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Critical divergence of the symmetric (A1g) nonlinear elastoresistance near the
nematic transition in an iron-based superconductor
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We report the observation of a nonlinear elastoresistivity response for the prototypical underdoped iron pnictide
Ba(Fe0.975Co0.025)2As2. Our measurements reveal a large quadratic term in the isotropic (A1g) electronic response
that was produced by a purely shear (B2g) strain. The divergence of this quantity upon cooling towards the
structural phase transition reflects the temperature dependence of the nematic susceptibility. This observation
shows that nematic fluctuations play a significant role in determining even the isotropic properties of this family
of compounds.

DOI: 10.1103/PhysRevB.96.205133

I. INTRODUCTION

Nonlinear responses of crystalline materials are described
by high rank tensors and can therefore provide valuable
information concerning subtle phase transitions and broken
symmetries. For example, previous nonlinear measurements of
tensor properties have revealed interesting transitions in sev-
eral strongly correlated materials [1–3]. Here we demonstrate
a type of nonlinear transport response associated with changes
in the conductivity of a material in response to strain: nonlinear
elastoresistivity. This technique allows us to not only look at
broken symmetries across a phase transition, but to character-
ize properties of the disordered state. We perform these mea-
surements for a representative underdoped Fe-based super-
conductor Ba(Fe0.975Co0.025)2As2, which has previously been
shown to exhibit a large nematic susceptibility for temperatures
above a tetragonal-to-orthorhombic structural phase transition
[4–12]. The most remarkable aspect of the current data is that
they reveal a diverging nonlinear response in the isotropic ela-
storesistivity in response to a perfectly antisymmetric (shear)
strain. This observation, which is intimately tied to the large
nematic susceptibility of the material studied, serves to under-
score the role played by nematic fluctuations in determining
even the isotropic properties of the Fe-based superconductors.

Elastoresistivity relates changes in the resistivity [�ρ =
ρ(ε) − ρ(ε = 0)] [13] to strains (ε) experienced by a material:(

�ρ

ρ0

)
α

=
∑

ᾱ,ᾱ′,...

(mᾱ
α εᾱ + mᾱᾱ′

α εᾱ εᾱ′ + · · · ), (1)

where the α’s represent a complete, orthogonal basis set for
the system, εα is the component of the overall strain along
a given basis vector, and ρ0 is an appropriate normalization
factor [14]; here the in-plane resistivity of the tetragonal phase.
A natural basis to work in is the irreducible representations
of the crystallographic point group. In the absence of a
magnetic field and in the D4h point group (appropriate for
the material studied here), both strain and �ρ/ρ0 have six
independent components. Of these, four unique combina-
tions correspond to distinct representations: (�ρ/ρ0)B1g

=

1
2 [(�ρ/ρ0)xx − (�ρ/ρ0)yy], (�ρ/ρ0)B2g

= (�ρ/ρ0)xy , and
(�ρ/ρ0)Eg

= [(�ρ/ρ0)xz,(�ρ/ρ0)yz]. Objects with B1g and
B2g symmetry are antisymmetric (odd) with respect to a 90◦
rotation about the z axis. There is also a two-dimensional
space of components belonging to the A1g representation,
the basis of which is not uniquely defined by symmetry
alone [15]. Objects with A1g symmetry are symmetric (even)
with respect to a 90◦ rotation around the z axis. In this
paper we focus on one (of the two) components with A1g

symmetry reflecting the in-plane changes in resistivity, i.e.,
(�ρ/ρ0)A1g

= 1
2 [(�ρ/ρ0)xx + (�ρ/ρ0)yy].

The linear elastoresistivity response is described by a fourth
rank tensor, which in the present basis corresponds to mᾱ

α .

As shown previously, m
B1g

B1g
and m

B2g

B2g
[16] are proportional

to the nematic susceptibility in the corresponding symmetry
channels χB1g

and χB2g
[4,10–12,14]. To linear order, correctly

decomposed symmetry channels cannot mix. For example, for
a tetragonal material, antisymmetric strain (εB1g

and εB2g
) can-

not cause a symmetric resistivity response, i.e., m
B1g

A1g
= m

B2g

A1g
=

0. However, this is not true when considering the nonlinear
response. In the present work, we demonstrate the presence
of a large and strongly temperature dependent nonlinear A1g

elastoresistivity in response to antisymmetric B2g strain (i.e.,

we show that m
B2g,B2g

A1g
� 1). We further show that this behavior

reflects the diverging nematic susceptibility of the material.

II. EXPERIMENTAL METHODS

Measuring the elastoresistance in the A1g symmetry chan-
nel presents several technical challenges. In order to precisely
decompose the elastoresistance response into the isotropic and
antisymmetric components, the resistivity in two orthogonal
directions must be measured simultaneously for identical
strain conditions; otherwise, the B2g elastoresistance (which
for these materials is much larger than the A1g elastoresistivity
response) gets admixed. A second important consideration
is that to confidently extract the linear and quadratic A1g

elastoresistance coefficients, the sample must be close to

2469-9950/2017/96(20)/205133(9) 205133-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.205133


PALMSTROM, HRISTOV, KIVELSON, CHU, AND FISHER PHYSICAL REVIEW B 96, 205133 (2017)

conditions of neutral anisotropic strain (εx ′x ′ − εy ′y ′ ≈ 0; here
the primed coordinate frame refers to the normal strain
frame [14]). As we demonstrate, a modified Montgomery
technique is especially suitable for both purposes [4]. The
crystals are cut into thin square plates with the electrical
contacts made at the four corners, enabling measurement of
ρx ′x ′ and ρy ′y ′ simultaneously, while the crystal is held under
a measured set of strain conditions. The B2g neutral strain
point is determined by the condition of ρx ′x ′ = ρy ′y ′ , since for
a crystal with tetragonal symmetry the in-plane resistivity is
isotropic if there is zero anisotropic strain.

In our experimental setup, we apply biaxial stress to the
samples by affixing them to a lead-zirconate-titanate (PZT)
stack (Part No.: PSt150/5x5/7 cryo 1, from Piezomechanik
GmbH). When positive voltage is applied to the PZT stack,
it expands along its poling axis (the y ′ axis) and contracts
along the perpendicular axis (the x ′ axis). For thin samples,
the crystal deforms with the PZT stack. The ratio of the
strain experienced by the sample along the y ′ and x ′ axes
is dictated by the in-plane Poisson ratio νP of the PZT stack
(εy ′y ′ = −νP εx ′x ′ ). This is a weakly temperature dependent
quantity, with an average value for our PZT stacks of ∼2.3.

Since the magnitude of strains along the x ′ and y ′ directions
are not equal, the strain can be decomposed into two parts: a
part that is even with respect to rotation by 90◦ about the z axis
[in-plane A1g symmetry; εA1g

= 1
2 (εx ′x ′ + εy ′y ′ )], and an odd

part [B1g/2g symmetry; εB1g/2g
= 1

2 (εx ′x ′ − εy ′y ′ )]. As shown
in the inset of Fig. 1, by aligning the sample’s square edges
along either the tetragonal [100] or tetragonal [110] direction,
we selectively cause the material to experience A1g + B1g

symmetry strain (pink) or A1g + B2g symmetry strain (blue).
Further details about the sample preparation, experimental
protocol, and characterization of the strain transmission can
be found in Appendices A and B.

III. RESULTS AND DISCUSSION

There is a qualitative difference in the strain dependence of
the elastoresistivity between samples that experience B1g and
B2g symmetry strain. Figure 1 shows representative data for
Ba(Fe0.975Co0.025)2As2 above the structural phase transition.
Multiple samples of both orientations have been measured
and are in good agreement with the representative data shown
here. The sample that experiences B1g strain exhibits a linear
change in ρx ′x ′ and ρy ′y ′ under strain. Consequently, both
the antisymmetric response [(�ρ/ρ0)B1g

] and the symmetric
response [(�ρ/ρ0)A1g

] are also linear in strain. In contrast,
the sample that experiences B2g strain exhibits a clear
nonlinearity in both ρx ′x ′ and ρy ′y ′ as the strain is varied. The
antisymmetric (B2g) response is perfectly linear [black line in
Fig. 1(b)(ii)] and comparatively large, whereas the symmetric
(A1g) response exhibits a striking nonlinearity and is well
fit by a quadratic function [black line in Fig. 1(b)(iii)]. The
minimum of the quadratic function does not occur at the same
strain as the neutral B2g strain point [vertical line in Fig. 1(b)],
indicating the presence of a linear term in addition to the
quadratic coefficient.

The qualitative behavior shown in Fig. 1 is characteristic
of both crystal orientations for the range of measured tem-
peratures. Data of the elastoresistance response at different

FIG. 1. Representative data showing the resistivity response to
strain of Ba(Fe0.975Co0.025)2As2 at 116 K. The left-hand column
(a) shows data for a crystal oriented with the crystal axes parallel to
the normal strain frame [represented by the schematic pink-colored
crystal in the inset to (a)(i)], such that the crystal experiences an
admixture of A1g and B1g symmetry strain. The right-hand column
(b) shows data for a crystal with the axes oriented at 45 deg to the
normal strain frame [shown schematically by the blue crystal in the
inset to (b)(i)], such that the crystal experiences an admixture of A1g

and B2g symmetry strain. The top graph (i) in each column shows
the resistive response of the sample along the x ′ and y ′ axes due to
the strain, where the x ′ and y ′ axes are defined by the normal strain
frame (inset). The zero antisymmetric strain condition is marked by
a vertical line in (b). The middle graph (ii) shows the antisymmetric
response, given by the difference 1

2 [(�ρ/ρ0)x′x′ − (�ρ/ρ0)y′y′ ] =
( �ρ

ρ0
)B1g/B2g

. For both crystal orientations, the antisymmetric response
is linear (black lines show linear fits). The bottom graph (iii) shows
the symmetric (A1g) response, given by the sum 1

2 [(�ρ/ρ0)x′x′ +
(�ρ/ρ0)y′y′ ] = ( �ρ

ρ0
)A1g

. This response is found to be always linear
for samples that experience A1g + B1g symmetry strain (black line
shows linear fit), while that of the samples that experience A1g + B2g

symmetry strain is clearly nonlinear and is fit by a second order
polynomial (black line).

temperatures are shown in Fig. 2 for the sample that
was oriented to experience B2g symmetry strain. For this
crystal orientation, the antisymmetric response is linear for
all temperatures measured, with a slope that grows larger
as temperature decreases. Similarly, the symmetric (A1g)
response exhibits a strong temperature dependence, with a
clear increase in the coefficient of the quadratic term as
temperature is reduced towards the structural transition. In
contrast, the sample that experiences B1g symmetry strain
exhibits only a weak temperature dependence in the linear
response for both symmetry channels, as shown in Fig. 1(a),
and never exhibits any measurable nonlinearity.
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FIG. 2. Temperature dependence of (a) the antisymmetric (B2g)
elastoresistivity response, and (b) the isotropic (A1g) elastoresistivity
response, of a single crystal of Ba(Fe0.975Co0.025)2As2 oriented
with the crystal axes at 45 deg to the normal strain frame (blue
schematic insets). The anisotropic response is always linear, whereas
the isotropic response shows a large quadratic component with a
minimum close to the B2g neutral strain point. Both responses exhibit
a strong temperature dependence. Note that the accessible strain range
shifts with temperature, due in part to differences in the thermal
expansion of the PZT and sample, and in part to the temperature
dependence of the dynamic range of the PZT stack. For clarity, each
fixed temperature strain sweep for the A1g response are offset by
−7.5 × 10−4 per trace from the 100 K sweep. The data showing the
B2g response are not offset.

We first consider the linear response to antisymmetric
strains m

B1g

B1g
and m

B2g

B2g
shown in Fig. 3(a). As found previously

[12], m
B1g

B1g
is small and exhibits almost no temperature

dependence. In contrast, m
B2g

B2g
is large and can be well fit by

a Curie-Weiss temperature dependence with a Weiss tempera-
ture � = 75.8 ± 0.6 K (adjusted R-squared, R2

adj = 0.9995),
bearing witness to the divergent nematic susceptibility in
this material [4,10–12]. The coupled nematic/structural phase
transition occurs at a higher temperature Ts = 98 ± 2 K due
to bilinear coupling between the nematic order parameter and
lattice strain with the same symmetry [10].

The linear response to A1g strain m
A1g

A1g
is small and only

weakly temperature dependent [Fig. 3(b)] [17]. Moreover,
values of m

A1g

A1g
determined from both crystal orientations agree

[as they must, since by symmetry both εA1g
and (�ρ/ρ0)A1g

FIG. 3. Temperature dependence of the elastoresistance coeffi-
cients of Ba(Fe0.975Co0.025)2As2 for all symmetry channels measured.
Blue circles show the response for a sample that experiences an
admixture of A1g + B2g symmetry strain (blue schematic insets),
while pink triangles show the response for a sample that experiences
an admixture of A1g + B1g symmetry strain (pink schematic insets).

(a) The linear response to anisotropic strain, m
B2g

B2g
(left axis) and m

B1g

B1g

(right axis). m
B2g

B2g
can be well fit by a Curie-Weiss functional form

(black line; see main text). (b) The linear response to isotropic strain
m

A1g

A1g
. For crystals that experience A1g + B1g symmetry strain (pink),

m
A1g

A1g
is extracted from a linear fit; for crystals that experience A1g +

B2g symmetry strain (blue), the data are extracted from the linear
term of a second order polynomial fit. (c) The weighted quadratic
coefficients [( 1−νP

1+νP
)2m

A1g ,A1g

A1g
+ m

B2g ,B2g

A1g
] (blue data, left axis) and

[( 1−νP

1+νP
)2m

A1g ,A1g

A1g
+ m

B1g ,B1g

A1g
] (pink data, right axis) describing the

isotropic response to (A1g + B2g) and (A1g + B1g) symmetry strains,
respectively, extracted from the second order polynomial fit of the
isotropic response as a function of anisotropic strain. The only
measurably nonzero nonlinear coefficient is m

B2g ,B2g

A1g
, the isotropic

response to B2g symmetry anisotropic strain. The temperature-
dependence of this coefficient can be well fit by a

(T −�)2 + b

T −�
+ c

(black line; see main text), with � taken from the Curie-Weiss fit to
m

B2g

B2g
. Error bars represent 95% confidence intervals from statistical

fits. If an error bar is not shown, the uncertainty of the fit is contained
within the size of the data point.

are invariant to rotations about the z axis], providing
additional confidence that the B2g neutral strain point has
been accurately identified. For further discussion of errors
associated with identification of the neutral strain point, see
Appendix C.

From a symmetry perspective, nonlinear contributions to
(�ρ/ρ0)A1g

are possible due to all three strains considered.
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To quadratic order,(
�ρ

ρ0

)
A1g

= m
A1g

A1g
εA1g

+ m
A1g,A1g

A1g
[εA1g

]2

+m
B1g,B1g

A1g
[εB1g

]2 + m
B2g,B2g

A1g
[εB2g

]2. (2)

Since the symmetric and antisymmetric strains are related
via νP (i.e., εB1g/2g

= (1+νP )
(1−νP )εA1g

), the quadratic coefficient of
(�ρ/ρ0)A1g

as a function of εB1g/2g
is given by the weighted sum

of coefficients m
B1g,B1g/B2g,B2g

A1g
+ ( 1−νP

1+νP
)2m

A1g,A1g

A1g
for A1g +

B1g/2g symmetry strains, respectively. The temperature de-
pendence of these weighted sums, obtained from quadratic fits
to the data shown in Fig. 2(b) with appropriate transformation
of the strain axis, are plotted in Fig. 3(c). Evidently, m

A1g,A1g

A1g

and m
B1g,B1g

A1g
(the weighted sum of which is shown by the

pink data) are vanishingly small. Hence, the striking nonlinear
response seen in Fig. 2(b) derives solely from m

B2g,B2g

A1g
, that is,

the nonlinear symmetric response derives solely from purely
antisymmetric (B2g) strain.

The Curie-Weiss temperature dependence of m
B2g

B2g
directly

attests to the presence of an electronic degree of freedom
(the nematic order parameter φB2g

) that is separate from,
though bi-linearly coupled to, anisotropic strain εB2g

: φB2g
=

χB2g
εB2g

∝ m
B2g

B2g
εB2g

. From the same perspective, in addition
to a bare contribution to (�ρ/ρ0)A1g

that is directly propor-
tional to [εB2g

]2, there should be additional induced terms
proportional to φB2g

εB2g
and [φB2g

]2. All these terms are
allowed by symmetry, and since φB2g

= χB2g
εB2g

, the latter two
contributions should be increasingly strong with decreasing
temperature, so that

m
B2g,B2g

A1g
≈ a

(T − �)2
+ b

T − �
+ c, (3)

where a, b, and c are coefficients to be determined. The Weiss
temperature �, which is independently determined from the
temperature dependence of m

B2g

B2g
, is not a fit parameter. The

black line in Fig. 3(c) shows the best fit to this functional
form, with

√
a = (4 ± 1) × 103 K and b = (7 ± 1) × 105 K;

both terms are important and necessary to fully fit the response
(see Appendix D for more details on the fitting). This fit is
in excellent agreement with the data (R2

adj = 0.99655) and
confirms our understanding of the contributing symmetry
terms and the underlying physics. The quality of fit also
implies that the proportionality constant relating χB2g

and
the elastoresistivity coefficients have negligible temperature
dependence over the fit range.

Finally, we note that m
B2g,B2g

A1g
is positive. This implies

that the average resistance is expected to be larger in the
anisotropic nematic phase than an extrapolation of the in-plane
resistivity determined from the isotropic tetragonal state.
Since this is a second order effect, we expect the resistivity
increase to scale as the square of the on-setting nematic order
parameter, i.e., to have a T -linear temperature dependence, for
temperatures close to Ts . This is consistent with the observation
[18] that the resistivity of twinned Ba(Fe0.975Co0.025)2As2

samples linearly increases upon cooling through the structural
transition [19].

IV. SUMMARY

In summary, we have shown a diverging nonlinear A1g

elastoresistivity response to B2g symmetry strain. The most

remarkable aspect of this measurement is not that m
B2g ,B2g

A1g
	= 0,

since this is allowed by symmetry, but how large this quantity
is. Indeed, close to the structural transition the nonlinear
response of (�ρ/ρ0)A1g

to εB2g
is an order of magnitude

larger than the linear response to εA1g
for the range of strain

considered here. Furthermore, the temperature dependence of
this coefficient directly reveals that the effect is driven by the
large nematic susceptibility of the material, meaning that even
the isotropic properties of the Fe-based superconductors [in
this case (�ρ/ρ0)A1g

] are strongly affected by the nematic
character of the material. These observations demonstrate a
means to witness the divergent nematic susceptibility in these
materials based on the measurement of the isotropic response
to anisotropic strain. They also provide a point of comparison
for microscopic models of the transport properties of Fe-based
superconductors.
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APPENDIX A: FURTHER DETAILS OF SAMPLE
PREPARATION AND EXPERIMENTAL PROTOCOL

Single crystals of Ba(Fe0.975Co0.025)2As2 were grown using
the FeAs self-flux technique as described elsewhere [18].
The crystals were cleaved into thin plates and cut into
approximately square rectilinear tablets with typical side
lengths of 400–750 μm and thicknesses of 10–30 μm. The
B2g sample shown in the main text has dimensions 30 μm ×
730 μm × 700 μm and the B1g sample has dimensions
10 μm × 540 μm × 530 μm. The modified Montgomery
method assumes square isotropic equivalent samples, however
deviations from square, up to roughly side length ratios of
4:1, introduce errors significantly smaller than the errors from
Taylor series truncations (∼4%) used in the method [20]. The
roughly square geometry does ensure equal strain relaxation
in both the x ′ and y ′ directions. The samples are contacted on
the corners of their top surface by gold wires affixed with an
air-dry silver epoxy (Dupont 4929N) on sputtered gold pads.
The samples are glued to a PZT stack (Part No.: PSt150/5x5/7
cryo 1, from Piezomechanik GmbH) with either Devcon 5-min
epoxy or Master Bond EP21TCHT-1. A photograph of a
typical sample and a diagram of the PZT setup can be seen in
Fig. 4. Stress was applied to the sample by stepwise cycling the
voltage from −150 to 150 V (below 150 K) and −50 to 150 V
(above 150 K) on the PZT stack at a fixed temperature. Three
to four voltage sweeps were performed at each temperature,
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FIG. 4. Left: Photograph of a representative
Ba(Fe0.975Co0.025)2As2 sample prepared for an elastoresistance
measurement using the modified Montgomery method. The sample
is cut into a square, affixed with electrical contacts, and glued onto
the PZT stack. This sample is aligned with its crystallographic
axes rotated 45 deg with respect to the normal strain frame.
Right: Schematic diagram showing the PZT stack prepared for an
elastoresistance measurement, seen from the side. The sample is
glued to the top face of the PZT. Strain is measured via a strain gauge
glued to the back of the PZT stack.

with typical voltage ramp rates between 8–15 V/s. Using
the modified Montgomery method [4,20], ρx ′x ′ and ρy ′y ′ were
measured simultaneously at each voltage step.

The strain of the PZT stack is measured by a strain gauge
(Part No.: WK-06-062TT-350 from VPG) glued to the back
of the PZT stack. Typically only one direction of strain is
measured and the orthogonal strain is calculated using the
measured Poisson ratio of the PZT stack (εy ′y ′ = −νP εx ′x ′ )
[12]. For measurements done here we assume perfect strain
transmission through the glue and sample such that the strain
experienced by the sample is the same as the strain of the PZT
stack. Imperfect strain transmission would scale the resistive
response in all symmetry channels, but would neither change
our symmetry decomposition nor affect our main conclusions.
This is discussed in detail in Appendix B.

Both the glue and the PZT stack have differing coefficients
of thermal expansion, neither of which are matched to the
pnictide sample. In addition, the glue will contract as it
dries during the mounting of the sample which can introduce
uncontrolled strains. All of these factors contribute to a
temperature dependence of the voltage required to have the
sample experience zero antisymmetric strain. There does
not appear to be a common trend between samples in the
evolution of this neutral point as a function of temperature.
For example, the evolution is often nonmonotonic and net
changes are evenly split between shifts to positive voltages
and negative voltages among the six samples measured. This
indicates that this effect is not solely due to differential
thermal contractions of the sample on PZT, implying that the
epoxy plays a significant role in determine the bias strain
experienced by the sample when zero volts are applied to the
PZT stack.

APPENDIX B: STRAIN TRANSMISSION

The strain transmission through the crystal will depend
on geometric factors; for example, the thicker the crystal is
compared with the in-plane dimensions, the more the strain
will relax along the z axis of the crystal. In order to quantify

FIG. 5. Strain transmission through a large (3140 μm ×
3330 μm × 50 μm) BaFe2As2 crystal under A1g + B2g symmetry
strains. A strain gauge is glued on top of the sample (�ε

Samp
y′y′ ) and a

second strain gauge is affixed directly to the back of the PZT stack
(�εPZT

y′y′ ). For this particular test, �εx′x′ is estimated based on the
measured Poisson ratio of the PZT, allowing for the estimation of
the antisymmetric strains �εPZT

B2g
and �ε

Samp
B2g

; 1
2 (�εPZT

x′x′ − �εPZT
y′y′ ) and

1
2 (�ε

Samp
x′x′ − �ε

Samp
y′y′ ), respectively. (a) The temperature dependence

of the ratio of the range of antisymmetric strain experienced by the
two strain gauges during fixed temperature voltage sweeps. Below
250 K the strain transmission through the samples is � 80% and
only has a weak temperature dependence. (b) The extracted m

B2g

B2g

elastoresistivity response calculated from both strain gauges. The
two traces are in good agreement below 250 K, indicating that the
temperature dependence of the response is dominated by the intrinsic
temperature dependence of the electronic sample properties over the
temperature dependence of the strain transmission.

the strain transmission we compare a strain gauge mounted
on top of a large undoped BaFe2As2 sample prepared as
described in Appendix A and a strain gauge glued directly to
the back of the PZT stack. For this experiment we measure the
range of strain along the y ′ direction for the sample mounted
strain gauge (�ε

Samp
y ′y ′ ) and for the PZT mounted strain gauge

(�εPZT
y ′y ′ ) for fixed temperature voltage sweeps. The range of

strain along the x ′ direction is estimated based on the Poisson
ratio of the PZT stack. From this we can calculate the range
of antisymmetric strain experienced by the sample strain
gauge [�ε

Samp
B2g

= 1
2 (�ε

Samp
x ′x ′ − �ε

Samp
y ′y ′ )] and PZT strain gauge

[�εPZT
B2g

= 1
2 (�εPZT

x ′x ′ − �εPZT
y ′y ′ )]. The temperature dependence

of the ratio �ε
Samp
B2g

/�εPZT
B2g

is shown in Fig. 5(a), a ratio of
one implies perfect strain transmission through the sample.
At 270 K there is a sharp increase in strain transmission
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which we attribute to a freezing transition of the glue. Below
250 K the strain transmission is � 80% and has only a
weak temperature dependence. This temperature dependence
is small compared with the temperature dependence of the
elastoresistance response which is demonstrated in Fig. 5(b)
where m

B2g

B2g
is calculated twice, once using the measured strain

of the strain gauge mounted on the sample and once using the
measured strain of the strain gauge mounted on the PZT stack.
The two calculations are in good agreement below 250 K.

The majority of samples are too small to accommodate
a strain gauge on their surface. To quantify the strain
transmission as a function of sample size, three undoped
BaFe2As2 samples: small (280 μm × 300 μm × 20 μm),

FIG. 6. Comparison of sample size on the linear anisotropic
elastoresistivity response m

B2g

B2g
and strain transmission in BaFe2As2.

Three sample sizes are studied: small (280 μm × 300 μm × 20 μm),
medium (3760 μm × 750 μm × 40 μm), and large (3140 μm ×
3330 μm × 50 μm). The strain at the surface of the large sample has
been measured to be � 80% below 250 K (Fig. 5). For the data shown
here the strain is measured by a strain gauge glued directly to the PZT
stack and strain is assumed to be fully transmitted from the PZT to the
sample. The top plot (a) shows m

B2g

B2g
data for all three samples. The

elastoresistivity responses of the medium and large samples have the
same magnitude and temperature dependence suggesting they are in a
regime of similar strain transmission (� 80%). The small sample has
a significantly smaller response. This is attributed to imperfect strain
transmission in the smallest sample, resulting in the overestimation of
the strain experienced by the sample. The bottom plot (b) shows the
normalized elastoresistivity response for the small and large sample.
The two curves exhibit the same temperature dependence, indicating
that imperfect strain transmission results in a temperature independent
scaling of the response.

medium (760 μm × 750 μm × 40 μm), and large (3140 μm ×
3330 μm × 50 μm, this sample is large enough to have a
strain gauge on its surface and is the sample measured for the
data shown in Fig. 5) were measured. The extracted m

B2g

B2g

responses are shown in Fig. 6(a). In these calculations of
m

B2g

B2g
, strain was measured by a strain gauge glued to the

back of the PZT stack and the strain was assumed to be
fully transmitted, i.e., the sample experiences the same strain
as the PZT stack. The large and medium samples have the
same temperature dependence and magnitude of response,
indicating that both samples have similar strain transmission
(� 80%). While the magnitude of the response of the small
sample is significantly reduced, likely due to an overestimation
of the strain experienced by the sample. This implies that
for the small sample either the crystal is positioned on the
PZT stack such that it experiences a smaller strain or that
there is a strain gradient along the z crystallographic axis and
that the sample experiences an Eg shear strain (εx ′z′ ,εy ′z′ ).

By normalizing the m
B2g

B2g
response at the structural transition

TS = 135 K, the temperature dependence of the small and
large samples can be compared. This is shown in Fig. 6(b).
The two normalized responses are in good agreement below
250 K, which demonstrates that imperfect strain transmission
results in only a simple scaling of the magnitude of the
elastoresistance response.

This allows us to use the magnitude of the m
B2g

B2g
response

as an approximate measure of strain transmission, with the
assumption that samples with in-plane dimensions ∼750 μm
or larger have � 80% strain transmission. For samples ori-
ented to experience B1g strain estimating the overall strain
transmission is more challenging. Rough estimates can be
made based off of their relative size compared to samples that
experience B2g strain. The B2g sample shown in the main text
(30 μm × 730 μm × 700 μm) has � 80% strain transmission,
while the B1g sample (10 μm × 540 μm × 530 μm) has
�60%–80% strain transmission.

APPENDIX C: ERRORS IN EXTRACTING THE LINEAR
AND QUADRATIC RESPONSE FROM ρA1g ARISING

FROM UNCERTAINTY IN IDENTIFYING THE
NEUTRAL STRAIN POINT

As shown in the main text, the main finding of the current
work is that for the strain ranges we employ the elastoresistance
of Ba(Fe0.975Co0.025)2As2 is linear with the exception of a large
nonlinear m

B2g,B2g

A1g
term. However, due to differences in the

thermal expansion of the PZT, sample, and the glue holding
the sample in place, and the volume contraction of the glue as it
dries when the sample is attached to the PZT stack, the sample
once mounted and cooled may experience external strains even
when no voltage is applied to the PZT stack. The neutral B2g

and A1g strain points may even be offset from each other. Since
the PZT applies a fixed ratio of symmetric and antisymmetric
strains, if there is an offset in the neutral points at best we
can tune through one neutral point at a time (i.e., εA1g

= 0 or
εB2g

= 0).
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We can identify the neutral antisymmetric strain point above
the tetragonal to orthorhombic structural transition (98 K)
because, for a tetragonal material at the neutral antisymmetric
strain point, ρxx = ρyy . The modified Montgomery method is
well suited to identify the antisymmetric strain neutral point
since it simultaneously measures ρx ′x ′ and ρy ′y ′ under identical
strain conditions in a single sample. This is one advantage
of the modified Montgomery method over the previously
used differential technique [12]. It is more challenging to
identify the symmetric strain neutral point and it is not done
in this work. Below is a detailed calculation of the effects
of the misidentification of strain offsets on the calculated
elastoresistivity tensor components. For simplicity we look at
an offset in εx ′x ′ which still allows for tuning to the neutral point
of both A1g and B1g/2g symmetry strains, but the results hold
even if the neutral points are separated. The main conclusions
are that, for this material, the correct identification of the
antisymmetric neutral point is required to accurately estimate
m

A1g

A1g
for samples that experience A1g and B2g symmetry

strain, however neither m
B1g/2g

B1g/2g
nor m

B1g/2g,B1g/2g

A1g
are dependent

on the identification of the neutral point. All results are
robust to the determination of the symmetric strain neutral
point.

We start with the simple case of the linear antisymmetric
response, assuming no offset between the neutral A1g and
B1g/2g strain points and that εA1g

, εB1g/2g
, and εx ′x ′ are all

measured relative to the neutral point where εA1g
= εB1g/2g

=
εx ′x ′ = 0. Then the change in antisymmetric resistivity to εx ′x ′

is described by

(�ρ/ρ0)B1g/2g
= m

B1g/2g

B1g/2g
εB1g/2g

= m
B1g/2g

B1g/2g

(
1 + νP

2

)
εx ′x ′ .

(C1)

If the neutral strain point is misidentified by an amount
�εx ′x ′ , such that εtrue

x ′x ′ = εmeas
x ′x ′ + �εx ′x ′ , then there will be an

offset in both the symmetric and antisymmetric neutral points
(i.e., �εA1g

= 1−νP

2 �εx ′x ′ and �εB2g
= 1+νP

2 �εx ′x ′ ). Then the
antisymmetric response becomes

(�ρ/ρ0)B1g/2g
= m

B1g/2g

B1g/2g

(
1 + νP

2

)
(εmeas

x ′x ′ + �εx ′x ′ ). (C2)

The linear antisymmetric elastoresistivity coefficient is ex-
tracted from the slope of the linear fit of (�ρ/ρ0)B1g/2g

vs
1+νP

2 εmeas
x ′x ′ (εmeas

B1g/2g
). In this case the extracted slope is the true

elastoresistivity coefficient m
B1g/2g

B1g/2g
, independent of the error in

the identification of the strain neutral point �εx ′x ′ .
For the isotropic resistivity response, we again start by

assuming no offset between the neutral symmetric and an-
tisymmetric strain points and that all strains are measured
relative to the neutral point where εA1g

= εB1g/2g
= εx ′x ′ = 0.

For simplicity we will perform these calculations for a sample
that experiences A1g and B2g symmetry strain (the same
calculation can be done for a sample that experiences A1g

and B1g symmetry strains by simply replacing all references
to B2g with B1g). The isotropic resistivity response is then

described by

(�ρ/ρ0)A1g
= m

A1g

A1g
εA1g

+ m
A1g,A1g

A1g
[εA1g

]2 + m
B2g,B2g

A1g
[εB2g

]2

= m
A1g

A1g

(
1 − νP

2

)
εx ′x ′ + m

A1g,A1g

A1g

×
[(

1 − νP

2

)
εx ′x ′

]2

+m
B2g,B2g

A1g

[(
1 + νP

2

)
εx ′x ′

]2

. (C3)

Now we introduce a misidentification of the neutral strain point
by an amount �εx ′x ′ (εtrue

x ′x ′ = εmeas
x ′x ′ + �εx ′x ′ ). The isotropic

resistivity response then becomes

(�ρ/ρ0)A1g
=

[(
1 − νP

1 + νP

)2

m
A1g,A1g

A1g
+ m

B2g,B2g

A1g

]

×
[

1 + νP

2
εmeas
x ′x ′

]2

+
[
m

A1g

A1g
+ m

A1g,A1g

A1g
(1 − νP )�εx ′x ′

+m
B2g,B2g

A1g

(1 + νP )2

1 − νP

�εx ′x ′

]
1 − νP

2
εmeas
x ′x ′

+m
A1g

A1g

1 − νP

2
�εx ′x ′

+m
A1g,A1g

A1g

[(
1 − νP

2

)
�εx ′x ′

]2

+m
B2g,B2g

A1g

[(
1 + νP

2

)
�εx ′x ′

]2

. (C4)

For this material the only non-negligible quadratic response is
m

B2g,B2g

A1g
(m

B1g,B1g

A1g
≈ m

A1g,A1g

A1g
≈ 0). This further simplifies the

equation

(�ρ/ρ0)A1g
≈ m

B2g,B2g

A1g

[
1 + νP

2
εmeas
x ′x ′

]2

+
(

m
A1g

A1g
+ m

B2g,B2g

A1g

(1 + νP )2

1 − νP

�εx ′x ′

)

×1 − νP

2
εmeas
x ′x ′ + m

A1g

A1g

1 − νP

2
�εx ′x ′

+m
B2g,B2g

A1g

[(
1 + νP

2

)
�εx ′x ′

]2

. (C5)

Fits to the linear ( �ρ

ρ0
)A1g

response vs 1−νP

2 εmeas
x ′x ′

(εmeas
A1g

) incorrectly identify the slope, the effective

measured m
A1g

A1g
, as m

A1g

A1g
+ (1+νP )2

1−νP
m

B2g,B2g

A1g
�εx ′x ′ = m

A1g

A1g
+

2( 1+νP

1−νP
)m

B2g,B2g

A1g
�εB2g

, so to accurately measure this quantity
the neutral B2g strain point must be correctly identified. If a
similar procedure is followed for a sample experiencing A1g

and B1g symmetry strain there is no error introduced to the

measured m
A1g

A1g
for misidentification of the neutral strain point

or for offsets between the B1g and A1g neutral points since
there is no contribution from the quadratic response. Thus
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estimates of m
A1g

A1g
extracted from samples that experience A1g

and B1g symmetry strains are robust. Fits to the quadratic
(�ρ

ρ0
)A1g

response vs [ 1+νP

2 εmeas
x ′x ′ ]2 ([εmeas

B2g
]2) correctly extract

the quadratic coefficient m
B2g,B2g

A1g
, independent of the neutral

strain.
Two experimental observations confirm that we can cor-

rectly identify the neutral B2g strain point. First, the estimates

of m
A1g

A1g
[shown in Fig. 3(b) of the main text] are the

same for crystals oriented such that they exhibit A1g + B2g

and A1g + B1g strains. Second, misidentification of the B2g

neutral point would admix some amount of m
B2g,B2g

A1g
into the

nominal measurement of m
A1g

A1g
, which would introduce a strong

temperature dependence—this is not observed.

APPENDIX D: FITTING m
B2g
B2g

AND m
B2g ,B2g
A1g

The linear antisymmetric response to B2g symmetry strain

m
B2g

B2g
is extracted from a first order fit of ( �ρ

ρ0
)B2g

versus εB2g
.

The temperature dependence of m
B2g

B2g
can then be fit to a

Curie-Weiss functional form m
B2g

B2g
= λ

a0
( 1
T −�

) + m
B2g

B2g,0
. The

antisymmetric response deviates from a true Curie-Weiss be-
havior at high temperatures where the epoxy softens and at low
temperatures due to the structural transition and disorder [4].
The optimal temperature range to extract the best Curie-Weiss

fit is chosen following the procedure outline in Ref. [4], except
that the reduced χ2 error was minimized as opposed to the
standard deviation. For the sample shown in the main text,
the best fit temperature range was found to be 104–181 K.
Extracted fit parameters are λ

a0
= −2980 ± 71 K, � = 75.8 ±

0.6 K, and m
B2g

B2g,0
= 17.3 ± 0.7, with R2

Adj = 0.9995.
The nonlinear symmetric response to antisymmetric B2g

strain m
B2g,B2g

A1g
was extracted from the quadratic coefficient

of a second order fit of ( �ρ

ρ0
)A1g

versus εB2g
using the same

temperature range 104–181 K. As described in the main
text, by symmetry the temperature dependence of m

B2g,B2g

A1g

is allowed to include the terms a
(T −�)2 + b

T −�
+ c. The Weiss

temperature � is fixed to be 75.8 K from the Curie-Weiss fit of
m

B2g

B2g
. The fitted coefficients are a = (2.0 ± 0.2) × 107 K2, b =

(7.4 ± 1) × 105 K, and c = (−6.7 ± 0.9) × 103, with R2
Adj =

0.99655. We can compare the magnitude of the contributions
from individual terms in the fit. Close to the Weiss temperature
(i.e., as T − � → 0), we expect the quadratic term ( a

(T −�)2 ) to
dominate; however, at high temperatures the Curie-Weiss term
( b
T −�

) is largest. The crossover point is roughly 23 K above the
Weiss temperature, so for the accessible range of temperatures
considered here (i.e., above Ts = 98 K) the Curie-Weiss term
is equal in magnitude or larger than the a

(T −�)2 component. It is
not significantly larger over the whole temperature range and
both terms are necessary to fully fit the response.
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(
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A1g
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