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Measurements of the resistivity anisotropy can provide crucial information about the electronic
structure and scattering processes in anisotropic and low-dimensional materials, but quantitative mea-
surements by conventional means often suffer very significant systematic errors. Here we describe
a novel approach to measuring the resistivity anisotropy of orthorhombic materials, using a sin-
gle crystal and a single measurement that is derived from a π

4 rotation of the measurement frame
relative to the crystallographic axes. In this new basis, the transverse resistivity gives a direct mea-
surement of the resistivity anisotropy, which combined with the longitudinal resistivity also gives the
in-plane elements of the conventional resistivity tensor via a 5-point contact geometry. This is demon-
strated through application to the charge-density wave compound ErTe3, and it is concluded that this
method presents a significant improvement on existing techniques, particularly when measuring small
anisotropies. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4978908]

I. INTRODUCTION

Electrical transport measurements have long been a cor-
nerstone of condensed matter physics as they are necessarily
sensitive to the Fermi surface and interactions that are close
in energy to the Fermi level. For example, it is often the
case that phase transitions in conducting materials are observ-
able as a sharp feature or change in slope of the temperature
dependence of the resistivity. By extension, anisotropies in
electrical transport can reflect the presence of broken rota-
tional symmetries, and their measurement can contribute to
understanding the nature and origin of associated phase tran-
sitions, particularly those that are driven by interactions at the
Fermi-level. For example, in the case of an electronic nematic
phase transition,1,2 close to the critical temperature the resis-
tivity anisotropy is proportional to the nematic order param-
eter,3–6 motivating measurement of the resistivity anisotropy
for detwinned samples. The Fe-based superconductors pro-
vide a recent example of such an effect. For several families
of Fe-based materials, the measurement of the resistivity
anisotropy in the broken symmetry state7–16 and also the
measurement of the strain-induced resistivity anisotropy (ela-
storesistivity) in the tetragonal state17–22 have provided evi-
dence that the tetragonal-to-orthorhombic phase transition that
occurs in many of these materials is indeed driven by electronic
correlations; a conclusion supported by Raman spectroscopy23

and shear modulus measurements.24 Distinct from the previous
example are the materials that are fundamentally orthorhombic
even at high temperatures, but which nevertheless develop an
enhanced electronic anisotropy below some characteristic tem-
perature. In these cases, changes in the resistivity anisotropy

a)Electronic mail: pwalms@stanford.edu

can still reveal important information regarding the origin of
the associated phase transition or crossover, also motivating
the measurement of the temperature dependence of the resis-
tivity anisotropy. A well-known example is that of the cuprate
superconductor YBa2Cu3O7−δ , where the presence of CuO
chains leads to a fundamentally orthorhombic crystal struc-
ture, yet for which several measurements indicate the onset of
an enhancement in the electronic anisotropy below a charac-
teristic temperature.25–28 This additional anisotropy has been
discussed in terms of an onset of nematicity that may be
connected to the fluctuations of spin-density wave and charge-
density wave (CDW) ordering observed in this material.26,29,30

A second example in this latter class for which the physical
origin is much clearer is the quasi 2-D material RTe3 (where
R is a rare-earth ion). This material is also orthorhombic at
high temperature (due to the presence of a glide plane in the
crystallographic c axis) but develops an increased anisotropy
below the onset temperature of a uni-directional CDW state.31

The specific case of ErTe3 is further discussed below in the
context of the present work.

Although the motivation to determine the resistivity
anisotropy of orthorhombic materials like those mentioned
above is often clear, the quantitative scope of resistivity
anisotropy measurements can be significantly restricted by
experimental limitations, particularly for small samples. In
particular, the absolute magnitude of the anisotropy can be
small, especially for temperatures close to a phase transi-
tion where the associated order parameter is small. In such
cases, one seeks a method that directly measures the resistiv-
ity anisotropy, rather than separately measuring the resistivity
for different crystallographic directions and taking the dif-
ference of these two (typically large) values. In this paper,
following a brief introduction to, and appraisal of, conven-
tional techniques, we present a novel approach to directly
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measure the resistivity anisotropy via the transverse resistivity
in a rotated experimental frame that addresses some of these
limitations without invoking additional assumptions or instru-
mentation. We frame this discussion in terms of the average
and anisotropic contributions to the resistivity, which shows
the transverse technique to be less susceptible to the admix-
ture of these quantities. The resistivity anisotropy of the a–c
plane in ErTe3 is then presented to demonstrate the efficacy of
the technique.

II. METHODS TO MEASURE THE RESISTIVITY
ANISOTROPY FOR AN ORTHORHOMBIC MATERIAL

A. Definition of resistivity anisotropy

In an anisotropic material, the electrical resistivity is
described by a second rank tensor ρ that relates the cur-
rent density J j to the electric field Ei via the relationship
Ei =

∑
i ρijJj. When the orientation of the Cartesian basis is

defined as parallel to the orthonormal crystallographic axes of
the sample (x ‖ a, y ‖ b, and z ‖ c), with some considerations of
symmetry, this produces the conventional zero-field resistivity
tensor,

ρ = *.
,

ρa 0 0
0 ρb 0
0 0 ρc

+/
-

. (1)

The resistivity anisotropy is then generally defined as the
difference between two given diagonal components (ρii− ρjj),
although the dimensionless resistivity anisotropies

ρii−ρjj
1
2 (ρii+ρjj)

and ρii
ρjj

are often more meaningful quantities.

B. Measurement of resistivity anisotropy by
conventional methods
1. Two-bar method

The form of ρ is highly suggestive that the best way
to measure (ρii − ρjj) is with a current passed, and voltage
measured, parallel to the relevant crystallographic axis. Hence
the conventional two-bar method, illustrated in Figure 1(a),
whereby separate crystals are required to measure each com-
ponent ρii and ρjj. Current and voltage contacts are ideally
placed (respectively) on the ends and in the middle of the bar
such that current is injected evenly into the sample and the
measured voltage represents an average over the orthogonal
directions; separation between current and voltage contacts
should ideally be at least equal to the width of the bar when
considered as an “equivalent isotropic solid” (see Section II B
2) so as to ensure homogeneous current density in the case of
uneven contact resistance.

2. Montgomery method

An alternative method to separately determine individual
terms in the resistivity tensor was deduced from the earlier
work of van der Pauw by Montgomery for anisotropic materi-
als.32,33 As shown in Figure 1(b), the Montgomery method uses
contacts on the corners of a rectilinear sample, through which
current is sourced parallel to either planar direction and voltage
measured on the parallel opposite pair of contacts. Provided

FIG. 1. Schematic diagrams illustrating different methods to determine the
resistivity anisotropy of an orthorhombic material. (a) The conventional two-
bar method where a separate crystal is used for each component ρii to be
measured. Any inequivalence between the two measurements or crystals
results in admixing of the average resistivity 1

2 (ρii + ρjj) into the inferred
resistivity anisotropy (ρm

ii − ρ
m
jj ), which can affect conclusions drawn about

the temperature dependence and magnitude of (ρii − ρjj). (b) The Montgomery
method uses a single rectilinear sample to measure the resistivity anisotropy
with contacts on the corners, currents sourced parallel to the relevant crystallo-
graphic direction, and voltage measured across the opposite two corners. This
contact geometry produces highly non-linear isopotentials in the sample that
typically reduce the magnitude of the measured voltage by an order of magni-
tude or more relative to the bar method. Geometric factors also non-trivially
mix the isotropic resistivity with the inferred resistivity anisotropy. (c-i) The
transverse method described in this paper utilises a coordinate system in which
the measurement basis is rotated by an angle θ = π

4 about the out-of-plane axis
(shown here for the case of a rotation about z, c for an a,b plane anisotropy
measurement) to produce a new basis x′, y′, z′ that is no longer aligned to
the crystallographic axes a, b, c. As described in the main text, the absence
of mirror planes σx′ and σy′ in this new basis results in finite off-diagonal
terms in the resistivity tensor, the values of which are directly proportional to
the resistivity anisotropy. (c-ii) The transverse method presented here uses a
5-point contact geometry as illustrated to measure the resistivity anisotropy
in a single crystal that has been cut into a bar oriented along the diagonal of
the measurement plane (the (110) direction for a measurement of a, b plane
anisotropy is the example shown here). This geometry does not reduce the
magnitude of the voltage signal, and also measures the resistivity anisotropy
directly via the transverse contacts (voltage Vy′ in the illustration), and is less
susceptible to admixing of the average resistivity into the resistivity anisotropy.

the sample is close to rectangular with edges well aligned to
the crystallographic axes, and its dimensions well known, the
measured voltages can be transformed to obtain the resistivity
in each crystallographic direction. The first step in this trans-
formation is to consider the theorem employed first by van der
Pauw32 that allows the mapping of an anisotropic solid of any
shape to an equivalent isotropic solid; a square of anisotropic
material as illustrated in Figure 1(b) maps to a similarly ori-
ented rectangle of isotropic material. The second step is then
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to solve the current-voltage relations for this contact geometry
in the resultant rectangular equivalent isotropic solid. Simple
equations are thus derived that allow intrinsic values of ρii

and ρjj to be calculated from the real sample dimensions and
the measured resistances.33 The equivalent isotropic solid is
a useful concept more generally in transport measurements,
providing an intuitive picture for how electric fields behave in
anisotropic systems.

C. Sources of uncertainty for conventional methods

There is a distinction between how systematic errors
affect the absolute value of a single resistivity measurement
and the determination of the resistivity anisotropy that varies
between methods. The focus here is on minimising the error in
(ρii − ρjj), as well as considering the errors in ρii and ρjj indi-
vidually. The following discussion stresses effects that admix
the resistivity anisotropy (ρii − ρjj) and the average resistivity
ρii+ρjj

2 , noting that these two quantities can have very differ-
ent temperature dependencies. In particular, as we explain
in greater detail below, any technique that aims to measure
(ρii − ρjj) must minimise admixture of

ρii+ρjj

2 .

1. Two-bar method

In the bar method, the resistivity is derived from the
measured resistance Rm

ii by geometric factors

ρm
ii =Rm

ii
Am

lm , (2)

where A and l are the cross-sectional area of the crystal and the
voltage contact separation, respectively, with the superscript
m indicating a measured value (as opposed to the intrinsic,
error-free values). In principle each of these values has an
error associated with its measurement, although the associ-
ated uncertainty in Rm

ii is generally negligible in comparison
to geometric errors and thus omitted from this discussion. Rm

ii
is however potentially sensitive to crystal misalignment: for a
misaligned crystal,

Rm
ii = [ρii cos2(θ) + ρjj sin2(θ)]

l
A

, (3)

where the misalignment θ is assumed for simplicity to be solely
within the measurement plane, as described by Equation (7).
This is generally a reasonable assumption in layered materials.
Ideally θ = 0, lm = l, and Am = A, but in any real measurement
θ = 0 + ∆θ, lm = l + ∆l, and Am =A + ∆A. Since misalignment
enters Rm

ii as θ2 for small θ, it can be treated as a weak perturba-
tion in most materials and we neglect it here, focusing instead
on the more significant geometric factors. In particular, when
considering the contribution of geometric errors,

ρm
ii = ρii

Am

lm

l
A
≈ ρii

(
1 +
∆A
A
−
∆l
l

)
, (4)

the error in ρii is found to be linear in ∆A and ∆l and
so these errors will dominate. It should be noted however
that in the special case of extremely anisotropic materials
(1000ρii ≈ ρjj) contact or crystal misalignment can be the
leading error.34,35 ∆A and ∆l can both be large in a single mea-
surement but only appear as multiplicative factors and thus do
not affect the temperature dependence of any given component

ρii, thus altering the magnitude but not introducing artifacts.
However this situation changes when considering the differ-
ence between two components (ρii − ρjj). To illustrate this
point, we can characterise each measurement as

ρm
ii = ρii(1 + ∆ii),

ρm
jj = ρjj(1 + ∆jj),

(5)

and then propagate the measurement errors when finding
ρii − ρjj,

ρm
ii − ρ

m
jj =

1
2

(2 + ∆ii + ∆jj)(ρii − ρjj)

+
1
2

(∆ii − ∆jj)(ρii + ρjj), (6)

thus showing that terms with different temperature depen-
dences (i.e., (ρii + ρjj) and (ρii − ρjj)) can become admixed.
This could fundamentally change the conclusions drawn from
an experiment. For example, changes in the average resistiv-
ity (ρii + ρjj) at a phase transition would lead to an apparent
change in the measured anisotropic resistivity (ρm

ii − ρ
m
jj ),

leading to a potentially erroneous conclusion that the phase
transition breaks C4 symmetry when in fact it might not.

Whilst the geometric effects are typically the leading error,
there are other experimental factors that can lead to an inac-
curate determination of ρii − ρjj via the two-bar method; the
current density may not be uniform throughout the sample due
to poor contact placement, cracks and inhomogeneity in the
sample, and deviations from a perfect oblong shape; the two
samples used may not be of identical composition or homo-
geneity, particularly in non-stoichiometric systems; and the
temperature measured by the thermometer may not be a perfect
representation of the sample temperature. All of these factors
will also contribute to the admixing effect discussed above.

The key point from this discussion of the two-bar method
is that (ρii − ρjj) is highly sensitive to geometric errors and
inequivalences in the measurement environment, composition,
and contact placement of the two samples. This can be clearly
framed in terms of admixing between average and anisotropic
components of the resistivity as shown in Equation (6), where
it is shown that errors in ρii or ρjj do not just cause an error
in the magnitude of (ρii − ρjj) but can also give the wrong
temperature dependence and the appearance of a significant
finite value even for cases where intrinsically (ρii−ρjj)= 0 (the
case for tetragonal materials). This is particularly acute for the
case (ρii − ρjj)� 1

2 (ρii + ρjj) (small anisotropies) where the
magnitude of the admixing can dwarf the real anisotropy.

2. Montgomery method

The Montgomery method allows for the measurement of
(ρii − ρjj) in a single sample, with ρii and ρjj measured simulta-
neously if care is taken over instrumentation.18 This precludes
some of the errors that arise in the two-bar method and has
been widely used. There are however some additional consid-
erations arising from the contact and sample geometry (see
Figure 1(b)) that should also be considered in the context of
the admixing of average and anisotropic resistivities described
in Equation (6).

For the Montgomery method to be exactly correct, the
sample must be square or rectangular in the plane and of
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constant thickness. It has been shown that it is possible to
generalise this situation slightly to samples that are parallelo-
grams in the plane and thus only a single additional parameter
is required to describe the geometry, but each additional param-
eter increases the complexity of the analysis, and it may not be
possible to solve all situations analytically.36 The error induced
by deviations from the 90◦ relative angle of the sample edges,
∆φ, is divergent as angle increases and contributes equally
and oppositely to ρm

ii and ρm
jj . For example, an error of ∆φ= 2◦

gives ∆ii
ρii
=−

∆jj

ρjj
= 0.01 with this value increasing to 0.04 for

4◦.
The Montgomery method is particularly sensitive to cur-

rent paths, and as such it is important that the out-of-plane
thickness is constant and the sample homogeneous. The mag-
nitude of the thickness is also a non-trivial consideration: the
measured voltages have a non-linear relationship with sam-
ple thickness as the thickness of the equivalent isotropic solid
becomes of the same order as the in-plane dimensions,33 which
can be an issue even in thin samples of highly 2-D materials.
The error induced by non-uniform sample thickness is typi-
cally of order the proportional change in thickness but can be
greater, however, the exact topology of the sample and contact
positioning is important and so this error is difficult to treat
generally.

Finite contact size is a non-trivial error in the Mont-
gomery technique for the case where the contacts are not
negligibly small relative to the sample dimensions. In a bar
measurement, using an effective contact centre is a simple solu-
tion; however, the same solution applied to the Montgomery
method effectively breaks the assumption that the contacts are
on the edges of the sample, which is the assumption made
in the derivation of the equations used to infer the intrinsic
resistivities.

Finally, an important experimental consideration with the
Montgomery method is the reduction in the magnitude of the
measured voltage due to non-parallel equipotentials produced
by the contact geometry (relative to an equivalently sized bar).
Typically this reduction can be an order of magnitude in sam-
ples with favourable aspect ratios, but becomes far higher as
anisotropy increases.37

D. Measurement of resistivity anisotropy
by the transverse method

As an alternative to the two-bar and Montgomery meth-
ods, we note that the resistivity anisotropy can be accessed
directly if we relax the constraint that a ‖ x, b ‖ y, and c ‖ z
under which ρ is conventionally described, and rotate the
Cartesian basis (in which the vectors J j and Ei are defined) rel-
ative to the crystallographic axes about the out-of-plane axis by
an angle θ as illustrated in Figure 1(c–i). Assuming anisotropy
is to be measured in the a, b plane, the conventional resistivity
tensor is thus rotated to obtain,

Rz,c(θ)ρRT
z,c(θ) (7)

=
*..
,

ρa cos2(θ) + ρb sin2(θ) (ρa − ρb) cos(θ) sin(θ) 0
(ρa − ρb) cos(θ) sin(θ) ρa sin2(θ) + ρb cos2(θ) 0
0 0 ρc

+//
-

,

where Rα is the rotation operator about an axis α, taken here
to be the z and c axes. By setting θ = π

4 we obtain

ρ′ =
1
2
*.
,

ρa + ρb ρa − ρb 0
ρa − ρb ρa + ρb 0

0 0 2ρc

+/
-

, (8)

which contains off-diagonal components ρ′x′y′ and ρ′y′x′ that
directly give the in-plane resistivity anisotropy ρa−ρb

2 . Herein
primed notation indicates the rotated Cartesian basis, thus
describing an experiment where Jx′ represents a current applied
at an angle θ = π

4 to the a axis and so on. The diagonal compo-
nents ρ′x′x′ and ρ′y′y′ give the mean of the in-plane resistivities,
ρa+ρb

2 . ρa and ρb can therefore be deduced by combining
diagonal and off-diagonal components

ρa = ρ
′
x′x′ + ρ

′
x′y′ ,

ρb = ρ
′
x′x′ − ρ

′
x′y′ .

(9)

This derivation can be trivially repeated for other measurement
planes (indeed in Section III, the measurement is demonstrated
in the a–c plane for ErTe3). The experimental configuration
shown in Figure 1(c–ii) allows the simultaneous measurement
of both ρ′x′x′ and ρ′x′y′ in a single sample. A current is passed
along the crystallographic (1 1 0) direction and voltage is
measured both parallel and perpendicular to this current. The
measured resistances are converted to resistivities in the usual
fashion.38

The transverse voltage is allowed due to the lack of a
mirror plane perpendicular to the y′ direction; these mirror
planes are necessarily absent in the presence of finite resistivity
anisotropy as the resistivity tensor must obey the symmetries of
the point group, and no orthorhombic crystal can have diagonal
mirror planes. It is important to stress that this measurement
scheme is not to be confused with a Hall effect measurement
despite the similarities in contact geometry; Hall resistivities
are odd under time-reversal and thus zero in the absence of
magnetic field or magnetic order in contrast to the present
result in Equation (8) which is even under time-reversal. An
alternative (but fundamentally equivalent) explanation for the
origin of the transverse resistivity in this rotated reference
frame is given in Appendix.

E. Sources of uncertainty for the transverse method

An important experimental concern with the transverse
method is that without exceptional care the transverse contacts
(nominally measuring Vy′ in Figure 1(c–ii) will never be truly
perpendicular to the current as illustrated in Figure 2. The
accidental offset of these contacts lead to a contamination of
the transverse voltage characterised by

Vm
y′ =Vy′ +

ly′

x′

lx′
x′

Vm
x′ , (10)

where Vm
y′ is the voltage measured across the real, misaligned,

transverse contacts, Vy′ the intrinsic transverse voltage, Vm
x′

the measured longitudinal voltage, lx′
x′ the measured spacing

between the longitudinal voltage contacts, and ly′

x′ the acciden-
tal offset in the x direction of the transverse voltage contacts. If
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FIG. 2. Unintentional misalignment of transverse contacts in the transverse
method causes the measured transverse voltage Vm

y to be contaminated by a

longitudinal voltage such that Vm
y′ =Vy′ + (ly′

x′
/
lx′
x′ )Vx′ where lx′

x′ and ly′

x′ are

the separation in the x′ direction of the longitudinal and transverse contacts

respectively, as illustrated in the figure (ly′

x′ is exaggerated for clarity). This
accidental misalignment can often be corrected either exactly or approxi-
mately when considering the symmetry of the crystal, as described in the
main text.

Vy′ can be assumed to be zero in some regime due to the resis-
tivity being isotropic then Equation (10) allows the determina-

tion of
ly′

x′

lx′
x′

in this regime. As
ly′

x′

lx′
x′

is a temperature independent

geometric factor that is constant throughout the measurement,
this allows the contamination signal to be subtracted across
the whole range of measurement (as Vm

x′ is also measured).
This is not a trivial assumption, but it can be explicitly tested

by checking whether
Vm

y′

Vm
x′

is constant in the isotropic regime.

This condition is perfectly satisfied in the case of a tetragonal
to orthorhombic distortion; however, the applicability to the
other case discussed in Section I of an orthorhombic material
that gains additional anisotropy depends on the specifics of
that material. In Section III we argue that the assumption is
valid for ErTe3 and its application is demonstrated in Section
III C, but this is not a general statement.

The transverse method does not avert errors in sam-
ple geometry and finite contact size entirely, but crucially it
does eliminate the admixing effects described by Equation
(6) when determining (ρii − ρjj). The influence of geometric
measurement error is now described by,

ρ′mx′y′ = ρ
′
x′y′

*.
,
1 +
∆A
A
−
∆ly′

y′

ly′

y′

+/
-
= ρ′x′y′(1 + ∆x′y′), (11)

where ly′

y′ is the separation in the y′ direction of the trans-
verse contacts. Provided the longitudinal contamination signal
is correctly subtracted as described above, this shows that geo-
metric errors only manifest as a prefactor to the resistivity
anisotropy and do not affect its temperature dependence by
admixing the average resistivity 1

2 (ρii + ρjj), in contrast to
the two-bar method and Montgomery method. This is a key
advantage of the transverse method.

Angular alignment errors are again effectively derived
from Equation (7) and contribute to the measurement as

ρ′mx′y′ = (ρa − ρb) cos
(
π

4
+ ∆θ

)
sin

(
π

4
+ ∆θ

)
, (12)

which is linear in small∆θ but introduces no admixture of ρ′x′x′
(inspection of the component ρ′x′y′ in the transformed resis-
tivity tensor in Equation (7) makes it clear that angular error
does not admix (ρa + ρb)). As with the geometric errors, this

gives a prefactor to the resistivity anisotropy without altering
the apparent temperature dependence.

For the purpose of geometric error propagation, the mea-
surement of the average resistivity ρ′x′x′ can be considered
like a single bar method, thus the associated errors are anal-
ogous to those described in Equation (4). From Equation (7),
misalignment errors give

ρ′mx′x′ = ρa cos2
(
π

4
+ ∆θ

)
+ ρb sin2

(
π

4
+ ∆θ

)
, (13)

and it can be seen that ρ′mx′x′ becomes weighted towards either

ρii or ρjj with finite ∆θ. As d cos2(θ)
dθ and d sin2(θ)

dθ are equal and
large in magnitude but opposite in sign around θ = π

4 , this effect
can be appreciable if there is significant anisotropy but largely
cancels out in more weakly anisotropic systems.

The error propagation when determining ρa and ρb indi-
vidually via Equation (9) using the transverse method is
directly analogous to that when determining (ρa − ρb) via the
two-bar method. With reference to Equations (5) and (11), and
considering just geometric errors (i.e., neglecting angular mis-
alignment), the values measured by the transverse technique
can be written as

(ρa − ρb)m = (ρa − ρb)(1 + ∆x′y′),

(ρa + ρb)m = (ρa + ρb)(1 + ∆x′x′),
(14)

and thus combine to give

ρm
a = ρa

(
1 −
∆x′y′

2
+
∆x′x′

2

)
+ρb

(
∆x′x′

2
−
∆x′y′

2

)
, (15)

ρm
b = ρb

(
1 +
∆x′x′

2
+
∆x′y′

2

)
+ρa

(
∆x′x′

2
−
∆x′y′

2

)
. (16)

Evidently ρa can suffer an admixture of ρb and vice versa
when determined individually via the transverse method, in
contrast to the two-bar method where this mixing does not
occur. This is analogous to the admixing of (ρa − ρb) and
(ρa + ρb) in the two-bar method, which does not occur in the
transverse method.

Finally, it is important to consider the equivalent isotropic
solid in highly anisotropic samples. The sample geometry
described in Figure 1(c) maps to a trapezoid for anisotropic
materials, and for large anisotropies this may mean that a
greater separation between the current and voltage contacts
is required for accurate measurements.

In summary, the measurement of (ρii − ρjj) by the trans-
verse method is very robust against admixture from the average
resistivity, giving a significant improvement on the two-bar
and Montgomery methods provided that the contamination
signal due to accidental contact offset can be subtracted or
minimised. Furthermore, the direct measurement of (ρii − ρjj)
vastly improves signal to noise by effectively removing the
isotropic “background” signal. It is noted that

ρii+ρjj

2 can
become unevenly weighted when measured via the longitu-
dinal contacts due to angular misalignment, but this effect is
unlikely to be larger than the contribution of geometric errors
in the two-bar method. Measurements of the individual com-
ponents of the resistivity tensor ρm

a and ρm
b suffer the effects

of admixing between ρ′x′x′ and ρ′x′y′ , and so the transverse
method may not offer an improvement over a single bar when
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measuring a single component. However, when comparing two
components, there is a significant advantage to the transverse
method over the two-bar and Montgomery methods, particu-
larly when measuring small anisotropies. This is the principal
message of this paper.

III. DEMONSTRATION OF THE TRANSVERSE
METHOD: MEASUREMENT OF RESISTIVITY
ANISOTROPY IN ErTe3

A. Resistivity anisotropy in ErTe3

In order to demonstrate the efficacy of the transverse tech-
nique described in the previous section, we have applied the
technique to the layered rare-earth tritelluride ErTe3. The rare-
earth tritellurides form for R = Y, La-Sm, and Gd-Tm.40 At
high temperature they have the NdTe3 structure type (Cmcm)
consisting of RTe blocks separating almost square bilayer Te
planes stacked vertically as illustrated in Figure 3. The single
layer compound RTe2 has similar motifs (RTe block with a
single Te layer) and is tetragonal at high temperature. How-
ever, RTe3 has a glide plane that causes the material to be very
slightly orthorhombic (a≈ 0.9995c).40 Upon cooling, a uni-
directional CDW forms along the c direction for all R, with
heavier R (Tb-Tm) also forming a second CDW along the a
direction at lower temperatures. The calculated Fermi surface
in the absence of CDW ordering is found to be essentially
isotropic in the a–c plane (reflecting the almost vanishingly
small difference in the a and c lattice parameters), as well as
highly two-dimensional, with very little dispersion in the b-
axis direction.39 This is because the Fermi surface is almost
entirely derived from Te px and pz states in the Te square-net
bilayers. Thus in the absence of CDW ordering the material is
“almost tetragonal” in the context of electrical transport. The
orthorhombicity only becomes a significant factor very close
to the CDW transition temperature as phonon frequencies
soften in both the a and c directions above the CDW tran-
sition temperature T c1,41 but only go to zero in the c direction
thus stabilising a mono-domain, uni-directional CDW rather

FIG. 3. The structure of RTe3 consists of conducting Te bilayers in the a–c
plane that are sandwiched between insulating RTe slabs. The well separated
conducting planes produce a highly two-dimensional Fermi surface that is
well described by a simple tight-binding model.39 As the unit cell is stacked
in the b direction, each subsequent unit is offset by half a unit cell in the a
direction giving a glide-plane symmetry to the structure. This glide plane is
the source of the slight orthorhombicity in the material.

than a bi-directional CDW or domains of perpendicular, uni-
direcitonal CDWs. The resultant gapping of the Fermi surface
induces significant anisotropy into the electrical transport, thus
placing RTe3 into the second category of the material discussed
in the Introduction: orthorhombic materials that gain addi-
tional anisotropy below some characteristic temperature.31,42

A crucial advantage with RTe3 over other examples in this class
is that the process described in Section II E, whereby longitudi-
nal contamination of the transverse voltage can be subtracted,
is applicable owing to the highly isotropic transport proper-
ties above T c1. This combination of properties make RTe3 the
perfect material to demonstrate the efficacy of the transverse
method, with the specific example of ErTe3 selected for its
convenient CDW ordering temperatures, T c1 = 267 K (CDW
ordering ‖ c),40 and T c2 = 160 K (CDW ordering ‖ a).42

B. Experimental methods

The experiment was performed using a Quantum Design
PPMS temperature controller; voltages were measured via
two phase-locked Stanford Research Systems SR830 lock-in
amplifiers with current sourced from the reference lock-in’s
voltage output via a 4.5 kΩ pre-resistor to give a 1 mA cur-
rent. A nominal gain of 1000 was achieved by combination of
a Princeton research model 1900 transformer (100× stepup)
and a Stanford Research SR560 pre-amplifier (10× gain) on
each voltage channel, and then calibrated. Single crystals of
ErTe3 were grown via a self-flux method as described else-
where,43 and aligned by x-ray diffraction (via identification
of the (0 6 1) peak; (1 6 0) is forbidden in this space group).
The sample was cleaved in the a–c plane and then cut to pro-
duce a bar in the (1 0 1) direction using a scalpel blade, with
errors minimised to less than 5◦ by measuring the angle via
an optical microscope in relation to the edges of the as-grown
crystal that form in the (1 0 0) and (0 0 1) directions. The cut
crystal was 1.4 mm × 0.74 mm × 50 µm in x,z, and y dimen-
sions. Electrical contacts were made by sputtering gold pads
through a mask and then attaching 25 µm gold wires with
Dupont 4929N silver paste with the contact geometry illus-
trated in Figure 1(d). To ensure good contacting on the edges,
the sample was inclined and rotated in the sputterer over mul-
tiple operations such that the gold pads covered the sides of
the sample. Care was taken to ensure that the current contacts
fully covered the end of the bar in order to provide a more
homogeneous current density. The contacted crystal is shown
in Figure 4. Voltage contact separation was measured to the
centre of the contacts with the longitudinal contacts separated
by 0.49 mm and the transverse contacts separated by 0.64 mm.
The contacts were 50–100 µm in size with the offset between
the transverse contacts significantly less than the contact
size.

C. Results

Figure 5 shows the measured transverse (blue) and longi-
tudinal (red) voltages (Vm

z′ and Vm
x′ , respectively). The inset

shows that the ratio
Vm

z′

Vm
x′

is approximately constant above

T c1, which by reference to Equation (10) is consistent with
almost isotropic in-plane resistivity in the normal state and
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FIG. 4. An optical microscope image of the contacted sample illustrating the
contact geometry and finite contact size. The real sample has a gold hue that
is not well represented in this image.

a contact offset of 17 µm. The blue dashed line in Figure 5
shows the transverse voltage corrected for this inferred off-
set, labelled Vz′ . As the offset is a little smaller than the
contact size, the error in this correction was estimated by
the uncertainty in the position of the effective point con-
tacts, determined optically, with the inferred value found to be
within this range. Using these corrected values, the inferred
values of ρa−ρc

2 and ρa+ρc
2 are shown in Figure 6(a). Both

before and after the subtraction of the contamination signal,
the onset of anisotropy below T c1 dominates the transverse sig-
nal, highlighting the sensitivity of this technique to changes in
anisotropy. The dominant error in ρa+ρc

2 is geometric uncer-
tainty due to angular alignment, finite contact sizes, and a
relatively thin sample, whereas in ρa−ρc

2 the dominant error
is due to the uncertainty in the subtraction of the longitudi-
nal contamination. Note that if ErTe3 were truly tetragonal
above T c1 then there would be almost no uncertainty in this
subtraction.

The resistivities ρa and ρc were derived via Equation
(9) and are plotted in Figure 6(b). Note that no interpola-
tion or fitting was required to add and subtract the data owing
to the simultaneous, single crystal measurement. The values

FIG. 5. Main: raw voltage data Vm
x′ (red, left scale) and Vm

z′ (blue, right scale).
Following correction for contact misalignment as described in the main text,
Vz′ is shown as the dashed blue line, with the error bar indicating reason-
able uncertainty in the offset of the effective point contacts as determined
optically. It is assumed that Vx′ =Vm

x′ . Inset: the ratio Vm
z

/
Vm

x is shown to
be approximately constant above T c1, indicating that the in-plane resistiv-
ity can be reasonably approximated as isotropic in this region according to
Equation (10).

FIG. 6. (a) Average resistivity ρa+ρc
2 (red, left scale) and resistivity

anisotropy ρa−ρc
2 (blue, right scale). The error in ρa+ρc

2 is estimated from
geometric uncertainties, with the dominant error in ρa−ρc

2 coming from the
correction of longitudinal contamination. (b) The calculated values of ρa and
ρc found via Equation (9), the systematic error is dominated by the geometric
error in ρa+ρc

2 and is necessarily the same in both ρa and ρc. This data were
very well reproduced in a second sample with a different aspect ratio and
contact spacing.

obtained are consistent with those found by conventional meth-
ods and published elsewhere31,40,44 and were found to be well
reproduced in a second sample with a different aspect ratio
and contact separation. The systematic errors are dominated
by geometric errors in ρa+ρc

2 that crucially must be identical in
the determination of both ρa and ρc.

Two commonly used dimensionless resistivity
anisotropies, ρa−ρc

1
2 (ρa+ρc)

and ρa
ρc

, are shown in Figures 7(a) and

7(b), respectively; both CDW transitions are easily identi-
fied in either plot with the inferred transition temperatures
consistent with published values.40,42 For small deviations
from the average, both of these values should have the same
temperature dependence, which is consistent with the data.
It should be noted that resistivity has a non-trivial relation-
ship to the CDW order parameter, and so T c1 indicated
in Figures 6 and 7 for comparison is instead taken from
x-ray measurements of the associated integrated superlat-
tice peak intensity, with the square root of this value being
an appropriate order parameter.40 An equivalent data set of
sufficient quality is not available for T c2, and so this was
derived from ARPES measurements of the energy gap on the
Fermi-surface which should be a good proxy for the order
parameter.42

IV. DISCUSSION

The transverse method presented here has a number of
advantages over both the two-bar method and the Montgomery
method, predominantly because the technique provides a direct
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FIG. 7. (a) The dimensionless resistivity anisotropy defined as ρa−ρc
1
2 (ρa+ρc)

shows clear features that coincide with the known transition temperatures
T c1 and T c2 (shown as dashed lines). An alternative dimensionless resistivity
anisotropy, ρa

ρc
, also highlights very clear features at T c1 and T c2, as shown

in (b). For small deviations from the average value, these two values should
have the same temperature dependence, consistent with the data.

measurement of resistivity anisotropy (ρii − ρjj) that does not
admix with the average resistivity, making it ideally suited for
measuring small anisotropies. The present data show clearly
how measuring ρ′x′x′ =

ρii+ρjj

2 and ρ′x′y′ =
ρii−ρjj

2 (rather than
ρii and ρjj separately) is a useful shift in philosophy that
allows greater resolution in both relative and absolute values
of (ρii − ρjj) whilst still yielding good values of ρii and ρjj

individually. The key sources of error with this technique are
transverse contact alignment and angular alignment errors in
ρ′x′x′ . The latter is not an issue if (ρii − ρjj) is the relevant quan-
tity to be found (because angular misalignment does not admix
(ρii + ρjj)) and is minimised in absolute terms if ρii ≈ ρjj. The
contribution of the former is robustly corrected for samples
that are known to be isotropic in some accessible regime, such
as samples undergoing tetragonal to orthorhombic distortions,
but requires some caveats in systems which are anisotropic
throughout the range of measurement if accurate absolute val-
ues are to be obtained. Since ErTe3 is essentially isotropic
above T c1, this effect is minimised as described above, but this
is not generally true for orthorhombic materials. Microlitho-
graphic techniques could be employed to minimise the contact
offset and angular misalignment in such materials by provid-
ing extremely small and well aligned contacts. In general these
errors are likely to be less significant than those found in
conventional techniques, particularly for small samples. We
therefore emphasise that the technique is uniquely sensitive

to the resistivity anisotropy in comparison to conventional
methods.

Finally, we highlight the critical importance of having
a single-domain sample for accurate measurements of the
resistivity anisotropy. The presence of domains can create
a pseudo-symmetry when averaged over macroscopic length
scales that masks the intrinsic anisotropies of the crystal struc-
ture, thus leading to an erroneous underestimation, or even
elimination, of the resistivity anisotropy. The ErTe3 sample
measured here grew as a single-domain, as do many other
orthorhombic materials, but this is often not the case. Fur-
thermore, the resistivity anisotropy is often useful in systems
that undergo a C4 to C2 rotational symmetry breaking tran-
sition, which necessarily forms domains in the absence of an
external de-twinning field. It can be possible to de-twin sam-
ples in situ using, for example, applied magnetic fields45–48 or
strain.8,9 Ideally this de-twinning field can then be removed
below the transition temperature to obtain a single domain in
the absence of an applied field,46 but the sample may simply
re-twin depending on the nature of the ordered phase in which
case the effect of the detwinning field on the resistivity (the
magnetoresistance or elastoresistance in the examples above)
must be also accounted for.

V. CONCLUSIONS

A novel method for measuring the resistivity anisotropy
in a single sample utilising transverse resistivity in a rotated
experimental frame has been presented and contrasted with
conventional methods. It is shown through error propagation
that the transverse method is far less susceptible to admixing
effects between the anisotropic and isotropic components of
the resistivity than conventional methods and thus presents a
more accurate measure of the resistivity anisotropy (provided
that the transverse contact misalignment is accounted for or
minimised as described), particularly for small anisotropies.
The technique has been successfully applied to ErTe3, clearly
identifying the two CDW transitions from changes in the resis-
tive anisotropy and producing absolute values for ρa and ρc

that are consistent with those already published.31,40 The direct
measurement of (ρa − ρc) via the transverse voltage contacts
is shown to be very sensitive to changes in anisotropy. The
critical importance of measuring a single-domain sample is
also highlighted and discussed. To conclude, in many cases
the transverse method should be a substantial improvement on
existing methods for measuring resistivity anisotropy in both
sensitivity and absolute accuracy.
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APPENDIX: ALTERNATIVE EXPLANATION OF THE
ORIGIN OF THE TRANSVERSE ELECTRIC FIELD

In the transverse technique as applied in the main text
to ErTe3, the current is oriented along the (1 0 1) direc-
tion, thus the current density ~J vector can be defined as
the sum of two vectors aligned to the crystallographic axes,
~J = 1√

2
|~J |(â + ĉ). For currents parallel to the crystallographic

axes, the conventional resistivity tensor as defined in Equation
(1) is appropriate, thus the resultant electric field vector |~E |
becomes,

~E =
1
√

2
|~J |(ρaâ + ρcĉ). (A1)

By inspection, ~J ‖ ~E only if ρa = ρc, therefore if the resistivity
anisotropy (ρa − ρc) is non-zero there must be a component
of the electric field perpendicular to the applied current. The
electric field parallel to the current is found by,

~J · ~E

|~J |
=

1
2
|~J |(ρa + ρc), (A2)

and the electric field perpendicular to the current by,

|~J × ~E |

|~J |
=

1
2
|~J |(ρa − ρc), (A3)

where (ρa− ρc) is the resistivity anisotropy as described in the
main text. This approach is also easily generalised for other
planes of measurement.
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Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer,
Nature 463, 519 (2010).

28J. Chang, N. Doiron-Leyraud, F. Laliberté, R. Daou, D. LeBoeuf, B. J.
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