their need for numerical artifices to stabilize the computation. This chapter summarizes

the issues encountered and the results found using the Lagrangian framework to compute

the polymer stresses. Finally, possible extensions of the present work and new directions

for future research are suggested.

7.1 Uncoupled simulations

Uncoupled simulations, i.e., where the flow remains Newtonian, aimed at better understand-

ing the dynamics of polymer molecules in turbulent flows, were performed. First, different

models, based on both Brownian dynamics techniques and constitutive models, were com-

pared. It was found that the qualitative behavior of all models was very similar, although

the FENE-P model tended to slightly overestimate the polymer extension. An important

finding from these simulations was that the internal modes of the polymer chains do not

seem to be relevant to the overall mechanisms of the phenomenon.

A topological methodology was then introduced after recognizing the similarities of

the FENE equation with the equation governing the flow trajectory at a singular point.

This topological methodology leads to a classification of different flow types. Combining
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it with conditional statistics, it was possible to isolate the particular flow types relevant

to the stretching and relaxation dynamics of the polymer molecules. In particular, it was

found that the most probable flow type which can stretch the polymer to a large extension

corresponds to biaxial extensional flow. Strong biaxial extensional flows are mainly located

in the buffer layer, in the vicinity of the quasi-streamwise vortices. Moreover, polymers

with large extensions were correlated with positive wall-normal velocity, i.e., updrafts. This

indicates that the pre-stretching of the polymers by the mean shear close to the wall plays an

important role. It was also observed that the polymer molecules relax in rotational regions

of the flow in or around the vortices. This is in very good agreement with previous works,

confirming and extending the proposed mechanisms that the polymers become stretched in

the buffer layer and then relax around the vortices and, as a result, damping them.

Similar simulations in viscoelastic flows showed that this mechanism is also valid in

drag-reduced flows. The main difference was found to be the strength of the biaxial exten-

sional flows, which is to be expected since the turbulence is much weaker in drag-reduced

flows. However, it is important to remember that the artificial dissipation introduced in

the Eulerian method has a non-negligible impact on the simulation of viscoelastic flows,

as was shown in section 6.1. Because of the discrepancy between Lagrangian and Eulerian

calculations, the validity of this result may be questioned. Nonetheless, this discrepancy

decreases in flows with large drag reduction. Therefore, one can assume that, to a certain

degree, the stretching and relaxation dynamics of polymer molecules are similar in both

Newtonian and viscoelastic flows.

7.2 Coupled simulations

Due to the hyperbolic nature of the polymer equations, it was necessary to introduce arti-

ficial diffusion to stabilize Eulerian simulations. To overcome this difficulty, a Lagrangian

method was developed to compute drag reduced flows. As in the uncoupled case, a large

number of particles were tracked in the turbulent flow and the polymer stresses were com-

puted along the particle trajectories. Because the velocity field was computed in an Eule-

rian framework and the polymer stresses were only known at the particle locations, a new

technique to transfer the polymer stresses to the Eulerian grid had to be developed. The

simplest approach was to compute a cell average of the polymer stresses over all particles

within a cell. Because the polymer solution was assumed to be homogeneous, this required
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a minimum number of particles in each grid cell. Due to the non-uniformity of the mesh,

which would have required a prohibitively large number of particles, the number of par-

ticles in each cell had to be constrained between two bounds. This required the creation

and destruction of particles throughout the simulation. The destruction of particles was

simply achieved by replacing the two closest particles in a cell by a new one located at the

mid-distance between them and by giving it the mean polymer stress of the two deleted

particles. If not enough particles were present in a given cell, a new particle was created

at a random location within the quadrant of the cell containing the least number of par-

ticles. Two different methods were developed to assign the initial polymer stresses to the

newly created particle. The first method simply assigned it the cell average stress, while

the second interpolated the mean stress from the neighbor cells at the particle locations.

The Lagrangian approach was tested for the advection problem of a passive scalar in a

Taylor–Green vortex. It was shown that this method outperformed the Eulerian approach,

despite its computational cost. Although no explicit artificial dissipation was used, it was

observed that the creation and destruction of particles induced diffusion. However, by

choosing the method where new particles are given the cell average stress values for the

creation of particles and a large enough interval between the minimum and maximum

number of particles, it was possible to minimize this problem.

The method was then validated in a turbulent flow with zero polymer concentration

(uncoupled simulation). An important discrepancy in the extension of polymers was ob-

served between the Eulerian and Lagrangian simulations. It was demonstrated that the

dissipative nature of the Eulerian scheme led to an underprediction of the energy at small

scales, but showed a higher energy in the large scales, thus overpredicting the mean polymer

stress. The creation and destruction of particles in the Lagrangian method also dissipated

energy at small scales, while it increased the polymer stress at larger scales. This increase

of polymer stress could be due to the nonlinearity of the stress. It was shown that this could

be partly compensated by conserving the mean polymer conformation tensor rather than

stress when creating particles. A mesh refinement showed a slow convergence of the two

methods towards a polymer extension lying between the Eulerian and Lagrangian solutions.

Finally, both approaches were tested for drag-reduced flows. All the characteristic fea-

tures of polymer drag reduction could be reproduced by the Lagrangian method. Despite

the large discrepancy observed in uncoupled simulations, similar amounts of drag reduction

were observed with both methods. This could be explained by the much weaker turbulence
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in viscoelastic flows, which renders the flow much smoother, and thus decreases the impact

of the nonlinear advection term.

7.3 Future work

A better understanding of polymer drag reduction has been gained from the Lagrangian

approach. Despite its shortcomings, it has led to important improvements for simulat-

ing drag-reduced flows compared to the traditional Eulerian method. Nonetheless, other

improvements could be made. One important improvement would be in the development

of a less dissipative method for the creation and destruction of particles. A possible new

approach could use the particles within a cell to determine a probability distribution func-

tion: a random stress value would be assigned to the newly created particle based on this

distribution function. In order to limit the number of particles needed to determine the

distribution function, one could also assume a standard distribution and scale it according

to the mean and standard deviation computed from the particles in the cell. The shape of

such a distribution function would have to satisfy certain constraints, since the extension

of the polymer is bounded between a minimum and maximum value.

Another extension to this work would be the implementation of the coupled Lagrangian

method for other polymer models, e.g., FENE and bead-spring chain model. Because these

models are based on Brownian dynamics techniques, many realizations would be needed

for each particle, requiring significant computational effort. In light of the present work,

however, it is not evident that a better understanding of the phenomenon would be achieved.

The final suggested application of this work would be to describe the evolution of the

polymer concentration in the flow, since in most applications the polymer solution is not

homogeneous but injected. Such a computation is again very challenging because of the

low diffusivity of the polymers. Therefore, the Lagrangian method seems to be the best

approach for this problem.
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Spatial interpolation
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The following definitions will be used throughout this appendix:
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∆xi = xi+1 − xi,

∆yj = yj+1 − yj ,

∆zk = zk+1 − zk,

ξ = x− xi,

η = y − yj ,

ζ = z − zk,

fi,j,k = f(xi, yj , zk),

f,α =
∂f

∂α
.

A.1 Trilinear interpolation

The value of the function f at any point x = (x, y, z) in the cell defined by (xi : xi+1, yj :

yj+1, zk : zk+1) can be evaluated with the following formula
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(A.1)

where f can be either a velocity or a velocity gradient’s component.
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A.2 Tricubic spline

A summary of the cubic spline coefficients for a three-dimensional domain can be found in

Ucinski (1999). It requires the solution of tridiagonal systems.
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