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We study the interplay of fluctuations and superconductivity in
BaFe2As2 (Ba-122) compounds with Ba and Fe substituted by
K (p doping) and Co (n doping), respectively. To this end, we
measured electronic Raman spectra as a function of polarization
and temperature. We observe gap excitations and fluctuations
for all doping levels studied. The response from fluctuations is
much stronger for Co substitution and, according to the selec-
tion rules and the temperature dependence, originates from the
exchange of two critical spin fluctuations with characteristic
wave vectors (±π, 0) and (0, ±π). At 22% K doping (p = 0.22),
we find the same selection rules and spectral shape for the fluc-
tuations but the intensity is smaller by a factor of 5. Since there

exists no nematic region above the orthorhombic spin-density-
wave (SDW) phase, the identification of the fluctuations via
the temperature dependence is not possible. The gap excita-
tions in the superconducting state indicate strongly anisotropic
near-nodal gaps for Co substitution which make the observation
of collective modes difficult. The variation with doping of the
spectral weights of the A1g and B1g gap features does not sup-
port the influence of fluctuations on Cooper pairing. Therefore,
the observation of Bardasis–Schrieffer modes inside the nearly
clean gaps on the K-doped side remains the only experimental
evidence for the relevance of fluctuations for pairing.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction Since the seminal study of multi-band
superconductors by Suhl et al. [1], it is known that the com-
bination of either intra- and inter-band or of different types
of interactions can lead to substantially enhanced supercon-
ducting transition temperatures Tc [2, 3]. The relevance of
these considerations was demonstrated for monolayer FeSe
on SrTiO3 [4, 5]. In addition to experimental studies, there
are recent theoretical predictions as to the enhancement of
Tc through fluctuations of the charge, orbital, or spin degrees
of freedom [6]. The question is how one can demonstrate the
influence of various pairing mechanisms and how ideas as
to the realization of materials with higher Tc values can be
developed.

It is obvious that a single spectroscopic method such as
Raman scattering cannot pin down one or more routes to

Cooper pairing and disentangle their individual influence.
However, it has been demonstrated that one can get an idea
which interactions can contribute [7, 8] or establish a hier-
archy of interactions [9, 10]. In addition, light scattering af-
fords a window into the fluctuations above various phase
transitions [11–13] which may contribute to the pairing in
the superconducting state [6, 8, 14–16]. One essential advan-
tage of light scattering is the existence of selection rules.
Beyond the well known selection rules for phonons or spin
excitations, one may discriminate between electronic excita-
tions in different regions of the Brillouin zone (BZ) [17, 18]
or project out excitations or critical fluctuations with charac-
teristic wave vectors qc [7, 8, 11].

Exploiting these selection rules several open issues in the
iron-based compounds could be addressed [9, 10, 15, 16, 19–

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 T. Böhm et al.: Superconductivity and fluctuations in Fe-based compounds

21]. It was observed that the superconducting energy gap
2Δi(k) depends on band i and momentum k and even may
have near nodes in Ba(Fe1−nCon)2As2 (BFCA) close to opti-
mal doping (n ≈ 0.06) [19]. In hole-doped Ba1−pKpFe2As2

(BKFA) the gap is still band dependent but shows little
variation on the individual bands [9] in agreement with
angle-resolved photoemission spectroscopy (ARPES) [22].
In addition, there are strong indications of two nearly de-
generate pairing channels [10] suggesting interband pairing
and unconventional coupling [23, 24]. The question arises
as to the underlying fluctuations. In fact, fluctuations were
clearly observed in parent BaFe2As2 and electron doped
Ba(Fe1−nCon)2As2 for n � 0.08 [16, 25, 26] but not yet in
Ba1−pKpFe2As2.

In this paper, we present data on Ba1−pKpFe2As2 for
p = 0.22 and demonstrate that the fluctuations can be iden-
tified also here. We compare the pure fluctuation response
with the results from the thermodynamic measurements.
In addition, we show spectra in the superconducting state
of Ba(Fe1−nCon)2As2 at all main in-plane symmetries for
0.041 ≤ n ≤ 0.085 and find that the intensities below Tc

exhibit maxima at optimal doping in both A1g and B1g

symmetry.

2 Experiment The single crystals of hole-doped
Ba1−pKpFe2As2 and electron-doped Ba(Fe1−nCon)2As2 were
grown using a self-flux technique and have been character-
ized elsewhere [28–30]. The concentrations of K and Co were
determined by microprobe analysis. For the Raman measure-
ments samples with narrow superconducting transitions were
selected having �Tc values in the range 0.4–2 K. The dop-
ing levels and typical sample temperatures are displayed in
Fig. 1.

The experiments were performed with standard light
scattering equipment. For excitation, diode-pumped solid
state lasers (Coherent Genesis MX SLM; Klastech Scherzo-
DENICAFC-532-300) and an Ar+ (Coherent Innova 304)
laser were used emitting at 575, 532, and 514.5 nm, re-
spectively. The samples were mounted on the cold finger
of a He-flow cryostat in a cryogenically pumped vacuum.
The laser-induced heating was determined experimentally
to be close to 1 K mW−1 absorbed power. The majority of
the spectra was measured only in the three polarization
configurations xy, x′y′, and RR where x and y refer to
Fe–Fe bonds and x′ = 1/

√
2(x + y), y′ = 1/

√
2(y − x),

R = 1/
√

2(x + iy). For the symmetry assignment in the
1 Fe unit cell, which we use throughout this paper, these
polarizations project the (electronic) B2g + A2g, B1g + A2g,
and A1g + A2g symmetries, respectively. We found that the
A2g contributions can be ignored since they are temperature
independent and typically smaller than 20% of those of the
other symmetries in the energy range studied here.

The spectra shown below represent the imaginary part
of the Raman susceptibility Rχ′′(Ω, T ) which is obtained
by dividing the cross-section by the Bose thermal factor
{1 + n(T, Ω)} = [1 − exp(−�Ω/kBT )]−1; R is an experi-
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Figure 1 Phase diagram of hole- and electron-doped BaFe2As2, as
adopted from Ref. [27]. The gray diamonds indicate the positions of
the Raman experiments above and at the magneto-structural tran-
sition with the data on the electron-doped side reproduced from
Ref. [16]. The onset temperature of fluctuations Tf is given by open
squares. The open circles represent the data of BFCA above and
below Tc. The magenta wedge indicates the nematic phase.

mental constant. In the B1g spectra, we isolate the contribu-
tion from critical fluctuations by subtracting the electron-hole
(e–h) continuum which is found to follow the real part of the
optical conductivity as Ωχ′′(Ω, T ) ∝ σ ′(Ω, T ) in agreement
with theoretical predictions [31].

3 Results

3.1 BKFA A1g and B1g spectra of Ba0.78K0.22Fe2As2 are
plotted in Fig. 2a–c. For Ω > 600 cm−1, the spectra and their
variation with temperature are independent of symmetry.
Similarly, we observe a suppression of the scattering inten-
sity in the energy range below 600 cm−1 and a weak increase
around 800 cm−1 in both symmetries below 85 K (Fig. 2b and
c) which originates in the formation of the gap in the SDW
phase. For Ω < 400 cm−1, the temperature dependence in B1g

symmetry is much stronger than in A1g symmetry. This differ-
ence becomes particularly clear in the analysis of the initial
slope, τ̃μ,0(T ) = R limΩ→0

[
χ′′

μ
(Ω, T )/Ω

]
(μ = B1g, A1g) as

defined in Fig. 2a and c. τ̃μ,0(T ) includes the unknown inten-
sity factor R that relates the slope and the Raman relaxation
time τμ,0(T ). In Fig. 2d, we show the corresponding static
relaxation rates Γμ,0(T ) = �/τμ,0(T ), that can be derived in
absolute energy units [32], and compare it with the results
derived from the resistivity [28]. The B1g results follow the
temperature dependence of the resistivity above 220 K but
vary much stronger in the range 85–220 K.

We interpret this enhanced variation in terms of a new
scattering channel opening up below approximately 220 K
due to fluctuations and analyze the data similarly as in the
case of underdoped Ba(Fe1−nCon)2As2 [16]. For extracting
the response of the fluctuations we subtract the electron-hole

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 2 Raman spectra of Ba1−pKpFe2As2 for p = 0.22 above
the superconducting transition Tc. The polarizations are indicated
schematically. (a, b) Data in B1g symmetry above and below the
magneto-structural transition at Ts = 81.4 K. (c) A1g spectra. The
opening of a gap due to SDW order can be observed in the 38 K
spectra of both A1g and B1g symmetry. (d) Transport and static
Raman relaxation rates. The resistivity [28] is shown as a black line
after conversion into a relaxation rate.

(e–h) continuum from the total response. The e–h continuum
is approximated in a way that the spectra above 220 K are
fully reproduced. Below 220 K we vary the e–h continuum
slightly with temperature by adjusting the parameters appro-
priately to reproduce the intensity above 800 cm−1 and make
the initial slope to follow the resistivity. The resulting relax-
ation rates are shown as black squares in Fig. 2d. More details
can be found in the Supplementary Information of Ref. [16].

The results of the fluctuation response are presented in
Fig. 3. In addition to the experimental data, we show theoret-
ical predictions on the basis of Aslamazov–Larkin diagrams
that describe the exchange of two critical fluctuations with
finite but opposite momenta ±qc [11]. The theory does not
a priori specify the origin of the propagators and can equally
well be used for spin, charge, or orbital fluctuations. Small
corrections apply if the propagator couples to the lattice [11].
As in the case of the cuprates [12] or of BFCA [16], quan-
titative agreement between experiment and theory is found
for realistic parameters. In particular, the intensity and the
mass of the fluctuation propagator m(T ) ∝ ξ−2, with ξ the
correlation length, are determined at one temperature, and
the response at the other temperatures is reproduced by just
varying m(T ). In comparison to BFCA, the overall intensity
is smaller by a factor of five either as a result of a resonance
effect in BFCA or of weaker fluctuations in a material with-
out a nematic phase. However, as will be shown below, m(T )
and the variation with temperature are comparable.

3.2 BFCA In Fig. 4, we show the doping dependence of
the superconducting spectra of BFCA in all symmetry pro-
jections including A1g which was not studied before [20, 26].
The figure shows spectra right above and well below Tc at

γ γ
qc

-qc

Figure 3 Fluctuation contribution to the Raman spectra of
Ba1−pKpFe2As2 forp = 0.22. (a) Experimental spectra and theoret-
ical prediction [11]. The spectra are shifted for clarity. The respec-
tive zero of intensity is indicated by a dashed line. (b) Temperature
dependence of the mass m(T ) of the propagator. The inset shows
the type of diagrams used for the analysis [11, 16]. Wavy, solid and
dashed lines represent photons, electrons, and critical fluctuations,
respectively.

temperatures indicated in the first column of Fig. 4 and by
open circles in Fig. 1. The e–h continua observed above Tc

(green) are similar in all symmetries. However, there is a
strong doping dependence in B1g symmetry (second column)
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Figure 4 Raman spectra of BFCA as a function of doping n. n and
Tc are given in the right column. The data were taken above and
below Tc as indicated (see also Fig. 1) at all three main polarization
configurations. Since the A2g spectra have negligibly small intensity
[19], the data in the three columns show essentially the A1g, B1g, and
B2g symmetries. The spectral weights in the pair-breaking peaks are
indicated in gray.
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4 T. Böhm et al.: Superconductivity and fluctuations in Fe-based compounds

in that the initial slope becomes very steep around optimal
doping (n = 0.55 and 0.61). In the superconducting state
(blue) there is a redistribution of intensity from low to high
energies in A1g and B1g symmetry leading to a reduction
below typically 20–40 cm−1 due to the energy gap and an
enhancement in the range 50–150 cm−1 originating in pair
breaking and excitations across the gap (gray area). At op-
timal doping, we observe a square-root-like increase of the
intensity in the low-energy part of the superconducting B1g

spectra (Fig. 4i) which was interpreted in terms of accidental
nodes on the Fermi surface of the outer electron band and a
high density of states (DOS) inside the gap [18, 19].

In addition to the high DOS, there are secondary struc-
tures at around 50 cm−1 for n = 0.55 and 0.61 (Fig. 4h and i).
We do not believe that they originate from band-dependent
gaps [20]. Rather, they may be remainders of a collective
Bardasis–Schrieffer mode similar to that observed in BKFA
[10] which are barely visible because of quasi-particle damp-
ing in a material with a strongly momentum dependent gap
on a single band [33] and the concomitant high DOS below
the gap maximum.

4 Discussion We address now the fluctuations in the
normal state above the magnetically ordered phase and su-
perconductivity and discuss the interrelation of fluctuations,
possible nematic order, and superconducting pairing.

4.1 Nematicity and electronic Raman scattering
The Raman response, in contrast to the optical conductiv-
ity, does not obey the usual f -sum rule [34, 35], and several
scattering channels can open up as a function of, for instance,
temperature. In some cases, the response from different chan-
nels is just additive such as for weakly coupled phonons. They
are superposed on the e–h continuum which, then, reflects
symmetry-resolved transport properties [31, 32, 36–38]. For
strongly coupled phonons, the response from charge and lat-
tice has to be treated on equal footing, and the line shape
assumes an asymmetric Fano-type energy dependence [39].
In a strongly coupled superconductor, normal and supercon-
ducting response approach each other at an energy of several
times the maximal gap Δ0 and are interrelated in a compli-
cated way at low energies [40] as can be seen in Fig. 4.

Contributions to the response from critical fluctuations
[11, 12, 16, 25, 26, 21, 41–43] can be either superposed on the
e–h continuum [11, 44–47] or develop out of it [43]. In both
cases, the related susceptibility and the integrated spectral
weight become critical upon approaching the phase transi-
tion and diverge in the limit Ω = 0. If the fluctuations interact
among each other and/or couple to the lattice a phase transi-
tion can be induced before the susceptibility diverges [48].

In the Fe-based systems there are various types of
instabilities which can drive phase transitions. Since all
systems have magnetic phases, one may conclude that spin
fluctuations are the leading instability. However, depending
on the sign of the interaction between the hole bands in the
center of the Brillouin zone and the electron bands around
(±π, 0) and (0, ±π) also orbital/charge fluctuations can

dominate [49, 50]. For addressing this problem, Kretzschmar
and co-workers studied BFCA where the magnetic ordering
temperature TSDW and the structural transition Ts > TSDW

are separated [16]. In the nematic phase between TSDW and
Ts which has orbital but no magnetic order fluctuations
can still be observed arguing for spin rather than charge
fluctuations which are expected to disappear at Ts. If the spin
fluctuations interact among themselves, where g0 describes
the electron-mediated interaction, the light couples to the
electronic nematic susceptibility χel

nem,0(T ) which is driven
by the spin susceptibility χmag(q) as [50]

χel
nem,0(T ) =

∫
q
χ2

mag(q)

1 − g0

∫
q
χ2

mag(q)
. (1)

The magnetic susceptibility diverges at TSDW. For g0 ≥ 0
χel

nem,0(T ) has a Curie-like |T − T0|−1 divergence at T0 ≥
TSDW. Close to Ω = 0 the Raman response of interacting
spin fluctuations, Rχ̃′′

f (Ω, T ), is given by [16]

Rχ̃′′
f (Ω, T ) = Rχ′′

f (Ω, T )
[
1 + g0χ

el
nem,0(T )

]
. (2)

χ′′
f (Ω, T ) describes the line shape of non-interacting fluc-

tuations [11], χel
nem,0(T ) accounts for the variation of the

intensity. Eq. (2) is valid only for small energies, and the
initial slope of the spectra is proportional to the variation of
the spectral weight.

Finally, the presence of magneto-elastic coupling shifts
the structural phase transition to higher temperature, Ts > T0,
since the coupling g0 will be renormalized as g = g0+ �2 /

C2
66,0 where C66,0 ≈ 40 GPa [51] is the nearly doping-inde-

pendent high-temperature limiting value of the shear mod-
ulus C66(T ) and λ is the coupling constant in the bilinear
term of the Landau free energy density. As a consequence,
the spectral weight does not diverge at Ts > T0 but has only
a maximum.

The analysis of the BFCA data supports the spin nematic
scenario [16] and may even indicate an interrelation between
fluctuations and superconductivity [15]. The latter proposal
is a particular motivation for studying fluctuations in BKFA,
having the highest Tc in the BFA family, and for a more
detailed look at the evolution with doping of the supercon-
ducting spectra of BFCA.

4.2 Fluctuations and doping BKFA does not have a
nematic phase as BFCA. In addition, the magnetic and struc-
tural transitions coincide rendering the phase transformation
first order. Upon comparing the Raman results on the fluctua-
tions one finds the intensity in BKFA (see Fig. 3) to be much
smaller than in BFCA [16]. Arguably, the intensity is not a
good quantity in a light scattering experiment. However, the
overall intensity in the B1g channel has little doping and ma-
terial dependence, as can be read directly from Figs. 2 and 4,
and does not show strong resonances [18]. In contrast, one
observes a huge intensity variation of the fluctuation response
close to Ts.

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 5 Temperature and doping dependence of the mass m(x, T )
(x = p, n) in the fluctuation propagator. The masses are derived
from the fluctuation contribution to the Raman spectra according to
the analysis of Ref. [11]. The upper right part of the figure shows
the correspondence between samples and symbols. The structural
transition temperatures are indicated. (a) The variation of the mass
follows a power law with critical exponent ν. The inset on the lower
right displays m(n = 0.051, T ) on a log–log scale. ν depends on
doping (Fig. 6). (b) The offset of the mass m0 varies monotonically
with Ts and by and large extrapolates to zero for Ts → 0.

In contrast to the intensities, the relaxation rates (see
Fig. 2 and Ref. [32]) and the masses of the fluctuation prop-
agator (see Fig. 3 and Ref. [11]) can be derived in absolute
units. Therefore we start by comparing the masses

m(x, T ) = m0(x) + a(x)|T − Ts(x)|2ν(x) (3)

for the four doping levels available at the moment, where x =
n, p. Figure 5a shows m(x, T ) for BKFA and BFCA. Fits to
the data using Eq. (3) yield the offset m0(x) close to Ts and the
critical exponent ν(x) which depends substantially on doping
x. The inset shows on a log–log scale that the data are indeed
well described by a power law. Fig. 5b displays the variation
of m0. We find the mass to decrease monotonously with Ts(x)
without a significant influence of the type of substitution.
Although data for samples with lower Ts would be desirable
one can observe the trend of m0(Ts) to vanish linearly with
Ts. Hence, in the limit Ts → 0 m(x, T ) is expected to become
scale free as predicted for a quantum critical point (QCP).
Since Ts vanishes on either side of zero doping, the mass
of the fluctuation propagator suggests the existence of two
QCPs in agreement with other methods. We note that m → 0
is equivalent to a diverging correlation length ξ or an ordered
phase with vanishing transition temperature Ts in accordance
with the definition of a QCP.

The critical exponent ν depends monotonically on dop-
ing, as shown in Fig. 6, and has the tendency to approach the
value of 0.5, predicted in the mean field approximation, for p-
doped materials. For Co substitution (n-doping), ν increases
toward the QCP (n ≈ 0.06) and reaches a value close to unity
for the highest doping level studied here. Whereas m0(Ts)
scales with Ts, one finds the critical exponent to scale with
x. Currently, we do not have an explanation but can pinpoint
an obvious n–p asymmetry in the type of fluctuations.
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Figure 6 Electronic loop Λ2
0 of the AL diagrams and critical ex-

ponent ν of the mass m(T ) as a function of doping x = p, n. Λ2
0

(triangles in the diagram) is determined experimentally via a fit at
one temperature and kept constant above Ts. It includes the effect
of the Raman matrix elements. Λ2

0 is strongly peaked at n = p = 0
(BFA). The mass has a power-law dependence on T (Eq. (3)). The
exponent ν depends monotonically on doping and approaches the
mean field value of 0.5 on the p-doped side.

Figure 6 shows also the intensity prefactor Λ2
0 as a func-

tion of doping. We reemphasize that Λ2
0 is a temperature inde-

pendent electronic property. In the approach here, it depends
on states close to the Fermi surface, thus yielding the selec-
tion rules [11]. However, it depends non-monotonically on
both doping (see figure) or Ts and does not follow the over-
all intensity of the e–h continuum. There are two possible
explanations: (i) Resonance effects play a role and indicate
different orbital selectivity for e–h excitations and for fluctu-
ations. (ii) The relative shapes of the electron- and hole-like
Fermi surfaces are doping dependent. The better the overlap
the stronger the fluctuations [44]. The latter scenario would
indeed explain the maximum atx = 0 where a relatively well-
defined nesting vector, equivalent with a match of the Fermi
surface shapes, induces a (π, 0) spin density wave instabil-
ity. With increasing doping the nesting becomes worse (on
either side) and the intensity Λ2

0 decreases. One could then
argue that the nesting deteriorates more rapidly on the hole-
doped side, thus driving the system further away from the
SDW instability and expanding the Fermi surface available
for superconductivity.

4.3 Fluctuations and elastic constants Obviously,
fluctuations precede the SDW phase in general and exist at
least up to doping levels at which superconductivity com-
mences. First, the Raman response will be compared to the
evolution of the elastic constants in BKFA, similarly as per-
formed for BFCA [26, 43, 52].

To this end, the static electronic nematic susceptibility
χel

nem,0(T ) needs to be derived which, using Landau theory,
was shown to govern the temperature dependence of the shear
modulus C66 [53, 54],

C66

C66,0

= 1 −
2

C66,0

χel
nem,0(T ) . (4)

www.pss-b.com © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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6 T. Böhm et al.: Superconductivity and fluctuations in Fe-based compounds

The phase transition temperature Ts is determined by
C66 → 0 or χel

nem,0(T ) = C66,0/
2 hence above the divergence

point T0. If the phase transition is driven by an electronic
instability C66 does not necessarily need to go completely to
zero [46, 47, 52].

If the lattice phase transition couples to the electronic
nematicity, the (1 Fe) B1g Raman response can couple to C66.
There are various ways to search for a possible coupling. In a
first study, the entire B1g spectra were analyzed [26] by deriv-
ing the real part of the static Raman susceptibility Rχ′

B1g,0(T )
via Kramers–Krönig (K–K) transformation from the experi-
mental responseRχ′′

B1g(Ω, T ) and identifyingRχ′
B1g,0(T ) with

χel
nem,0(T ). In the limit Ω = 0 the K–K transform is identical

to the first moment of Rχ′′
B1g(Ω)/Ω,

R̃B1g(T ) = 2R

π

∫ ωc

0

dω
χ′′

B1g(ω, T )

ω
, (5)

which projects the low energy part of the spectra but is a
well-defined quantity only if χ′′

B1g(ω, T ) decays for ω → ∞
and if ωc → ∞.

We use R̃μ(T ) as a normalization factor for extracting
scattering rates Γμ(Ω, T ) in absolute energy units [32]. Since
the constant R depends on the experiment, the magnitude
of R̃μ(T ) has no direct meaning but compensates for other
intensity-dependent quantities when calculating Γμ(Ω, T ). A
temperature dependent R̃μ(T ) usually reflects the appearance
of an additional scattering channel such as pair breaking or
critical fluctuations below Tc or Tf , respectively.

Constant R̃B1g(T ), as observed here in B1g symmetry
above the onset of fluctuations at Tf , suggests that only one
channel contributes to the response. Since the relaxation
rate ΓB1g(Ω → 0, T ) = ΓB1g,0(T ) as derived from the spectra
above Tf via the memory function method [32] has the same
temperature dependence as the resistivity �(T ), we conclude
that the response originates in e–h excitations. Below Tf ,
R̃B1g(T ) increases signaling the appearance of critical fluc-
tuations, and ΓB1g,0(T ) decreases faster than �(T ). From the
isolated fluctuation response (Fig. 3a), we derive Γf,0(T ) us-
ing the memory function method with a normalization R̃f (T ).
Somewhat unexpectedly, we find that 1/R̃f (T ) and Γf,0(T )
have an almost identical temperature dependence (modulo a
constant factor) as shown in Fig. 7(a). The nearly linear vari-
ation with temperature of both quantities shows that R̃f (T )
and 1/Γf,0(T ) are critical and approximately proportional to
|T − T0|−1.

On the other hand, the initial slope of the fluctuational
response

τ̃f,0(T ) = R
∂χ′′

f (Ω, T )

∂Ω

∣∣∣∣
Ω=0

(6)

can be extracted by plotting limΩ→0

[
Rχ′′

f (Ω, T )/Ω
]

as
demonstrated by Kretzschmar and co-workers [16]. τ̃f,0(T ) is
again an R-dependent quantity. Figure 7a shows that τ̃f,0(T )
is identical to R̃f (T )/Γf,0(T ). From what we saw before the
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Figure 7 Parameters of the fluctuation response in (a) BKFA and
(b) BFCA. Γf,0(T ) is given in absolute units and determines the
scale. The mass m(T ) differs from Γf,0(T ) by 3 and 2.64 for BKFA
and BFCA, respectively. The inverse moment 1/R̃f scales as Γf,0(T )

as does
[
τ̃f,0(T )

]−1/2
.

temperature dependence is that of [R̃f (T )]2 ∝ |T − T0|−2. In
principle, both Rχ′′

f,0(Ω, T ) and χel
nem,0(T ) in Eq. (2) can be

critical. However, since the overall temperature dependence
may indicate double counting, the interrelation of the two
functions is not settled and needs to be worked out in a fu-
ture study.

Figure 7b shows the parameters for BFCA, n = 0.025.
The overall trends are similar to those for BKFA in panel (a).
The masses m(T ) which can be derived in absolute energy
units are different from Γf,0(T ) by factors between 2 and
3 but exhibit qualitatively similar temperature dependences
(for the detailed doping dependence see Fig. 5).

In Fig. 8, we now compare C66 with χel
nem,0(T ) according

to Eq. (4). We find that the temperature dependence of the
initial slope of the fluctuation response (Eq. (6)) is too strong
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Figure 8 Nematic susceptibility and elastic constants. The temper-
ature dependence of C66(T )/C66,0 is taken from Ref. [52]. The data
points are calculated via Eq. (4).
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for both BFCA and BKFA. 1/Γf,0(T ), on the other hand, leads
to a satisfactory agreement for BFCA as expected because
of the proportionality of 1/Γf,0(T ) and R̃f (T ) and thus cor-
roborates the analysis presented in Ref. [43]. We prefer to
use 1/Γf,0(T ), for having absolute units, and hope that the
coupling constant can be derived in the future. In contrast
to the results in BFCA and the parent compound, the temper-
ature dependences derived for C66 from the thermodynamic
and the Raman measurements show significant differences in
BKFA (Fig. 8a). Although the fluctuation response is weak
in BKFA, we consider the deviations as significant.

Finally, it would be desirable to distinguish between the
two mechanisms at the origin of the fluctuation response.
Following the work of Caprara et al. [11], the data here were
analyzed in terms of the exchange of two critical fluctuations
with wave vector ±qc as described first by Aslamazov and
Larkin (AL) [55]. The evaluation of the diagrams leads to a
contribution to the response independent of that of the e–h
excitations. Since intermediate electronic states are involved
all types of fluctuations can couple to the light. No assump-
tions as to the origin of the fluctuations and their wave vector
or momentum conservation are necessary. Rather, the selec-
tion rules are part of the solution and the q = 0 limit applies
automatically in the case of the exchange of two fluctuations
with opposite momenta.

If the conduction electrons couple to a single fluctuation
restrictions apply as to the momentum conservation and the
separability of the various contributions to the response. Only
for fluctuations which do not break the full translational sym-
metry of the lattice such as for ferro-orbital or quadrupolar
charge fluctuations momentum conservation is maintained.
In all other cases, a momentum of order |qc| needs to be
supplied corresponding to a mean free path of the carriers
� = vFτ with vF the Fermi velocity. The relaxation rate τ−1

may come from sources other than impurities but this is the
only case which has been analyzed so far [43]. In any case,
the response vanishes identically for τ−1 → 0 (collision-less
limit). For finite τ−1, the spectral shape is entirely given
by relaxation behavior of the carriers at high temperature,
T � T0. For T → T0, τ−1(T ) will be renormalized, becomes
critical, and vanishes as |T − T0|. The resulting response di-
verges as 1/Ω, and R̃B1g(T ) ∝ |T − T0|−1. Equation (41) and
Fig. 10 (b) of Ref. [43] allow an estimate for τ−1 yielding
100 < �τ−1 < 200 cm−1 independent of doping. An impurity
scattering rate of this magnitude is unrealistic since the pair-
breaking feature below Tc would be suppressed proportional
to �τ, with Δ < �τ−1 the energy gap, and would become
unobservable [56, 57] (see also next paragraph). For dynam-
ical electron scattering, τ → τ(Ω, T ), the momentum can be
carried away but there is no detailed theoretical study yet. In-
dependent of whether the scattering is elastic or inelastic the
fluctuations and the e–h excitations cannot be disentangled.

Several of these issues disappear if the fluctuations are
analyzed in terms of AL diagrams. In particular, as shown
in Figs. 2d and 3b both the e–h continuum and the fluctu-
ations can be described with realistic parameters. In partic-
ular, the relaxation rate derived for the e–h continuum fits
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Figure 9 Spectral weight of the pair-breaking maxima in A1g and
B1g symmetry as indicated. The spectral weight in A1g symmetry is
multiplied by 4.

that obtained from the resistivity (Fig. 2d), and the quantities
derived from the fluctuations are compatible with C66. Al-
though the spin dynamics is closely intertwined with charge
fluctuations, our analysis of the Raman response in terms of
the exchange of two spin fluctuations with momenta ±qc is
supported by several arguments in particular in BFCA and
by neutron scattering experiments [58]. On the basis of the
presently available data we therefore consider it more likely.

4.4 Fluctuations and superconductivity The
question as to the influence of fluctuations on Cooper pair-
ing is probably even more tantalizing than that on the phase
transitions. Around optimal doping a QCP was proposed to
exist above which the fluctuations are particularly strong
and can support Cooper pairing [6]. In this case the spectral
weight in the B1g pair-breaking peak is predicted to increase
along with Tc if the doping decreases from the disordered
side toward the QCP [15], whereas the spectral weight in
the other symmetries should exhibit little dependence on
doping.

Figure 4 displays the pair-breaking effect of BFCA for
0.041 ≤ n ≤ 0.085 including optimal doping at n ≈ 0.06. In
B2g symmetry (Fig. 4k–o), we cannot detect any differences
between the normal and the superconducting state for reasons
discussed earlier [18]. In both A1g and B1g symmetry a gap
and the pair-breaking effect can be observed. For quantifying
the spectral weight, we integrated the difference between the
superconducting and the normal spectra between the inter-
section point and the high-energy limit of the measurements
(gray-shaded areas in Fig. 4a–j). The area is approximately
four times larger in B1g than in A1g symmetry. However, as
shown in Fig. 9, the doping dependences are similar and ex-
hibit maxima at n = 0.061. What kind of explanation could
be compatible with the findings shown in Fig. 9?

An enhancement of the B1g spectral weight close to op-
timal doping can originate in a contribution from fluctua-
tions to Cooper pairing. Then a nematic resonance close to
optimal doping can be expected, since the fluctuations are
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strongest around a putative QCP close to the doping n where
the phase transition line TSDW(n) approaches zero. Gallais and
co-workers [15] argue that the spectral weight in B1g sym-
metry peaks at the maximal Tc right above the QCP. Here,
we observe that the variation of the spectral weight in A1g

symmetry has the same doping dependence as that in B1g

symmetry and propose an alternative scenario.
There are two trends in BFCA which can reduce the

spectral weight independent of fluctuations: the opening of
the SDW gap and impurities. (i) For n < 0.06 an SDW gap
opens up. Since, it is most likely the result of Fermi surface
nesting it should open up on the electron and the hole bands
as suggested by the observation of a redistribution of spec-
tral weight in all symmetries. The opening of the SDW gap
explains the reduction of spectral weight on the underdoped
side in a natural way since parts of the Fermi surfaces become
gapped already above Tc. (ii) On the overdoped side the con-
centration of impurities in the Fe planes becomes substantial
and reduces the pair-breaking maxima being proportional to
�τ where τ is the impurity scattering time [57, 59]. In ad-
dition, a putative accidental node is lifted due to scattering
between Fermi surface parts with small and large gaps. Pos-
sibly, indications of both effects of impurities are found in
BFCA at n = 0.085 where the pair-breaking peak is reduced
and a finite gap appears at low energies [19]. This explana-
tion does not support an interrelation between fluctuations
and Cooper pairing but is more compatible with the doping
dependence of the spectral weights in B1g and A1g symmetry.

5 Conclusions We have presented light scattering re-
sults of BKFA in the normal state and BFCA below Tc. In un-
derdoped BKFA (p = 0.22), we find the response of critical
spin fluctuations similar but not equal to that in BFCA. The
intensity in BKFA is weaker than in BFCA and the critical
exponent ν in the expression for the mass (see Eq. (3)) de-
pends strongly on doping. The residual mass at Ts decreases
with Ts indicating a QCP on either side of zero doping. The
temperature dependence of the fluctuation response is, by
and large, consistent with the variation of the shear modulus
C66(T ). The problem arises which of the derived quantities,
the first moment of the response, R̃f (T ), the static relaxation
rate, Γf,0(T ), or the initial slope of the fluctuation response,
τ̃f,0(T ), should be used for the comparison with the thermody-
namical data. We find that Γf,0(T ) has the same temperature
dependence as R̃f (T ) and describes C66(T ) best in addition
to being available in absolute energy units. It is not clear
at the moment as to why τ̃f,0(T ) ∝ Γ −2

f,0 (T ) is inappropriate
for describing C66(T ). Possibly, the interaction between the
fluctuations leads to an additional factor |T − T0|−1 which
appears only in the Raman response. More work is needed
here.

In the superconducting state of BFCA, we find a strong
but similar doping dependence of the spectral weights of
the pair-breaking maxima of both the A1g and the B1g spec-
tra peaking at n ≈ 0.06. Therefore, the B1g response is not
specifically enhanced as one would expect for an interrelation
of nematic fluctuations and Cooper pairing [15]. One has to

conclude that signatures of unconventional pairing channels
in experimental probes remain rare and indirect such as the
observation of a spin resonance [58, 60] and of a Bardasis–
Schrieffer mode in optimally doped BKFA [10] and possi-
bly BFCA indicating substantial attraction in the subleading
dx2−y2 channel on top of the s± (or s++) ground state.
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