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Engineering novel states of matter with light is at the forefront of materials research. An intensely
studied direction is to realize broken-symmetry phases that are “hidden” under equilibrium conditions but
can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of
these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium
charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges
after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction,
we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear
striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By
calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the
strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings
highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of
equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising
platforms to host hidden orders after laser excitation.
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In a symmetry-breaking phase transition, fluctuations of
the order parameter provide important information about
the way an ordered state develops. Near the transition
temperature Tc, fluctuations exhibit a diverging correlation
length and correlation time, whose critical exponents define
the underlying universality class. In contrast to the equi-
librium situation, the role of order parameter fluctuations
remains unclear if a phase transition proceeds under non-
equilibrium conditions. Of particular interest are transitions
instigated by an intense laser pulse, which has led to
discoveries of many hidden orders that are not accessible in
thermal equilibrium, such as light-induced superconduc-
tivity [1–3], charge or spin density waves [4–7], and
ferroelectricity [8,9]. These out-of-equilibrium orders are
often short-lived, raising the question of whether they exist
in the form of fluctuations and, if so, how they are related to
fluctuations in equilibrium.
Empirically, several material classes that host transient

states also display strong equilibrium fluctuations of the

associated order [3,8–14]. In underdoped cuprates, where
light-induced superconductivity was discovered [10–13],
pronounced superconducting fluctuations are expected
due to the small phase stiffness and poor screening [15].
In κ-type organic salts, where light-induced superconduc-
tivity was observed above Tc, Nernst effect measurements
also pointed toward large fluctuations due to a nearby Mott
criticality [3,16,17]. In cases where equilibrium fluctuations
do not yield an ordered state at finite temperature, such as in
the quantum paraelectric phase of SrTiO3, a terahertz pulse
can induce a ferroelectric state in a metastable fashion
[8,9,18]. These observations suggest that photoinduced
orders may be a special manifestation of equilibrium
fluctuations, but experimental evidence is lacking to for-
mally establish a link between the two entities.
Here, through a side-by-side comparison, we show that

a newly discovered photoinduced charge density wave
(CDW) [4,5] shares the key characteristics of the CDW
fluctuations at Tc even though the former does not have a
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diverging correlation length. The comparison was enabled
by a pump-pump-probe scheme with ultrafast electron
diffraction, which gives a direct measurement of fluctua-
tions through diffuse scatterings. Using a nonperturbative
calculation, we further demonstrate that the intensity of the
photoinduced CDW peak increases with the strength of the
CDW fluctuations in equilibrium. The positive correlation
suggests that a photoinduced hidden state is more likely
found in systems with significant equilibrium fluctuations,
paving the way forward as we search for novel non-
equilibrium orders.
The charge density wave is hosted by the rare-earth

tritelluride (RTe3) family. All members possess a layered
structure and the CDW instability is found in the nearly
square-shaped Te sheets [Fig. 1(a)]. The quasi-two-
dimensional nature of the crystals leads to a much reduced
Tc compared to the mean-field transition temperature. This
gives rise to significant CDW fluctuations above Tc, as
evidenced by Raman spectroscopy [19] and inelastic x-ray
scattering [20]. The near-C4 symmetry of the Te sheets
leads to two competing CDWs: The dominant one has a
modulation along the c axis, while the subdominant one is
modulated along the orthogonal a axis [21]. Here, we focus
on LaTe3 (Tc ≈ 670 K) and DyTe3 [Tc ¼ 306ð3Þ K]
[21,22]. They share nearly identical properties, except
for the different transition temperatures [23]. Hence, under
similar experimental conditions, we have access to CDW
fluctuations in the critical regime near Tc (DyTe3), as well
as a state with only the dominant c-axis CDW (LaTe3).
Figures 1(d) and 1(e) show the equilibrium electron

diffraction patterns of DyTe3 in the ðH; 0; LÞ plane, taken
below and near Tc (see Supplemental Material [25] for
experimental details). At 100 K, pairs of CDW satellite
peaks are found along the c axis at a wave vector qc ¼
0.294ð1Þc� (blue arrows), but no satellite peaks are
observed along the orthogonal a axis [62]. When the
sample is heated to Tc, the c-axis peaks significantly
weaken but remain visible [Fig. 1(e)]; in the meantime,
diffuse spots arise along the a axis (red arrows). Notably,
the diffraction pattern appears symmetric between the c and
a axis, as highlighted by three observations: (i) brighter
ðH � qa; 0; LÞ satellites are found along the c axis than
along the a axis, and vice versa for the ðH; 0; L� qcÞ
peaks; (ii) the CDW wave vectors are similar, qa ≈ qc; and
(iii) the satellite intensities are comparable for the two
CDWs. Transverse atomic displacements associated with
both CDWs account for the intensity pattern in (i) [25].
Observations (ii) and (iii) preclude the possibility of a
long-range CDW along the a axis that is known to
occur in DyTe3 below 68 K ≪ Tc [20] because this
low-temperature a-axis peak has a markedly different wave
vector and a much weaker diffraction intensity compared to
its c-axis counterpart [4,63]. The symmetric appearance of
the diffuse spots in Fig. 1(e) is a signature unique to the
critical regime near Tc. Below Tc, such symmetry is broken

by the long-range c-axis CDW. At temperatures signifi-
cantly exceeding Tc, fluctuations are weak, rendering any
diffuse scattering invisible under the background intensity.
We now turn to LaTe3 and study the behavior of the

CDWs out of equilibrium. Figures 1(f) and 1(g) show the
electron diffraction patterns taken 0.8 ps before and 1.6 ps
after the incidence of an 80-fs, 800-nm laser pulse. After
photoexcitation, the long-range CDWorder along the c axis
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FIG. 1. Competing charge density waves in rare-earth tritel-
lurides. (a) Left: schematic of the layered structure of RTe3,
where dashed lines indicate the primary unit cell. Right: enlarged
view of the nearly square-shaped Te sheets that host the CDW
instabilities. (b) Schematic phonon dispersion right above Tc
along Γ-X and Γ-Z, featuring two Kohn anomalies at qsoft.
(c) Schematic of fluctuating CDWs right above Tc. (d),(e)
Equilibrium electron diffractions of DyTe3 [Tc ¼ 306ð3Þ K
[24]] taken at 100 K (d) and 307 K (e). (f),(g) Time-resolved
diffractions of LaTe3 (f) before and (g) 1.6 ps after photo-
excitation by an 80-fs, 800-nm laser pulse with an incident
fluence of 2.1 mJ=cm2, measured at 307 K. Blue and red arrows
indicate the CDW peaks along the c and a axis, respectively.
Difference in intensities of lattice Bragg peaks in (d) and
(e) results from slight sample drift and tilt during the warm-up
process.
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is suppressed (blue arrows), while new peaks appear along
the a axis (red arrows), whose intensity increases mono-
tonically with pump laser fluence [4,25]. Remarkably, the
CDW superlattice spots in this transient snapshot of the
photoexcited state are visually indistinguishable from
those in the equilibrium diffraction pattern recorded at
Tc in DyTe3 [Figs. 1(e) and 1(g)]. In particular, the
transient CDW satellites along both axes share a similar
intensity and wave vector, hinting at a restored symmetry
between the two CDWs.
The similarity between Figs. 1(e) and 1(g) allows us to

interpret the light-induced CDW state using an equilibrium
picture close to Tc. In momentum space, the diffuse
satellite peaks are indicative of the population of transient
soft phonons along the a� and c� axis [Fig. 1(b)]. In real
space, this critical regime is characterized by short-range
CDW patches in both directions [Fig. 1(c)], with the
correlation length inversely proportional to the momentum
width of the Kohn anomaly [25]. From inelastic x-ray
measurements [20], the phonon energies at qa and qc are
approximately 1–2 meV, corresponding to a fluctuating
timescale of 2–4 ps for these CDW patches. A similar
timescale is observed as the lifetime of the light-induced
a-axis CDW [Fig. S4(a) [25] ]. This energy-time corre-
spondence suggests that the light-induced a-axis CDW is
indistinguishable from a soft phonon at the corresponding
wave vector, confirming the intimate link between the
photoexcited state and the critical regime near Tc.
The comparison between the photoexcited and the

critical state suggests that the photoinduced a-axis CDW
in LaTe3 does not have long-range order and remains
fluctuating. While the statement can be rigorously proven
by simple theoretical arguments [25], here we give an
estimate of the finite correlation length of the a-axis CDW.
Based on the diffraction peak width w [Fig. 1(g)], which is
limited by instrumental resolution, the correlation length
has a lower bound of 1=w ∼ 3.5 nm, or eight crystallo-
graphic unit cells (u.c.). Given the approximate CDW
lifetime τ of 4 ps [Fig. S4(a)], the correlation length is
at most vτ ∼ 10 nm (23 u.c.), where v ¼ 2500 m=s is the
speed of sound along the a axis [64]. This upper bound is a
testament that each fluctuating patch cannot establish phase
coherence with its neighbors at a speed faster than phonon
propagation. Compared to the correlation length of the
dominant c-axis CDW in equilibrium, which is estimated to
be at least 1.8 μm within Te planes [21], the particularly
small value of vτ hence confirms the absence of long-range
order along the a axis and suggests that the light-induced
CDW consists entirely of short-range fluctuations.
An almost square-symmetric diffraction pattern after

photoexcitation and at equilibrium Tc is suggestive of a
close connection between the two states. To further
elucidate their relationship, we investigate their response
to an external perturbation. By comparing the respective
dynamics of the order parameter fluctuations, we can gain

some crucial insights into the similarities and differences
between the two regimes. To this end, we apply a second
laser pulse to LaTe3 right after the emergence of the a-axis
satellite peak and record the intensity evolution of the CDW
fluctuations along both axes. As a reference, we also
photoexcite DyTe3 at its CDW transition temperature,
where fluctuations of both density waves abound.
We first examine the laser-induced response in DyTe3 at

its Tc [Fig. 2(a)]. After photoexcitation, the diffuse satellite
spots display an initial dip in intensity followed by a fast
recovery, a trend perfectly mirrored in both axes [Figs. 2(e)
and 2(g)]. These dynamics are in stark contrast to diffuse
scattering intensities at other momenta away from Bragg
or CDW peaks, where only a single-exponential rise is
observed [Fig. 2(c)]. The dip can be understood in two
equivalent ways. From the phonon perspective, it repre-
sents a transient stiffening of the soft mode [25,67]. As
electrons are excited to high energy, there is a transient
reduction in the electronic band occupation near the Fermi
energy that interacts with the lattice ions. This reduction
leads to an increase in the renormalized phonon frequency
and hence a decrease in the phonon population, as
suggested by the equipartition theorem. An alternative
viewpoint is based on the classical description of phonons
as atomic displacements in real space. In each frame
diffracted from a single electron pulse, we capture a
snapshot of the system, such as the one depicted in
Fig. 1(c). The dip hence indicates a smaller lattice distortion
amplitude in the fluctuating CDW patches, averaged over
space and over all snapshots at the same pump-probe delay.
The second perspective naturally connects the photoin-
duced melting of fluctuating CDWs to the melting of a
long-range CDW. Locally, there is minimal distinction
between the two processes and both occur over ∼0.4 ps,
a timescale dictated by the phonon period associated with
the CDW distortion [68,69]. In Figs. 2(e) and 2(g),
we observe that the intensities quickly rise after the dip,
indicating an increased phonon population from laser-
induced heating. After subtracting the thermal diffuse
contribution, the dip only partially recovers [Fig. 2(i)],
suggesting an elevated lattice temperature above Tc, where
the Kohn anomaly becomes less pronounced.
Next, we study the dynamics in the photoexcited state

of LaTe3. As illustrated in Fig. 2(b), we use the first laser
pulse to bring the material into a nonequilibrium state,
where we have observed a symmetric appearance of diffuse
satellite spots along both a and c axes. We then apply a
second pulse to perturb this transient state and look at the
response of the two competing CDW fluctuations. In the
experiment, the two pump pulses share the same incident
fluence. To assess the absorbed fluence, we note that the
maximum value attained in thermal diffuse scattering
doubles after the second pulse [Fig. 2(d)]. This observation
affirms that energy absorption is minimally affected by the
presence of excited carriers after the first pulse. We now
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move on to analyze the CDW peaks, shown in Figs. 2(f)
and 2(h). Unlike their distinct behavior upon the initial
photoexcitation, the intensity evolution of the peaks
along both axes share almost identical trends after the

second pulse. For a direct comparison between the two
orders, we examine their dynamics right after the second
pulse and plot them together in Fig. 2(j), where intensities
from thermal diffuse scattering have been subtracted using
the same procedure applied to DyTe3. Similar to the
fluctuating CDWs in DyTe3 near Tc, the two diffuse peaks
in LaTe3 feature a transient reduction in the fluctuation
amplitude, followed by a recovery that lasts for more than
2 ps. Unlike DyTe3, the satellite intensities in LaTe3 are
fully recovered compared to their values just before the
second pulse, suggesting the nonthermal nature of these
density wave fluctuations.
The similarities between the excited state in LaTe3

and the critical state in DyTe3—both in their diffraction
snapshots (Fig. 1) and in their photoinduced dynamics
(Fig. 2)—suggest that the light-induced CDW is a special
manifestation of critical fluctuations. While the equilibrium
fluctuations near Tc are thermal and follow the scaling
relations prescribed by the theory of renormalization group
[70], the light-induced fluctuations may not conform to a
thermodynamic distribution [71]. To understand how the
strength of equilibrium fluctuations affects the appearance
of the light-induced CDW, we developed a time-dependent
Ginzburg-Landau formalism within the Gaussian approxi-
mation (see Supplemental Material [25] for derivation).
This approach gives a nonperturbative solution to the
light-induced dynamics, yielding quantities that have a
one-to-one correspondence to the observables in our time-
resolved diffraction experiments. Unlike N-temperature
models [72], here we do not need to artificially assign a
temperature to each degree of freedom in the system.
To assess the validity of the model, we first calculate

intensity evolution of a- and c-axis CDW peaks after
photoexcitation [Fig. 3(a)]. The simulated trends
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successfully reproduce the experimental observations
(Fig. S4 [25]). The transient enhancement of intensity
along the a axis is solely the result of CDW fluctuations
without long-range order [25]. In Fig. 3(b), as we reduce
the order parameter stiffness to increase the amplitude
of equilibrium fluctuations above Tc, the strength of the
transient CDW order also increases under identical photo-
excitation conditions. This positive correlation suggests
that strong fluctuations in equilibrium constitute an impor-
tant factor for observing light-induced ordering phenomena
out of equilibrium.
Despite the similarities between the light-induced

CDW and the critical fluctuations, there exist important
differences (see Supplemental Material [25]). For example,
the transient lattice temperature of LaTe3 stays far below its
equilibrium Tc, and there is no change in the in-plane
lattice anisotropy after photoexcitation, distinct from the
evolution of a and c lattice parameters across Tc [4,21].
Importantly, the light-induced CDW has a finite correlation
length for all time delays, but at the critical point in
equilibrium, correlation length diverges with fluctuations
occurring at all length scales. Hence, strictly speaking, the
photoexcited state is not truly critical as described in a
thermodynamic transition.
By leveraging the symmetry between two competing

CDWs in RTe3, we have elicited the correspondence
between a photoinduced order and critical fluctuations in
equilibrium. The parallels provide a nonthermal pathway
to access hidden symmetries of a system even if Tc is
unattainable under equilibrium condition. The similarities
also hint at the existence of universal scaling laws that
govern the dynamics of a highly nonequilibrium system
[71], which have been detected in scattering experiments
with high momentum resolution and an extended time
delay [73–75]. Furthermore, our results offer a generic
mechanism for the creation of photoinduced states, which
can emerge as order parameter fluctuations in the absence
of long-range order. This insight suggests that one should
look for material classes that exhibit strong order parameter
fluctuations in equilibrium in order to look for hidden states
out of equilibrium. Experimental signatures for such strong
fluctuations depend on the order parameter, ranging from
diffuse peaks in a charge or spin density wave system to
Nernst effect in a superconductor [25]. We expect the
connection between equilibrium fluctuations and out-of-
equilibrium ordering to hold regardless of microscopic
details, providing a guiding principle in our search for other
light-induced states.
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Sutton, and B. J. Siwick, Mechanisms of electron-phonon
coupling unraveled in momentum and time: The case of soft
phonons in TiSe2, Sci. Adv. 7, eabf2810 (2021).

[68] S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt, A.
Stange, A. Carr, M. M. Murnane, H. C. Kapteyn, L. Kipp,
M. Bauer, and K. Rossnagel, Time-domain classification
of charge-density-wave insulators, Nat. Commun. 3, 1069
(2012).

[69] A. Zong et al., Dynamical Slowing-Down in an Ultrafast
Photoinduced Phase Transition, Phys. Rev. Lett. 123,
097601 (2019).

[70] N. Goldenfeld, Lectures on Phase Transitions and the
Renormalization Group (Westview, Boulder, 1992).

[71] P. E. Dolgirev, M. H. Michael, A. Zong, N. Gedik, and
E. Demler, Self-similar dynamics of order parameter

fluctuations in pump-probe experiments, Phys. Rev. B
101, 174306 (2020).

[72] P. E. Dolgirev, A. V. Rozhkov, A. Zong, A. Kogar, N.
Gedik, and B. V. Fine, Amplitude dynamics of charge
density wave in LaTe3: Theoretical description of
pump-probe experiments, Phys. Rev. B 101, 054203
(2020).
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