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The elastoresistivity tensor mi j,kl relates changes in resistivity to strains experienced by a material.
As a fourth-rank tensor, it contains considerably more information about the material than the
simpler (second-rank) resistivity tensor; in particular, for a tetragonal material, the B1g and B2g
components of the elastoresistivity tensor (mxx,xx − mxx, y y and 2mxy,xy, respectively) can be related
to its nematic susceptibility. Previous experimental probes of this quantity have focused exclusively
on differential longitudinal elastoresistance measurements, which determine the induced resistivity
anisotropy arising from anisotropic in-plane strain based on the difference of two longitudinal
resistivity measurements. Here we describe a complementary technique based on transverse elas-
toresistance measurements. This new approach is advantageous because it directly determines the
strain-induced resistivity anisotropy from a single transverse measurement. To demonstrate the effi-
cacy of this new experimental protocol, we present transverse elastoresistance measurements of the
2mxy,xy elastoresistivity coefficient of BaFe2As2, a representative iron-pnictide that has previously
been characterized via differential longitudinal elastoresistance measurements. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4953334]

I. INTRODUCTION

Resistivity measurements are employed extensively in the
field of strongly correlated electron systems (SCES). Since
transport properties are determined by the electronic dynamics
at the Fermi level, resistivity is often extremely sensitive to
Fermi surface changes and electronically driven phase transi-
tions; however, since resistivity is a second-rank tensor, trans-
port measurements are generically limited in their ability to
identify the symmetry properties of the underlying order. In
contrast, the elastoresistivity (a fourth-rank tensor defined as
the strain derivative of the resistivity) can convey additional
information about directional anisotropies and broken point
group symmetries which might more subtly manifest in the
resistivity itself.1,2 Furthermore, since electron-lattice coupl-
ing in SCES is often large, the order parameter characterizing
an electronically driven phase transition in these materials
is often strongly tuned by strain and strongly reflected in
transport; the coefficients in the elastoresistivity tensor are
then likely to be large, making elastoresistivity very promis-
ing from an experimental perspective. Although elastoresis-
tance measurements have been applied to semiconductors,3

this physical quantity has only recently been measured in the
context of SCES;1,4–10 in both cases, however, measurements
have been confined to longitudinal geometries (Figures 1(a)
and 1(b)), and the wider class of transverse (Figure 1(c))

a)Author to whom correspondence should be addressed. Electronic mail:
maxshaps@stanford.edu

measurements (which are the subject of this paper) have not
been investigated.

For a tetragonal material, the B1g and B2g components
of the elastoresistivity tensor characterize the material’s linear
response to the anisotropic strains ϵ xx − ϵ y y and ϵ xy, respec-
tively. These two components of the elastoresistivity tensor
directly connect to the nematic susceptibility for the same two
symmetry channels, χB1g and χB2g .1,4 We have recently shown
how these coefficients can be determined from differential
longitudinal elastoresistance measurements and have used this
technique to investigate a series of materials which exhibit
electronic nematic instabilities.4–7,9

Anisotropic strain can be achieved by a variety of means.
In one specific realization, crystals are glued to the side sur-
face of a piezoelectric lead zirconate titanate (PZT) stack
with a strain-transmitting epoxy.11 In this implementation, the
crystals are mechanically coupled to and hence deform with
the PZT, which expands (contracts) along its poling direction
(perpendicular to its poling direction) upon application of
a positive external voltage. The strain can be measured by
attaching strain gauges directly to the surface of larger samples
or estimated by measuring the strain on the PZT surface.
Longitudinal resistances are then measured while the strain is
varied and the differential longitudinal elastoresistance deter-
mined from the difference of the two measurements.4 In the
original realization of this experiment, two separate transport
bars were used in order to separately determine the longitu-
dinal elastoresistivities (∆ρ/ρ)xx and (∆ρ/ρ)y y (illustrated sche-
matically in Figure 1(a)). While these measurements unam-
biguously identified a divergence of the nematic susceptibility
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FIG. 1. Schematic diagrams illustrating three different methods that can be
used to measure the B1g or B2g elastoresistivity coefficients of a tetragonal
material. The appropriate orientation of the principal crystal axes with respect
to the current i and the strains ϵxx (horizontal black arrows) and ϵy y (vertical
gray arrows) for the two irreducible components is discussed in Secs. III
and IV of the main text. Gray bars represent single crystal samples and
yellow regions depict electrical contacts used for the transport measurements;
current paths and schematic voltmeters are also indicated. The samples are
caused to experience an induced anisotropic strain by some external means
and the strains ϵxx and ϵy y are separately determined. In the configuration
shown in panel (a), a standard four-point contact geometry is used to measure
the differential longitudinal elastoresistivity (i.e., (∆ρ/ρ)xx− (∆ρ/ρ)y y). In
panel (b), a modified Montgomery geometry is used to measure the same
quantities with a single sample; however, two measurement configurations
are still required to extract (∆ρ/ρ)xx and (∆ρ/ρ)y y, as illustrated by the two
schematic diagrams. In both cases, the relevant elastoresistivity coefficients
are determined from the difference of the two longitudinal measurements.
As described in the main text, these configurations have some practical
drawbacks; in particular, one infers a (potentially small) resistive anisotropy
from the difference of two (potentially larger) longitudinal resistivity mea-
surements. In this paper we describe an alternative transverse (i.e., (∆ρ/ρ)x y)
measurement that can be performed on one single crystal (depicted in panel
(c)) that yields the same elastoresistivity coefficients by directly determining
the resistivity anisotropy from a single measurement.

in the B2g symmetry channel for the iron-based supercon-
ductors,4 nevertheless this specific experimental configura-
tion leads to several experimental concerns. In particular, the
technique relies upon equal strain transmission for the two
samples used in the differential measurement (which might
be difficult to realize in practice, in part due to geometric
factors and in part due to differences in the adhesion of the
two samples to the PZT stack).12 Expressed in the context of
group theory, such nonidealities (which we describe in greater
detail in Section III) admix elastoresistivity coefficients with
an A1g character (i.e., isotropic in-plane, or symmetric with
respect to rotation about the c-axis), potentially affecting the
determination of the associated elastoresistivity coefficients in
other symmetry channels.

To avoid the possible contamination of isotropic strain
that can manifest in a differential longitudinal elastoresistivity
measurement, it is preferable to extract the differential elas-

toresistivity from a measurement performed on just one single
crystal sample that is held under conditions of anisotropic
strain. One such method is to use the modified Montgomery
technique to measure the induced anisotropy in the longitu-
dinal resistivity of a square shape sample (Figure 1(b)). We
recently applied such a technique to measure the differential
elastoresistance of several families of iron-based superconduc-
tors.9 While this technique obviates concerns over strain trans-
mission to the sample, nevertheless it still requires separate
measurement of two (potentially large) longitudinal resistiv-
ities as a function of strain, the (potentially small) difference of
which yields the desired B1g or B2g components of the elastore-
sistivity tensor. Ideally, one would determine this difference
directly.

We note that it is indeed possible to measure the induced
resistivity anisotropy (and hence the B1g and B2g components
of the elastoresistivity tensor) from a single measurement. In
particular, we note that a tetragonal material which undergoes
an orthorhombic distortion by breaking symmetry about its
σx and σy mirror planes (i.e., undergoes a B2g distortion in
which the in-plane square lattice deforms into a parallelogram)
acquires finite off-diagonal terms in the resistivity tensor (ρxy
and ρyx) which are proportional to the amount of orthorhom-
bicity regardless of the magnetic field environment. Hence,
one can obtain the same information from a single measure-
ment of the transverse elastoresistivity (Figure 1(c)). The pri-
mary advantage of the transverse method is that it directly
measures the associated resistive anisotropy from a single
measurement of a single sample. Furthermore, by symmetry,
the measured quantity cannot be affected by isotropic strain in
the linear regime.

In this manuscript, we propose and demonstrate a new
method for probing the nematic susceptibility in the B2g chan-
nel χB2g based on measuring the transverse elastoresistivity
(∆ρ/ρ)xy. One common problem that can arise with measure-
ments of a transverse resistivity is ρxx contamination in a
nominal ρxy measurement due to contact misalignment, and so
we also provide a practical means for subtracting such contam-
ination. Since transverse elastoresistivity measurements have
to date neither been discussed nor measured, we provide here
a detailed description of the relevant tensor quantities and a
suitable technique that enables such a measurement.

We proceed by first describing appropriate coordinate
frames and associated transformations of the elastoresistiv-
ity tensor, necessary for the subsequent discussion. We then
explain the various configurations for measuring the corre-
sponding elastoresistivity coefficients, along the way char-
acterizing certain forms of experimental error. We conclude
by presenting 2mxy,xy data acquired via the new method for
the representative iron-pnictide BaFe2As2, which was chosen
since it has previously been well-characterized by differential
longitudinal measurements4–6 and has a large elastoresistive
response. The temperature dependence of the elastoresistiv-
ity coefficients as observed by the transverse method agrees
with the earlier differential measurements, revealing a nematic
instability in the B2g symmetry channel. Similar to our earlier
differential longitudinal measurements, anisotropic strain for
the transverse elastoresistance measurements was achieved by
gluing the sample to the surface of a piezoelectric PZT stack;
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however, we note that the proposed technique does not rely on
this specific realization, and alternative methods to strain the
sample can be readily envisioned.

II. COORDINATE FRAMES
AND THE ELASTORESISTIVITY TENSOR

As a consequence of strains experienced by a material,
terms in the resistivity tensor ρi j acquire a strain-induced
change,

∆ρi j(H) ≡ ρi j(H , ϵ̂) − ρi j(H , ϵ̂ = 0̂). (1)

The elastoresistivity mi j,kl(H) is a fourth-rank tensor that line-
arly relates the (normalized) strain-induced resistivity change
(∆ρ/ρ)i j(H) and the strain ϵkl according to

(∆ρ/ρ)i j(H) ≡ mi j,kl(H)ϵkl, (2)

where we choose to represent the second-rank tensors
(∆ρ/ρ)i j(H) and ϵkl as the column vectors

(∆ρ/ρ)i j(H) =

*....................
,

(∆ρ/ρ)xx(H)
(∆ρ/ρ)y y(H)
(∆ρ/ρ)zz(H)
(∆ρ/ρ)yz(H)
(∆ρ/ρ)z y(H)
(∆ρ/ρ)zx(H)
(∆ρ/ρ)xz(H)
(∆ρ/ρ)xy(H)
(∆ρ/ρ)yx(H)

+////////////////////
-

and ϵkl =

*....................
,

ϵ xx

ϵ y y

ϵ zz

ϵ yz

ϵ z y

ϵ zx

ϵ xz

ϵ xy

ϵ yx

+////////////////////
-

(3)

in order to represent mi j,kl(H) as a 9 × 9 matrix. The appro-
priate normalization scheme is given by1

(∆ρ/ρ)i j(H) ≡ (∆ρi j(H )/
√

ρii(H )√ρ j j(H )). (4)

Because of Onsager’s relation,13 the resistivity tensor is not
in general symmetric in the presence of a magnetic field and
so we avoid usage of the compactified Voigt notation in order
to present a generalized description appropriate for finite H .
The point group symmetry of the crystal lattice constrains the
number of independent nonzero coefficients in the elastoresis-
tivity tensor; for example, the elastoresistivity tensor for the
specific case of the D4h point group (appropriate for BaFe2As2
and derived elsewhere1) is given in Appendix A.

In labeling the elastoresistivity coefficients by spatial
coordinates, we have implicitly assumed a Cartesian system
referenced to the crystal itself and defined by its primitive
lattice vectors. We refer to this reference frame as the “crystal
frame” and denote it by unprimed x, y , and z axes. In order to
extract symmetry information about the crystal, one is gener-
ally concerned with measured quantities in the crystal frame.
We consider an experiment in which the crystal experiences
a purely normal (i.e., shear-free) homogeneous strain in a
given Cartesian frame of reference defined by x ′, y ′, and
z′ basis vectors. For example, this could be realized with a
piezoelectric PZT stack, where the basis vectors are defined by
the lateral dimensions of the stack. We refer to this reference
frame as the “normal strain frame,” which (by choice) shares
a mutual z/z′ axis with the crystal frame but is oriented at an

in-plane angle φ relative to the primitive axes of the crystal
frame (i.e., x̂ · x̂ ′ = ŷ · ŷ ′ = cos φ, where φ is positive when
the crystal frame is oriented counterclockwise relative to the
normal strain frame). The relative angle φ reflects our freedom
to strain the crystal along arbitrary directions relative to the
primitive crystal cell.

Additionally, when we perform an in-plane resistivity
measurement, we have the freedom to direct the current along
an arbitrary in-plane direction with respect to the crystal axes.
We define this “transport frame” by double-primed Cartesian
vectors x ′′, y ′′, and z′′; x ′′ is the direction in which the current
is sourced, y ′′ is the in-plane direction perpendicular to x ′′, and
z′′ is the out-of-plane direction perpendicular to x ′′. The trans-
port frame shares a mutual z/z′′ axis with the crystal frame
but is oriented at an in-plane angle θ relative to it (i.e., x̂ · x̂ ′′
= ŷ · ŷ ′′ = cos θ, where θ is positive when the crystal frame is
oriented counterclockwise relative to the current frame). The
relative orientation of the three coordinate frames is depicted
in Figure 2.

When performing an in-plane elastoresistivity measure-
ment, the normalized changes in resistivity (∆ρ/ρ)(xx)′′(Hz),
(∆ρ/ρ)(y y)′′(Hz), (∆ρ/ρ)(xy)′′(Hz), and (∆ρ/ρ)(yx)′′(Hz) are
measured in the transport frame (which is rotated relative to
the crystal frame by an angle θ), while the strains ϵ (xx)′, ϵ (y y)′,
and ϵ (zz)′ are measured in the normal strain frame (which is
rotated relative to the crystal frame by an angle −φ); they are
related by means of appropriately transformed elastoresistivity
coefficients according to

(∆ρ/ρ)(i j)′′ = α̂θ(∆ρ/ρ)i j = α̂θmi j,klϵkl

= α̂θmi j,klα̂φϵ (kl)′
≡ m(i j)′′,(kl)′ϵ (kl)′, (5)

where the α̂φ, α̂θ are suitable transformation matrices given in
Appendix A and the subscripts in the elastoresistivity coeffi-
cients denote that the strains are measured in the normal strain
frame (primes) while the normalized changes in resistivity are
measured in the transport frame (double primes).

FIG. 2. Schematic diagram illustrating the relative orientations of the crystal
(unprimed), normal strain (primed), and transport (double primed) coordinate
frames. The crystal and normal strain frames are related by a relative angle
φ about their mutual z/z′ axis, while the crystal and transport frames are
related by a relative angle θ about their mutual z/z′′ axis.
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III. DIFFERENTIAL LONGITUDINAL CONFIGURATION
FOR PROBING NEMATIC SUSCEPTIBILITY IN D4h

A. Ideal configuration

The elastoresistivity tensor takes a particularly simple
form when decomposed in terms of its irreducible repre-
sentations (as determined by the point group symmetry of
the crystal lattice). Such a decomposition motivates making
specific combinations of elastoresistance measurements in
order to isolate particular elastoresistivity coefficients in the
same symmetry class. For example, for the D4h point group,
the normalized resistivity changes in the B1g and B2g irre-
ducible representations are proportional to the corresponding
elastoresistivity coefficients (mxx,xx − mxx, y y and 2mxy,xy,
respectively) in the same symmetry channel and are related to
the nematic susceptibilities χB1g and χB2g in those irreps.1,4,7

There are, however, different experimental geometries that can
be used to extract these combinations of coefficients. Previ-
ously, we have shown how a differential longitudinal elastore-
sistance measurement can be used to measure mxx,xx − mxx, y y

and 2mxy,xy, which is illustrated schematically in Figure 3.
By taking the symmetry-motivated combination (∆ρ/ρ)(xx)′′
− (∆ρ/ρ)(y y)′′ and expressing it in terms of the elastoresistivity
coefficients in the crystal frame (Appendix A), we find that

(∆ρ/ρ)(xx)′′(Hz) − (∆ρ/ρ)(y y)′′(Hz)
=


ϵ (xx)′ − ϵ (y y)′


·
(mxx,xx − mxx, y y) cos(2θ) cos(2φ)

−2mxy,xy sin(2θ) sin(2φ) . (6)

Unsurprisingly, despite the fact that each crystal experiences
ϵ (zz)′ strain (and so the individual transport measurements
experience the effects of strain in the A1g symmetry channel

FIG. 3. Longitudinal elastoresistivity configurations for extracting (a)
mxx,xx−mxx, y y (with (θ,φ)= (0,0)) and (b) 2mx y,x y (with (θ,φ)
= (−π/4, π/4)), which characterize the B1g and B2g irreducible represen-
tations of mi j,kl in D4h. In (a), one measures the differential longitudinal
resistive response to strain (∆ρ/ρ)(xx)′′− (∆ρ/ρ)(y y)′′ to a strain ϵ(xx)′−ϵ(y y)′
with the transport, crystal, and normal strain frames all coincident; the
differential longitudinal elastoresistivity then yields the elastoresistivity co-
efficients mxx,xx−mxx, y y. In (b), one measures the differential resistive
response to strain (∆ρ/ρ)(xx)′′− (∆ρ/ρ)(y y)′′ to a strain ϵ(xx)′−ϵ(y y)′ with the
crystal frame oriented at the angles (θ,φ)= (−π/4, π/4) relative to the trans-
port and normal strain frames; the differential longitudinal elastoresistivity
then yields the elastoresistivity coefficient 2mx y,x y.

in addition to the B1g or B2g channels), the quantity (∆ρ/ρ)(xx)′′
− (∆ρ/ρ)(y y)′′ is unaffected by such strains since they are of a
different symmetry class. Equivalently, the effects of rotation-
ally invariant strains are subtracted out in taking the B1g or
B2g combination, as we originally noted.4 However, arbitrary
in-plane rotations are not symmetry elements of D4h (only
the discrete π/2 rotations about the mutual z/z′/z′′ axis are
symmetries of the point group), and so rotating the crystal
frame by an arbitrary angle θ relative to the transport frame
and/or by an arbitrary angle φ relative to the strain frame
can mix B1g (mxx,xx − mxx, y y) and B2g (2mxy,xy) quantities
(measured in the crystal frame) into each other. For certain
high symmetry directions of the current and normal strains
relative to the crystal axes, though, one can isolate the B1g
and B2g coefficients and hence infer the behavior of the cor-
responding susceptibilities in those symmetry channels. The
high symmetry configuration for mxx,xx − mxx, y y (∝ χB1g ) is
(θ,φ) = (0,0) (i.e., the transport, current, and normal strain
frames are all coincident), while the high symmetry config-
uration for 2mxy,xy (∝ χB2g ) is (θ,φ) = (−π/4, π/4) (i.e., the
crystal frame is oriented at π/4 radians relative to the transport
and normal strain frames); these arrangements are depicted in
Figure 3 and can be confirmed with (6). This was precisely the
configuration used in our initial measurements of the elastore-
sistance of iron-based4,5 and heavy fermion7 superconductors.
The same information can also be extracted from a modified
Montgomery geometry.9

B. Sources of error

There are two broad categories of systematic error asso-
ciated with elastoresistivity measurements. In the first class
are errors which affect the magnitude of the measured ela-
storesistivity coefficients but which do not mix coefficients
belonging to different symmetry channels. Systematic errors
of this type include geometric factors and (for homogeneously
strained samples) imprecision in determining the strain expe-
rienced by the sample. Since these types of errors do not
mix responses from different symmetry channels, they do not
impugn one’s ability to assign an instability to a particular
symmetry channel. Such uncertainties are therefore less of a
concern from the perspective of characterizing the symmetry
of an associated order parameter, which has been a primary
motivation for considering elastoresistivity measurements of
strongly correlated materials. In contrast, in the second class of
systematic errors are those which mix responses from different
symmetry channels in a given measurement. Errors of this type
can arise, for example, due to angular misalignment of the
transport or normal strain frames relative to the crystal frame
or if the two samples that are used in a differential measure-
ment experience unequal strain. Both of these examples not
only result in errors in the magnitude of the extracted elas-
toresistivity coefficients but can also complicate symmetry-
based conclusions by admixing symmetry channels. In this
section, we briefly comment on several sources of systematic
errors in both classes as they relate to a differential longi-
tudinal measurement configuration, with a particular focus
on those errors of the second class. The primary reason for
doing so in the context of this paper is then to motivate the
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alternative transverse measurement configuration which does
not suffer some of these drawbacks. Here we focus specifically
on errors associated with the standard four-contact geometry
(Figure 1(a)), but a similar analysis could be applied to the
modified Montgomery technique.

1. Angular misalignment

In order to measure mxx,xx − mxx, y y or 2mxy,xy, crys-
tals should be oriented such that (θ,φ) = (0,0) and (θ,φ)
= (−π/4, π/4), respectively. In practice, misalignment will
occur which will affect the measured elastoresistivity coeffi-
cients. Within the present formalism, we can propagate this
error to leading order; in this section, we quote the main results,
referring the reader to Appendix B for the full derivation.

Suppose that in attempting to measure (∆ρ/ρ)(xx)′′, we
intended to orient the crystal in a high-symmetry configu-
ration characterized by the angles (θ,φ) but actually did so
in a configuration given by (θ + δθxx, φ + δφxx). To probe
nematic susceptibility, we subtract (∆ρ/ρ)(y y)′′ from (∆ρ/ρ)(xx)′′,
which we also intend to be measured in a configuration (θ,φ)
but which may also be misaligned according to (θ + δθy y,
φ + δφy y). For full generality, we assume δθxx , δθy y and
δφxx , δφy y. Expanding these errors to leading order about
the high symmetry configurations (θ,φ) = (0,0) and (θ,φ)
= (−π/4, π/4), the elastoresistivity coefficients mxx,xx

− mxx, y y (in the first configuration) and 2mxy,xy (in the second
configuration) are misestimated by a factor

1 −

δθ2

xx + δθ2
y y + δφ2

xx + δφ2
y y


. (7)

The angular alignment errors systematically induce an under-
estimate of the true elastoresistivity coefficients and come in
at second order in the misalignment; even if all angles were off
by as much as 5◦ (a typical experimental uncertainty), the total
error would only be ∼3%, and so the high symmetry configu-
rations are relatively insensitive to minor angular offsets.

Additionally, misalignment with respect to the high sym-
metry configurations also mixes B1g coefficients into a nomi-
nal measurement of the B2g symmetry channel and vice versa.
The amount of mixing from the other symmetry channel is
proportional to

− 2

δθxxδφxx + δθy yδφy y


, (8)

which again is at second order in the misalignment. This
mixing due to misalignment could be significant if the relative
difference in the magnitudes of the elastoresistivity coeffi-
cients in the two symmetry channels is large. For example, for
the specific case of the iron-based superconductors in which
χB2g diverges, measurement of mxx,xx − mxx, y y is affected
by admixture of the much larger 2mxy,xy coefficient, whereas
measurement of 2mxy,xy is essentially unaffected by admix-
ture of a small amount of the much smaller mxx,xx − mxx, y y.4

2. Unequal strain experienced by the two samples

The differential longitudinal technique relies on both sam-
ples experiencing the same homogeneous strain. If the samples
experience a different strain due to experimental nonidealities
(see Sec. III B 3 for a discussion relevant to the specific

technique we have employed), this will also affect the deduced
elastoresistivity coefficients.

Relative strain errors are of potentially greater concern
than misalignment errors since any strain offset error occurs
at first order. Strain offsets also erroneously mix in A1g-like
coefficients and hence contaminate a nominal nematic suscep-
tibility measurement with the effects of isotropic strain (see
discussion in Appendix C).14 Comparison of nominal B1g and
B2g coefficients can help bound the amount of A1g contami-
nation (since such rotationally invariant contamination would
manifest equally in both B1g and B2g measurements). Hence,
it is still possible to classify which symmetries are broken at
the phase transition (i.e., assigning the order parameter to a
particular irreducible representation of the space group); how-
ever, these concerns motivate development of a technique that
does not rely on separate measurements of different samples
but which is based instead on measurement of a single sample.
This is the primary motivation for adopting either the modified
Montgomery technique (Figure 1(b)) or the transverse elastore-
sistance technique(Figure1(c)) thatweintroduce inSectionIV.

3. Systematic errors originating
with the specific technique

In addition to the sources of systematic error discussed
above, additional errors can be introduced which are specific
to the particular technique that is used to strain the samples.
For our experimental realization in which single crystals are
glued to the side surface of a PZT stack, these errors are
related to measurement of the strain experienced by the sam-
ple, differential thermal contraction, and strain homogeneity.
We emphasize, however, that these factors are not generic
to elastoresistivity measurements; alternative methodologies
may be able to mitigate or circumvent these particular sources
of error while potentially incurring others.

For the analysis so far, it has been assumed that the strain
experienced by the sample can be accurately determined. In
practice, there are different ways this could be achieved, each
of which would introduce an associated uncertainty. For the
specific realization of the experiment that we present in this
manuscript, we measure the strain on the PZT surface using
two strain gauges mounted perpendicularly along the PZT
stack axes and use this value to estimate the strain experienced
by the sample. Strain transmission has been characterized for
samples with a similar aspect ratio by comparing measure-
ments for strain gauges mounted on top of the sample with
the one mounted directly on the PZT stack.5,9 Those measure-
ments revealed a strain transmission in excess of 80% for the
temperature range of our current experiments with only a weak
temperature dependence.

Differential thermal contraction between the sample and
the PZT stack on which it is mounted implies that the sample
is strained even when no voltage is applied to the piezoelectric.
At high temperatures, this is a small effect since the dynamic
range over which the sample can be strained exceeds the “bias”
strain due to such thermal effects.15–19 However, the situation
is reversed at cryogenic temperatures. Upon cooling to 100 K,
the crystal experiences a large, anisotropic strain (of about
∼0.1%)20 solely from the PZT due to an expansion along its
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poling direction; depending on the voltage range that is applied
to the PZT stack, this can be much larger than the dynamic
strain that the PZT can apply due to an applied voltage at this
temperature (∼0.01% at 150 V),4,19 which means that the strain
experienced by the crystal may not be able to be tuned through
zero. So long as the material is still in the regime of linear
response, which can be checked, the elastoresistivity coeffi-
cients can still be faithfully measured; however, alternative
methodologies20 can also be employed which mitigate such
effects and more closely yield zero strain conditions.

So far, our analysis has assumed no relaxation of the strain
through the thickness of the crystal. In practice, the strain
will relax towards its unstrained edges on a certain length
scale determined by the elastic stiffness of the sample and
the extent to which the sides of the crystal are “clamped” by
the epoxy. To mitigate such effects, samples to be measured
must have a thickness that is much smaller than the in-plane
dimensions. Concerns about strain relaxation in the narrow
in-plane direction relative to the long in-plane direction can
be completely allayed by using a modified Montgomery tech-
nique for crystals with a square shape (Figure 1(b)).9

An additional source of uncertainty associated with the
specific experimental protocol we have discussed in which
samples are glued to the surface of a PZT stack arises from
strain inhomogeneity. For crystals with dimensions compa-
rable to the separation distance between two PZT layers, and
depending on where the crystal is mounted relative to a PZT
layer junction, the strain that the crystal experiences can at least
in principle vary with position on the PZT surface. The PZT
stacks that we have employed have been stacked along their
poling direction with an individual layer thickness of∼200 µm
and a separation between layers of ∼50 µm. If a crystal with a
width roughly equal to these thicknesses is adhered along the
multilayer interface (as is required in a differential longitudinal
elastoresistance measurement) and inauspiciously placed in
the interfacial separation region, the crystal will experience
little strain even with a voltage applied to the piezo. This
sort of inhomogeneity can be ameliorated by spreading the
strain transmitting epoxy to encompass more area than just the
interface region, attention to placement on the PZT substrate,
and use of larger crystals. Modified techniques can also be
readily envisaged that yield a more homogeneous strain.

4. Geometric effects

Finally, we note that geometric effects also impact the
determination of the elastoresistivity coefficients in a differ-
ential longitudinal configuration. Specifically, for a uniformly
strained sample the relative change in longitudinal resistance
(∆R/R)xx is a sum of the intrinsic elastoresistivity (∆ρ/ρ)xx and
a geometric term due to the change in the shape of the crystal.
This latter term can in principle be exactly determined with
full knowledge of the elastic constants Ci j,kl of the material.4

The geometric effects are small (contributing an additive factor
of order unity to the measured elastoresistivity coefficients)
and temperature independent. Consequently, in practice they
can be neglected when considering a material with large elas-
toresistivity coefficients that diverge with temperature on ap-
proaching a phase transition.

FIG. 4. Schematic diagrams illustrating transverse elastoresistivity config-
urations for extracting (a) mxx,xx−mxx, y y (with (θ,φ)= (π/4,0)) and
(b) 2mx y,x y (right, with (θ,φ)= (0, π/4)). In (a), one measures the sum of
the transverse resistive response to strain (∆ρ/ρ)(x y)′′+ (∆ρ/ρ)(yx)′′ to a strain
ϵ(xx)′−ϵ(y y)′ with the transport frame rotated by π/4 radians relative to the
crystal and normal strain frames; the summed elastoresistivity then yields
the elastoresistivity coefficients mxx,xx−mxx, y y. In (b), one measures the
sum of the transverse resistive response to strain (∆ρ/ρ)(x y)′′+ (∆ρ/ρ)(yx)′′ to
a strain ϵ(xx)′−ϵ(y y)′ with the normal strain frame rotated by π/4 radians
relative to the crystal and transport frames; the summed transverse elastore-
sistivity then yields the elastoresistivity coefficient 2mx y,x y.

IV. TRANSVERSE CONFIGURATION FOR PROBING
NEMATIC SUSCEPTIBILITY IN D4h

A. Ideal configuration

An alternative method for obtaining the same symme-
try information involves transverse elastoresistance measure-
ments, as depicted in Figure 4. The underlying intuition is
that by appropriately rotating the crystal frame relative to the
transport and normal strain frames, the quantity (∆ρ/ρ)(xy)′′
+ (∆ρ/ρ)(yx)′′ can mix into (∆ρ/ρ)(xx)′′ − (∆ρ/ρ)(y y)′′ and hence
probe the same B1g and B2g susceptibilities. Expressing
(∆ρ/ρ)(xy)′′ + (∆ρ/ρ)(yx)′′ in terms of strains in the normal strain
frame and elastoresistivity coefficients in the crystal frame
(Appendix A), we find that

(∆ρ/ρ)(xy)′′(Hz) + (∆ρ/ρ)(yx)′′(Hz)
= −


ϵ (xx)′ − ϵ (y y)′


·

2mxy,xy cos(2θ) sin(2φ)

+ (mxx,xx − mxx, y y) sin(2θ) cos(2φ) , (9)

and so the elastoresistivity coefficients corresponding to the
B1g and the B2g irreducible representations can be isolated
for appropriate high-symmetry configurations. As depicted
in Figure 4 (which can be corroborated with (9)), the appro-
priate configuration to extract mxx,xx − mxx, y y (∝ χB1g ) via
such transverse measurements is to measure the transverse
elastoresistivity with currents and transverse voltages directed
along the [110] and [11̄0] crystallographic directions and with
strains oriented along the crystalline axes (mathematically,
(θ,φ) = (π/4,0)); conversely, extracting 2mxy,xy (∝ χB2g )
requires measuring the superposed transverse elastoresistiv-
ity with currents and transverse voltages directed along the
principal crystalline axes and with strains directed along the
[110] and [11̄0] crystallographic directions (mathematically,
(θ,φ) = (0, π/4)).
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FIG. 5. Transverse elastoresistivity configurations for extracting
(a) mxx,xx−mxx, y y (with (θ,φ)= (π/4,0)) and (b) 2mx y,x y (with
(θ,φ)= (0, π/4)). Mounted in these configurations and in the presence of a
finite field, the appropriate elastoresistivity coefficients can be measured from
(∆ρ/ρ)(x y)′′(Hz)+ (∆ρ/ρ)(x y)′′(−Hz); in zero field, the same coefficients can
be extracted with a single measurement (∆ρ/ρ)(x y)′′(Hz = 0). The primary
advantage of the transverse technique is that one can measure the same elas-
toresistivity coefficients from a single mounting without A1g contamination.

The previous discussion was framed in a manner that
emphasized the essential similarity between the longitudinal
and transverse configurations; however, there is an additional
simplification in the transverse configuration that essentially
halves the experimentalist’s workload. Since (∆ρ/ρ)(yx)′′(Hz)
= (∆ρ/ρ)(xy)′′(−Hz) from Onsager’s relation,1 one can measure
the same elastoresistivity coefficients in the transverse config-
uration by performing the measurements (∆ρ/ρ)(xy)′′(±Hz) and
taking the sum. An illustration of this elastoresistivity config-
uration is given in Figure 5 and expressed mathematically as

(∆ρ/ρ)(xy)′′(Hz) + (∆ρ/ρ)(xy)′′(−Hz)
= −


ϵ (xx)′ − ϵ (y y)′


·

2mxy,xy cos(2θ) sin(2φ)

+ (mxx,xx − mxx, y y) sin(2θ) cos(2φ) . (10)

Instead of dismounting the same crystal and re-mounting
in a new configuration, as is required for the differential longi-
tudinal configuration, one needs only reverse the orientation
of the magnetic field, which is usually simply accomplished
in situ. We emphasize that the appropriate elastoresistivity
coefficients are given by the symmetric combination (i.e., sum)
of transverse voltages, in contrast to Hall coefficient measure-
ments, which are given by the anti-symmetric (i.e., difference)
combination in magnetic field. A final comment is that in zero
magnetic field, (∆ρ/ρ)(xy)′′ = (∆ρ/ρ)(yx)′′, and so only a single
measurement is required

(∆ρ/ρ)(xy)′′(Hz = 0) = (∆ρ/ρ)(yx)′′(Hz = 0)
= − 1

2


ϵ (xx)′ − ϵ (y y)′


·

2mxy,xy cos(2θ) sin(2φ)

+ (mxx,xx − mxx, y y) sin(2θ) cos(2φ) . (11)

B. Sources of error

As for the differential longitudinal configuration, system-
atic errors affecting determination of the relevant
elastoresistivity coefficients from transverse measurements
are of two types: those that only affect the magnitude of the

measured coefficients and those that can admix symmetry
channels. In particular, uncertainties in sample dimensions,
angular misalignment, and strain magnitude errors (all rele-
vant to differential longitudinal configurations) can also mani-
fest in the transverse technique. In addition, misalignment
of the contacts used to measure the transverse voltages can
lead to some amount of longitudinal resistivity ρxx seeping
into an intended measurement of ρxy, in which case it is
necessary to determine an appropriate method to correctly
subtract such longitudinal contamination. In this section, we
address each of these concerns as they relate to the trans-
verse scheme, quoting a few main results (whose full deri-
vation appears in Appendices B, C, and D) and empha-
sizing the advantages of the transverse setup. In particular
we note the principal advantage of the transverse technique
is that the measurement does not suffer from A1g
contamination.

1. Angular misalignment

Alignment errors propagate in analogous ways as for the
differential longitudinal case (Section III B). Assuming that
we intended to measure (∆ρ/ρ)(xy)′′(Hz) and (∆ρ/ρ)(yx)′′(Hz)
in a (θ,φ) configuration but actually mounted at (θ + δθxy, φ
+ δφxy) and (θ + δθyx, φ + δφyx) (respectively), we obtain
the analog of (7) for the propagated error and (8) for the
contamination from the other symmetry channel (one need
only interchange subscripts xx ↔ x y and y y ↔ yx; see
Appendix B); again, in the high symmetry configurations, the
leading errors are at second order in the angular misalign-
ment and consequently lead to negligibly small systematic
errors.

2. Unequal strain experienced by the two samples

Strain offset errors are fundamentally different than in the
differential longitudinal configuration, which is the primary
advantage of the transverse geometry. In zero magnetic field,
the quantity (∆ρ/ρ)(xy)′′ is fundamentally immune to strain
offset errors (indeed, there is no offset since only a single
sample is needed, in contrast to the differential technique).
Furthermore, the isotropic strains that are experienced by
the crystal cannot generate a transverse voltage: that is, ro-
tationally invariant (A1g) strains cannot produce direction-
ally oriented (B1g or B2g) resistivity changes (see Appen-
dix (C6), with mxy,xx = mxy,zz = 0 in vanishing field). In a
finite field, a second measurement is needed, but since On-
sager gives (∆ρ/ρ)(yx)′′(Hz) = (∆ρ/ρ)(xy)′′(−Hz), one can mea-
sure the induced resistivity changes without re-gluing the
crystal; therefore, one can be sure that the strain offset errors
in the (∆ρ/ρ)(xy)′′(±Hz) measurements are exactly zero. This is
the primary advantage of the transverse technique.

3. Subtracting ρxx contamination
from a transverse measurement

One additional complication in measuring (∆ρ/ρ)(xy)′′(Hz),
however, is subtracting out any unwanted contributions from
ρxx in a putative ρxy measurement due to unintentional
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contact misalignment. In a typical Hall measurement of ρxy,
one can use the fact that the transverse force on the electrons
is odd in the magnetic field and hence anti-symmetrize the
data in field to subtract out ρxx. This approach does not work
for transverse elastoresistivity, where the symmetry-motivated
elastoresistivity coefficients of interest are themselves even
in the magnetic field (despite coming from a measurement
of (∆ρ/ρ)(xy)′′(Hz)). Instead, one needs to characterize the
amount of longitudinal ρxx contamination in terms of the
geometry of the electrical contacts themselves. Parametriz-
ing this geometrical misalignment by a parameter ∆ℓ, one
accounts for such contamination by simultaneously measur-
ing the longitudinal elastoresistance (∆ρ/ρ)(xx)′′(Hz) from a
second pair of contacts (Figure 6) and precisely subtracting
out the down-weighted contribution ∆ℓ

(∆ρ/ρ)(xx)′′(Hz)


from
(∆ρ/ρ)(xy)′′(Hz). The full subtraction procedure is derived and
outlined in Appendix D.

4. Geometric effects

Geometric effects manifest in a fundamentally different
manner in the transverse method relative to the differential
longitudinal method. The relative change in transverse resis-
tance (∆R/R)xy is a sum of the intrinsic elastoresistivity (∆ρ/ρ)xy
and a geometric term related to the strain-induced change in
thickness of the crystal ∆t/t. For a pure B1g or B2g distortion,
∆t ≡ 0, but even in a nonideal realization in which there is
also some isotropic component to the strain (and therefore a
finite ∆t), the contribution to the measured (∆R/R)xy is down-
weighted by the unstrained ρxy, which for a tetragonal mate-
rial is precisely zero in zero magnetic field. Thus, while geo-
metric effects contribute a small, temperature-independent,
additive factor of order unity to the measured elastoresis-

FIG. 6. Schematic diagram showing contact geometry for a practical trans-
verse elastoresistance measurement. Contacts 1 and 2 are used to measure
R(x y)′′; however, partial misalignment can lead to R(xx)′′ contamination in
a nominal R(x y)′′ measurement. This contamination can be accounted for by
subtracting out a down-weighted longitudinal contribution, with the down-
weighting given by the factor ∆ℓ. ∆ℓ is defined as the ratio of the misalign-
ment distance l12 to the distance between longitudinal contacts l13, which
is related to the ratio of the transverse and longitudinal voltages on a free-
standing crystal: ∆ℓ ≡ l12/l13=V(x y)′′(H=0,free−standing)/V(xx)′′(H=0,free−standing)
(see Appendix D). This subtraction procedure is analogous to the anti-
symmetrization procedure that is used for Hall effect measurements. To use
this geometry to probe χB1g or χB2g requires mounting the crystal such that
(θ,φ)= (π/4,0) or (θ,φ)= (0, π/4), respectively, as described in the main
text.

tivity coefficients in the differential longitudinal configura-
tion (that are still negligible on approaching the phase tran-
sition), these sorts of geometric effects are even smaller in
the transverse scheme (see further discussion in Appendix D).
However, in converting between measured relative changes in
resistance (∆R/R)xy and intrinsic relative changes in resistivity
(∆ρ/ρ)xy, a multiplicative factor relating to the length l and
width w of the crystal is required: (∆ρ/ρ)xy = l

w
(∆R/R)xy (deri-

vation in Appendix D). Errors in the determination of the in-
plane dimensions of the crystal are temperature-independent
and do not admix elastoresistivity coefficients of different
symmetries.

V. TRANSVERSE ELASTORESISTIVITY
MEASUREMENTS OF BaFe2As2

In order to demonstrate the efficacy of the new trans-
verse configuration, we chose to measure the 2mxy,xy ela-
storesistivity coefficient of the representative iron-pnictide
BaFe2As2. Since we have already extracted this coefficient
using the differential longitudinal method,9 this allows for
a direct comparison between the two configurations. As we
demonstrate below, values of 2mxy,xy extracted from the two
techniques agree in their temperature dependence, revealing a
nematic instability in the B2g symmetry channel.

A. Experimental Methods

Single crystals of BaFe2As2 were grown from a self-
flux method as described elsewhere.21,22 The crystals grow as
thin plates, with the c-axis perpendicular to the plane of the
plates and natural facets along the in-plane principal tetrag-
onal axes. A representative, as-grown, rectangular (1.6 mm
× 0.67 mm × 0.029 mm) crystal was selected for the transport
measurements. X-ray diffraction was used to confirm that the
crystallographic [100] and [010] axes were oriented along the
length/width of the sample. Electrical contacts (with current
sourced along the [100] tetragonal direction) were affixed to
gold-sputtered pads with Dupont 4929N silver paste.

Prior to gluing the sample to the PZT stack, the temper-
ature dependence of the resistances R(xx)′′ and R(xy)′′ were
measured in zero magnetic field for the free-standing, un-
strained crystal in order to pre-characterize the contact geom-
etry. The unstrained R(xx)′′ is also used for normalizing the
elastoresistance data. The samples were then glued to the top
surface of a PZT piezoelectric stack (Part Number PSt 150/5
× 5/7 cryo 1, from Piezomechanik GmbH) using ITW Devcon
five minute epoxy spread uniformly across the bottom of the
crystal (Figure 7). The orientation of the crystal axes of the
sample with respect to the principal axes of the PZT stack
was initially determined by eye, such that the long axis of
the transport bar was at an angle φ of approximately 45◦ with
respect to the PZT stack. The angle was subsequently deter-
mined more precisely from measurements of the photograph
shown in Figure 7 to be 45.4◦ ± 0.2◦. Mutually transverse
strain gauges (Part Number WK-05-062TT-350, from Vishay
Precision Group) were glued to the other side of the PZT stack
in order to measure the strains ϵ (xx)′ and ϵ (y y)′ in situ.
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FIG. 7. Photograph showing a BaFe2As2 crystal affixed to the surface of
a PZT stack and mounted in the transverse elastoresistivity configuration
(θ,φ)= (0, π/4), appropriate for measuring 2mx y,x y (∝ χB2g ). Contacts 1,
2, and 3 are labeled with reference to Figure 6. The twisted pairs used for
performing the voltage measurements are evident.

The PZT stack was mounted on the coldhead of a specially
adapted probe and cooled in exchange gas in a Janis flow
cryostat. Temperature was controlled with a Lake Shore 340
temperature controller, with a stability of ±50 mK.23 The
resistances of both the sample and the strain gauges were
measured using Stanford Research Systems SR830 lock-in
amplifiers; for the sample, Stanford Research Systems Model
SR560 preamplifiers were also used. AC excitation currents of
1 mA and 0.1 mA were used for the sample and strain gauges,
respectively.

Elastoresistance data at a fixed temperature were acquired
from changes in the resistances of the sample (R(xx)′′ and
R(xy)′′) and of both strain gauges while sweeping the voltage
applied to the PZT between −50 V and +150 V. The voltage
was swept stepwise in 4 V increments with a delay of 0.25 s
between steps; the measured elastoresistance did not depend
on this sweep rate scheme, nor were there any observed heating
effects.7 Three full voltage loops were taken for each temper-
ature setpoint; after completing these loops, the temperature
was then stepped to a new setpoint and allowed to stabilize
before performing the next elastoresistance measurement. All
elastoresistance measurements were performed in zero applied
magnetic field.

B. Results

The temperature dependence of the longitudinal and trans-
verse resistances for the free-standing (unstrained) sample are
shown in Figure 8. The longitudinal resistance Rxx follows
the usual temperature dependence for this material, exhibiting
a downturn at the coupled structural-magnetic phase tran-
sition at TS,N = 134 K. A finite Rxy is measured even for
the unstrained sample (middle panel of Figure 8) due to
misalignment of the contacts used for the transverse voltage
measurement. As can be seen, for temperatures above TS,N ,
the ratio Rxy/Rxx = ∆ℓ is temperature-independent, with a

FIG. 8. Resistance measurements for the BaFe2As2 sample showing Rxx

(top panel), Rx y (middle panel), and the ratio ∆ℓ ≡ Rx y/Rxx (bottom panel).
For temperatures above the coupled structural and magnetic transition at
TS,N (vertical dashed gray line), ∆ℓ is small and temperature-independent;
by taking the average value for temperatures >150 K, we estimate ∆ℓ
∼ 4.1%±0.1% (horizontal dashed blue line). Since this measurement was
performed on a free-standing (unglued) sample in zero magnetic field, the
measured Rx y in the tetragonal state is due to Rxx contamination from con-
tact misalignment; ∆ℓ characterizes the physical extent of this misalignment.

value of ∼0.041 ± 0.01. A small deviation from this constant
value can be discerned for temperatures just above TS,N ,
presumably due to residual strains in the sample.24 The subse-
quent discussion and analysis refers solely to temperatures
above TS,N , for which the material is tetragonal; below this
temperature, the crystal structure is orthorhombic, and the
transverse resistance reflects an admixture of effects arising
from longitudinal contamination, electronic anisotropy asso-
ciated with the orthorhombicity, twin domain populations, and
twin boundary motion.

Representative strain-induced resistance changes∆R(xy)′′,
∆R(xx)′′, and ∆ℓ∆R(xx)′′ for three voltage sweeps at 100 K are
shown in Figure 9. The elastoresistive response in ∆R(xy)′′ is
significantly larger than ∆R(xx)′′, by a factor of ∼9 at 150 V.
To subtract out the ρxx contamination, one down-weights
∆R(xx)′′ even further by ∆ℓ; the resulting correction (∼0.4%) is
essentially negligible on the scale of the∆R(xy)′′ response. The
hysteretic behavior evident in ∆R(xy)′′ is an intrinsic property
of the PZT stack.

Representative transverse elastoresistance data, which
have been corrected for the small longitudinal contamination
as described above, are shown in Figure 10 as a function of
applied shear strain (ϵ xy = − 1

2 (ϵ (xx)′ − ϵ (y y)′)) for a variety
of temperatures. The applied shear strain is relative to the
strain experienced by the crystal with 0 V applied to the
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FIG. 9. Representative data for BaFe2As2 showing strain-induced changes
in resistance ∆R(x y)′′, ∆R(xx)′′, and ∆ℓ∆R(xx)′′ at a temperature of 100 K
as a function of the voltage applied to the PZT stack. Values of ∆ℓ are
extracted from Figure 8 as described in the main text. In order to correct
for ρxx contamination, the relatively small amount ∆ℓ∆R(xx)′′ is subtracted
from ∆R(x y)′′.

PZT stack. Because of the combined effects of gluing to
the PZT stack and differential thermal contraction between
the crystal and PZT, the applied shear strain is not relative
to the zero strain state of the crystal. As can be seen, all
measured elastoresistances are linear in (relative) shear strain
for all measured temperatures. The elastoresistivity coefficient
2mxy,xy at each temperature is extracted from the slopes in
Figure 10 and a multiplicative factor of the crystal’s length to
its width used to convert the resistance ratio to a resistivity
ratio ((∆ρ/ρ)(xy)′′ = l

w
(∆R(x y)′′/Rxx); see Appendix D). The

temperature dependence of the resulting values of 2mxy,xy is
shown in Figure 11. As has been previously shown,9,25 2mxy,xy

progressively increases on cooling, reaches its peak at the
coupled structural and magnetic transition temperature, and
then gradually decreases on further cooling. The maximum

FIG. 10. Representative data showing the temperature dependence of the
elastoresistive response of BaFe2As2 in the transverse configuration (θ,φ)
= (0, π/4) as a function of the induced shear strain (ϵx y =− 1

2 (ϵ(xx)′−ϵ(y y)′))
experienced by the crystal. This is the appropriate configuration for measur-
ing 2mx y,x y (∝ χB2g ). Slopes have been corrected for ρxx contamination,
as described in the main text and Appendix D. All responses were linear in
the applied strain for all measured temperatures.

FIG. 11. Temperature dependence of the elastoresistivity coefficient
2mx y,x y of BaFe2As2 from the transverse configuration. Error bars repre-
sent 95% confidence intervals from the linear fits to the elastoresistive slopes
at each temperature. The vertical dashed bar marks the coincident structural
and magnetic transition temperature TS,N of the sample.

value of 2mxy,xy is ∼52, much larger than that of a typical
metal (∼1).

In accordance with our previous analysis of differential
longitudinal elastoresistance measurements,4,5 the diverging
temperature dependence of 2mxy,xy can be fit well to the
Curie-Weiss form

2mxy,xy =
λ

a0(T − θ) + 2m0
xy,xy. (12)

Directly fitting the temperature dependence of 2mxy,xy to
the Curie-Weiss form (12), the temperature-independent fit
parameter 2m0

xy,xy can be estimated and then used to plot
the temperature dependence of the inverse susceptibility

FIG. 12. Temperature dependence of [−2(mx y,x y−m0
x y,x y)]−1, propor-

tional to the inverse nematic susceptibility χ−1
B2g

in this configuration. Error
bars represent 95% confidence intervals from both the linear fits to the
elastoresistive slopes at each temperature and the estimation of 2m0

x y,x y.
The red line shows a linear fit (i.e., Curie-Weiss functional form) between
136 K and 220 K, with fit parameters given in Table I. The vertical dashed line
marks the coincident structural and magnetic transition temperature TS,N of
the sample (TS,N = 134 K).
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TABLE I. Fit parameters from transverse, differential longitudinal, and modified Montgomery methods. Fit to
2mx y,x y =

λ
a0(T−θ) +2m0

x y,x y, uncertainties represent 95% confidence intervals from a least squares fitting
routine.

Parameter Transverse method
Differential longitudinal method

Ref. 25
Modified Montgomery method

Ref. 9

2m0
x y,x y 6.7 ± 0.5 4.7 ± 0.98 7.7 ± 0.3

λ/a0 (K) −909 ± 16 −897 ± 84 −1540 ± 13
θ (K) 120 ± 0.9 124.9 ± 1.6 109 ± 0.7

[−2(mxy,xy − m0
xy,xy)]−1 (which, for an exact Curie-Weiss

form, is linear in temperature). Fitting over the tempera-
ture range of 136 K to 220 K results in an estimate of
2m0

xy,xy = 6.7 ± 0.5, which we use to plot the temperature
dependence of [−2(mxy,xy − m0

xy,xy)]−1 as in Figure 12.
Further details on the evaluation of the goodness of fit and on
the temperature window used are discussed in Appendix E.
The slope and intercept of [−2(mxy,xy − m0

xy,xy)]−1 yield
estimates of λ/a0 = −909 ± 16 K and θ = 120 ± 0.9 K, as
given in Table I. As we have previously discussed, the
observation of such a Curie-Weiss susceptibility with a
Weiss temperature θ close to the coupled structural and
magnetic transition definitively establishes the ferroelastic
phase transition in BaFe2As2 to be pseudo-proper (i.e., strain
is not the primary order parameter of the transition but does
have the same symmetry as the order parameter).4,5 The
physical origin of the electronic nematic order that drives
this phase transition remains a subject of ongoing research
(for example, see Fernandes et al.26 for a recent review and
discussion).

The estimated Curie-Weiss fit parameters from the trans-
verse method can also be compared to the parameter estimates
from earlier measurements of 2mxy,xy by the differential
longitudinal25 and modified Montgomery methods9 (see Ta-
ble I). All three measurements agree in their divergent temper-
ature dependence, which evinces the existence and onset of
a nematic order parameter. The differential longitudinal and
transverse measurements agree within ∼4.0% in their estimate
of θ (which characterizes a bare mean field nematic critical
temperature) and agree within∼1.3% in their estimates of λ/a0;
meanwhile, there is a larger discrepancy between the estimates
of θ and λ/a0 as obtained from the modified Montgomery and
transverse methods.

The quantitative variations in the estimated fit parame-
ters between the three methods presumably reflect systematic
differences in the physical environment in which the three
experiments are performed. Strictly, elastoresistivity coeffi-
cients are defined in the limit of vanishing strain; however, this
limit is not precisely realized in any of the three methods. The
elastoresistivity coefficients as extracted from the differential
longitudinal and transverse methods are measured relative to
the strain state of the crystal with 0 V applied to the PZT
(i.e., relative to a state with some residual built-in isotropic
and anisotropic strain due to adhesion to the strain-transmitting
substrate and differential thermal contraction), while the elas-
toresistivity coefficients as extracted from the modified Mont-
gomery method are measured relative to a “B2g neutral point”9

where the anisotropic strain is tuned to zero by applying a

finite voltage to the PZT (until the longitudinal resistivities
ρxx, ρy y are equal) but where the isotropic strain is explicitly
nonzero. Furthermore, since the physical dimensions of the
crystals vary between the three studies (“matchstick” rect-
angular bars for the differential longitudinal measurements;
square or rectangular plates with a nearly 2:1 aspect ratio for
the modified Montgomery and transverse methods), the effect
of strain relaxation due to the geometry of the crystals could
plausibly contribute to systematic variation in the fit param-
eter estimates as well. The exact reasons for the quantitative
differences, however, are not yet perfectly understood.

VI. CONCLUSION

In writing this paper, we have had two overarching goals.
First, building on the elastoresistivity formalism that we have
introduced in recent publications,1,4 we have proposed an alter-
native method to probe the B1g and B2g components of the
elastoresistivity tensor for a tetragonal material via transverse
elastoresistivity measurements. We have quantified the ef-
fects of various experimental nonidealities that affect both the
earlier differential longitudinal elastoresistance methods and
the new transverse elastoresistance method and have shown
that the transverse scheme has certain specific advantages. In
particular, the transverse technique enables measurement of
mxx,xx − mxx, y y or 2mxy,xy via a single measurement. Im-
portantly, since isotropic strains cannot induce a transverse
elastoresistivity (∆ρ/ρ)(xy)′′, and since 2mxy,xy was extracted
from a single measurement, the new method is fundamentally
immune to A1g-like strains and strain offset errors.

Second, we have used the representative iron-pnictide
BaFe2As2 to explicitly demonstrate the viability of the trans-
verse elastoresistivity configuration. The new method corrob-
orates the earlier finding of a Curie-Weiss-like 2mxy,xy elas-
toresistivity coefficient in this material, signaling the divergent
nematic susceptibility in the B2g symmetry channel. To our
knowledge, this is the first discussion and measurement of
transverse elastoresistance for any material.
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APPENDIX A: ELASTORESISTIVITY TENSOR FOR D4h AND TRANSFORMATION PROPERTIES

The explicit form of the elastoresistivity tensor for D4h point group symmetry is1

(A1)

This tensor has 10 independent coefficients, all implicitly dependent on the magnetic field. Those coefficients (of which there are
seven) that have an even number of x or an even number of y indices are correspondingly even functions of the magnetic field
due to the σx and σy symmetry constraints (where σx and σy are mirror operations about the y z and xz planes, respectively).
Conversely, those coefficients (of which there are three, demarcated by surrounding boxes) that have an odd number of x or an odd
number of y indices are odd functions of the magnetic field (and hence vanish in zero magnetic field). The symmetry properties
of this tensor are described in detail elsewhere.1

In a given elastoresistivity measurement, what one measures is (∆ρ/ρ)(i j)′′ (i.e., the normalized resistivity change in the
transport frame) to an applied strain ϵ (kl)′ in the strain frame, and what one seeks to extract are terms in the elastoresistivity
tensor mi j,kl in the crystal frame. These quantities are related by suitable transformation matrices α̂θ, α̂φ according to (5) of the
main text with the α̂φ, α̂θ given by rotational transformations of the form

α̂φ =

*....................
,

cos2(φ) sin2(φ) 0 0 0 0 0 cos(φ) sin(φ) cos(φ) sin(φ)
sin2(φ) cos2(φ) 0 0 0 0 0 − cos(φ) sin(φ) − cos(φ) sin(φ)

0 0 1 0 0 0 0 0 0
0 0 0 cos(φ) 0 0 − sin(φ) 0 0
0 0 0 0 cos(φ) − sin(φ) 0 0 0
0 0 0 0 sin(φ) cos(φ) 0 0 0
0 0 0 sin(φ) 0 0 cos(φ) 0 0

− cos(φ) sin(φ) cos(φ) sin(φ) 0 0 0 0 0 cos2(φ) −sin2(φ)
− cos(φ) sin(φ) cos(φ) sin(φ) 0 0 0 0 0 −sin2(φ) cos2(φ)

+////////////////////
-

(A2)

and analogously for α̂θ.
Prior to discussing the implications of these transformations for the elastoresistivity tensor, it is elucidating to focus first on

the effect of these rotational transformations on the strain and normalized change in resistivity tensors individually. If the crystal
frame is oriented relative to the strain frame by an angle φ, then the strains experienced by the crystal are related to the shearless
strains in the normal strain frame by ϵkl = α̂φϵ (kl)′; explicitly, this gives

*....................
,

ϵ xx

ϵ y y

ϵ zz

ϵ yz

ϵ z y

ϵ zx

ϵ xz

ϵ xy

ϵ yx

+////////////////////
-

=

*.......................
,

ϵ (xx)′cos2φ + ϵ (y y)′sin2φ

ϵ (xx)′sin2φ + ϵ (y y)′cos2φ

ϵ (zz)′
0
0
0
0

−1
2
(ϵ (xx)′ − ϵ (y y)′) sin(2φ)

−1
2
(ϵ (xx)′ − ϵ (y y)′) sin(2φ)

+///////////////////////
-

. (A3)

By rotating the crystal relative to the normal strain frame, the shearless strains in the normal strain frame are experienced as
both normal and shear strains in the crystal frame, with the amount of shear characterized by sin(2φ) according to ϵ xy = ϵ yx
= − 1

2 (ϵ (xx)′ − ϵ (y y)′) sin(2φ).
Exactly analogous relations exist for transport measurements expressed in the transport and crystal frames. Assuming that

the two frames are rotated relative to each other by an angle θ, then what one measures in the transport frame is related to the
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normalized change in resistivity in the crystal frame by (∆ρ/ρ)(i j)′′ = α̂θ(∆ρ/ρ)i j. Working this out explicitly for in-plane transport
measurements,

(∆ρ/ρ)(xx)′′(Hz) = (∆ρ/ρ)xxcos2θ + (∆ρ/ρ)y ysin2θ +
1
2

((∆ρ/ρ)xy + (∆ρ/ρ)yx) sin(2θ), (A4a)

(∆ρ/ρ)(y y)′′(Hz) = (∆ρ/ρ)xxsin2θ + (∆ρ/ρ)y ycos2θ − 1
2

((∆ρ/ρ)xy + (∆ρ/ρ)yx) sin(2θ), (A4b)

(∆ρ/ρ)(xy)′′(Hz) = (∆ρ/ρ)xycos2θ − (∆ρ/ρ)yxsin2θ − 1
2

((∆ρ/ρ)xx − (∆ρ/ρ)y y) sin(2θ), (A4c)

(∆ρ/ρ)(yx)′′(Hz) = −(∆ρ/ρ)xysin2θ + (∆ρ/ρ)yxcos2θ − 1
2

((∆ρ/ρ)xx − (∆ρ/ρ)y y) sin(2θ). (A4d)

The form of (A4) emphasizes that the amount of (∆ρ/ρ)xy and (∆ρ/ρ)yx signal in a (∆ρ/ρ)(xx)′′ or (∆ρ/ρ)(y y)′′ measurement is
characterized by sin(2θ), and likewise for the amount of (∆ρ/ρ)(xx) and (∆ρ/ρ)(y y) in a (∆ρ/ρ)(xy)′′ or (∆ρ/ρ)(yx)′′ measurement.

For the in-plane transport measurements that are the subject of this work, the transformation properties of the relevant
elastoresistivity coefficients are given by performing the transformation (5) with the specific elastoresistivity tensor (A1),

m(xx)′′,(xx)′ = m(y y)′′,(y y)′ = mxx,xx − mxy,xy sin(2θ) sin(2φ) − 1
2

�
mxx,xx − mxx, y y

� 
1 − cos(2θ) cos(2φ) , (A5a)

m(xx)′′,(y y)′ = m(y y)′′,(xx)′ = mxx, y y + mxy,xy sin(2θ) sin(2φ) + 1
2

�
mxx,xx − mxx, y y

� 
1 − cos(2θ) cos(2φ) , (A5b)

m(xx)′′,(zz)′ = m(y y)′′,(zz)′ = mxx,zz, (A5c)
m(xy)′′,(xx)′ = mxy,xx − mxy,xy cos(2θ) sin(2φ) − 1

2 (mxx,xx − mxx, y y) sin(2θ) cos(2φ), (A5d)

m(xy)′′,(y y)′ = mxy,xx + mxy,xy cos(2θ) sin(2φ) + 1
2 (mxx,xx − mxx, y y) sin(2θ) cos(2φ), (A5e)

m(yx)′′,(xx)′ = −mxy,xx − mxy,xy cos(2θ) sin(2φ) − 1
2 (mxx,xx − mxx, y y) sin(2θ) cos(2φ), (A5f)

m(yx)′′,(y y)′ = −mxy,xx + mxy,xy cos(2θ) sin(2φ) + 1
2 (mxx,xx − mxx, y y) sin(2θ) cos(2φ), (A5g)

m(xy)′′,(zz)′ = −m(yx)′′,(zz)′ = mxy,zz. (A5h)

Expressing the in-plane transport quantities (∆ρ/ρ)(i j)′′ in terms of applied normal strains ϵ (kl)′, plugging in the transformed
elastoresistivity coefficients from (A5), and taking the symmetry-motivated combinations (∆ρ/ρ)(xx)′′ − (∆ρ/ρ)(y y)′′ and (∆ρ/ρ)(xy)′′
+ (∆ρ/ρ)(yx)′′, we arrive at expressions (6) and (9) of the main text.

As a final comment, and in order to connect with the experimental setup described in our previous work,4,5 we note that for
configurations in which the current is sourced coincidentally with the normal strain axes, φ = −θ and

m(i j)′′,(kl)′ = α̂θmi j,klα̂−θ = α̂θmi j,klα̂
−1
θ . (A6)

APPENDIX B: QUANTIFYING CURRENT AND STRAIN ALIGNMENT ERRORS

As described in the main text (and illustrated in Figures 3 and 4), the high-symmetry configurations for the differential
longitudinal elastoresistance measurement are given by (6) with (θ,φ) = (0,0) or (−π/4, π/4), while the high-symmetry configu-
rations for the superposed transverse elastoresistance measurement are given by (9) with (θ,φ) = (π/4,0) or (0, π/4). In an actual
measurement, however, slight misalignment relative to these high symmetry directions can be anticipated. In this section we
quantify the consequences of such misalignments.

Suppose that in a measurement of (∆ρ/ρ)(xx)′′, it was intended that the crystal frame be oriented relative to the transport and
normal strain frames according to some (θ,φ), but the actual configuration was given by (θ + δθxx, φ + δφxx). Similarly, suppose
that in an attempt to measure (∆ρ/ρ)(y y)′′, the intended orientation of the crystal frame to be oriented relative to the transport and
normal strain frames was (θ,φ), but the actual configuration was given by (θ + δθy y, φ + δφy y). In general, we take δθxx , δθy y
and δφxx , δφy y so that we treat all alignment errors independently. We now show how such errors propagate in the experimental
determination of the relevant elastoresistivity coefficients.

For this type of misalignment, the combination (∆ρ/ρ)(xx)′′(Hz) − (∆ρ/ρ)(y y)′′(Hz) is given by

(∆ρ/ρ)(xx)′′ − (∆ρ/ρ)(y y)′′ = −1
2
(ϵ (xx)′ − ϵ (y y)′)2mxy,xy


sin 2(θ + δθxx) sin 2(φ + δφxx) + sin 2(θ + δθy y) sin 2(φ + δφy y)



+
1
2
(ϵ (xx)′ − ϵ (y y)′)(mxx,xx − mxx, y y)

×


cos 2(θ + δθxx) cos 2(φ + δφxx) + cos 2(θ + δθy y) cos 2(φ + δφy y)

. (B1)

This expression naturally reduces to (6) for perfect angular alignment (i.e., δθxx = δθy y = δφxx = δθy y = 0). Expanding this
expression to quadratic order in the angular errors about the high-symmetry configurations (θ,φ) = (0,0) and (θ,φ) = (−π/4, π/4),
we find
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(∆ρ/ρ)(xx)′′ − (∆ρ/ρ)(y y)′′ ≈ −(ϵ (xx)′ − ϵ (y y)′)2mxy,xy


2(δθxxδφxx + δθy yδφy y)



+ (ϵ (xx)′ − ϵ (y y)′)(mxx,xx − mxx, y y)

1 − ((δθxx)2 + (δθy y)2 + (δφxx)2 + (δφy y)2)

 (θ,φ) = (0,0) ,
(B2a)

(∆ρ/ρ)(xx)′′ − (∆ρ/ρ)(y y)′′ ≈ (ϵ (xx)′ − ϵ (y y)′)2mxy,xy


1 − ((δθxx)2 + (δθy y)2 + (δφxx)2 + (δφy y)2)



−(ϵ (xx)′ − ϵ (y y)′)(mxx,xx − mxx, y y)

2(δθxxδφxx + δθy yδφy y)


.

(θ,φ) = (−π/4,π/4) . (B2b)

As can be seen from (B2), for the high-symmetry configurations, the amount of error introduced enters at second order in the
angular misalignments.

Consideration of alignment errors for the transverse elastoresistance configuration proceeds in an analogous manner.
Suppose that for a high-symmetry configuration (θ,φ), the measurements of (∆ρ/ρ)(xy)′′ and (∆ρ/ρ)(yx)′′ are actually
characterized by (θ + δθxy, φ + δφxy) and (θ + δθyx, φ + δφyx), respectively, with δθxy , δθyx and δφxy , δφyx. A measurement
of (∆ρ/ρ)(xy)′′(Hz) + (∆ρ/ρ)(yx)′′(Hz) is then given by

(∆ρ/ρ)(xy)′′ + (∆ρ/ρ)(yx)′′ = −1
2
(ϵ (xx)′ − ϵ (y y)′)2mxy,xy


cos 2(θ + δθxy) sin 2(φ + δφxy) + cos 2(θ + δθyx) sin 2(φ + δφyx)



−1
2
(ϵ (xx)′ − ϵ (y y)′)(mxx,xx − mxx, y y)

×


sin 2(θ + δθxy) cos 2(φ + δφxy) + sin 2(θ + δθyx) cos 2(φ + δφyx)

, (B3)

which reduces to (9) for perfect angular alignment. Again expanding this expression to quadratic order in the angular errors about
the high-symmetry configurations (θ,φ) = (π/4,0) and (θ,φ) = (0, π/4), we find

(∆ρ/ρ)(xy)′′ + (∆ρ/ρ)(yx)′′ ≈ (ϵ (xx)′ − ϵ (y y)′)2mxy,xy


2(δθxyδφxy + δθyxδφyx)



− (ϵ (xx)′ − ϵ (y y)′)(mxx,xx − mxx, y y)
×

1 − ((δθxy)2 + (δθyx)2 + (δφxy)2 + (δφyx)2)

 (θ,φ) = (π/4,0) , (B4a)

(∆ρ/ρ)(xy)′′ + (∆ρ/ρ)(yx)′′ ≈ −(ϵ (xx)′ − ϵ (y y)′)2mxy,xy


1 − ((δθxy)2 + (δθyx)2 + (δφxy)2 + (δφyx)2)



+ (ϵ (xx)′ − ϵ (y y)′)(mxx,xx − mxx, y y)

2(δθxyδφxy + δθyx δφyx)

 (θ,φ) = (0,π/4) . (B4b)

Once again, the errors enter at second order about the high-symmetry configurations.

APPENDIX C: QUANTIFYING STRAIN MAGNITUDE ERRORS

A second type of error to consider is the case of a differential or superposed elastoresistance measurement in which the two
samples are perfectly aligned but experience unequal strains. We do not make any specific assumptions about the physical origin
of this difference, which might be different depending on the specific experimental configuration that is chosen. For the specific
technique that we have used in which thin crystals are adhered to the side surface of a piezoelectric stack, such a difference can
arise from imperfect strain transmission by the epoxy used to adhere the crystals to the stack or from strain relaxation due to
geometric considerations.

Suppose that an experiment is characterized by a fixed (θ,φ) configuration but that different relative amounts of strain are
experienced by the two samples during a differential longitudinal elastoresistance measurement (i.e., the strains which induce a
finite (∆ρ/ρ)(xx)′′ are slightly different than those causing (∆ρ/ρ)(y y)′′). In other words, (∆ρ/ρ)(xx)′′ is measured in response to a strain
ϵ
(1)
(kl)′ and (∆ρ/ρ)(y y)′′ is measured in response to a slightly different strain ϵ

(2)
(kl)′, with ϵ

(1)
(kl)′ and ϵ

(2)
(kl)′ given by

ϵ
(1)
(kl)′ =

*.....................
,

ϵ (xx)′ + δϵ
(1)
(xx)′

ϵ (y y)′ + δϵ
(1)
(y y)′

ϵ (zz)′ + δϵ
(1)
(zz)′

0
0
0
0
0
0

+/////////////////////
-

and ϵ
(2)
(kl)′ =

*.....................
,

ϵ (xx)′ + δϵ
(2)
(xx)′

ϵ (y y)′ + δϵ
(2)
(y y)′

ϵ (zz)′ + δϵ
(2)
(zz)′

0
0
0
0
0
0

+/////////////////////
-

. (C1)

The associated resistivity changes are given by

(∆ρ/ρ)(xx)′′ = m(xx)′′,(xx)′ϵ (1)(xx)′ + m(xx)′′,(y y)′ϵ (1)(y y)′ + m(xx)′′,(zz)′ϵ (1)(zz)′, (C2a)
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(∆ρ/ρ)(y y)′′ = m(y y)′′,(xx)′ϵ (2)(xx)′ + m(y y)′′,(y y)′ϵ (2)(y y)′ + m(y y)′′,(zz)′ϵ (2)(zz)′, (C2b)

with the individual elastoresistivity coefficients transforming according to (A5). Explicitly incorporating the angular dependence
of the m(i j)′′,(kl)′, the symmetric combination (∆ρ/ρ)(xx)′′(Hz) − (∆ρ/ρ)(y y)′′(Hz) is given as

(∆ρ/ρ)(xx)′′ − (∆ρ/ρ)(y y)′′ = (ϵ (xx)′ − ϵ (y y)′)
(mxx,xx − mxx, y y) cos 2θ cos 2φ − 2mxy,xy sin 2θ sin 2φ



+
1
2
(δϵ (1)(xx)′ + δϵ

(2)
(xx)′ − δϵ

(1)
(y y)′ − δϵ

(2)
(y y)′)

(mxx,xx − mxx, y y) cos 2θ cos 2φ − 2mxy,xy sin 2θ sin 2φ


+
1
2
(δϵ (1)(xx)′ − δϵ

(2)
(xx)′ + δϵ

(1)
(y y)′ − δϵ

(2)
(y y)′)


mxx,xx + mxx, y y


+ (δϵ (1)(zz)′ − δϵ

(2)
(zz)′)


mxx,zz


, (C3)

where we have organized each term based on the particular irrep of D4h to which it corresponds. The leading term in (C3) is
simply (6) (i.e., the combination of B1g and B2g quantities dictated by the specific (θ,φ) configuration), but we also measure
error terms in proportion to the amount of δϵ A1g ,1 ≡

1
2 (δϵ (1)(xx)′ − δϵ

(2)
(xx)′ + δϵ

(1)
(y y)′ − δϵ

(2)
(y y)′), δϵ A1g ,2 ≡ δϵ

(1)
(zz)′ − δϵ

(2)
(zz)′, and δϵB1g

≡ 1
2 (δϵ (1)(xx)′ + δϵ

(2)
(xx)′ − δϵ

(1)
(y y)′ − δϵ

(2)
(y y)′) strain that is also applied during the measurement. Note that the degree of error in the

differential elastoresistance measurement is at first order in the magnitude of the relative strain offset.
An analogous expression can be worked out for the superposed transverse elastoresistance configuration as well. Suppose

that (∆ρ/ρ)(xy)′′ is measured in response to a strain ϵ
(3)
(kl)′ and (∆ρ/ρ)(yx)′′ is measured in response to a slightly different strain ϵ

(4)
(kl)′,

with ϵ
(3)
(kl)′ and ϵ

(4)
(kl)′ given by

ϵ
(3)
(kl)′ =

*.....................
,

ϵ (xx)′ + δϵ
(3)
(xx)′

ϵ (y y)′ + δϵ
(3)
(y y)′

ϵ (zz)′ + δϵ
(3)
(zz)′

0
0
0
0
0
0

+/////////////////////
-

and ϵ
(4)
(kl)′ =

*.....................
,

ϵ (xx)′ + δϵ
(4)
(xx)′

ϵ (y y)′ + δϵ
(4)
(y y)′

ϵ (zz)′ + δϵ
(4)
(zz)′

0
0
0
0
0
0

+/////////////////////
-

. (C4)

The corresponding changes in resistivity are then

(∆ρ/ρ)(xy)′′ = m(xy)′′,(xx)′ϵ (3)(xx)′ + m(xy)′′,(y y)′ϵ (3)(y y)′ + m(xy)′′,(zz)′ϵ (3)(zz)′, (C5a)

(∆ρ/ρ)(yx)′′ = m(yx)′′,(xx)′ϵ (4)(xx)′ + m(yx)′′,(y y)′ϵ (4)(y y)′ + m(yx)′′,(zz)′ϵ (4)(zz)′, (C5b)

with the individual elastoresistivity coefficients transforming according to (A5). Explicitly incorporating the angular dependence
of the m(i j)′′,(kl)′, the symmetric combination (∆ρ/ρ)(xy)′′(Hz) + (∆ρ/ρ)(yx)′′(Hz) is given as

(∆ρ/ρ)(xy)′′ + (∆ρ/ρ)(yx)′′ = −(ϵ (xx)′ − ϵ (y y)′)
(mxx,xx − mxx, y y) cos 2θ sin 2φ + 2mxy,xy sin 2θ cos 2φ



−1
2
(δϵ (3)(xx)′ + δϵ

(4)
(xx)′ − δϵ

(3)
(y y)′ − δϵ

(4)
(y y)′)

(mxx,xx − mxx, y y) cos 2θ sin 2φ + 2mxy,xy sin 2θ cos 2φ


+
1
2
(δϵ (3)(xx)′ − δϵ

(4)
(xx)′ + δϵ

(3)
(y y)′ − δϵ

(4)
(y y)′)


mxy,xx


+ (δϵ (3)(zz)′ − δϵ

(4)
(zz)′)


mxy,zz


. (C6)

Just as in the differential longitudinal case, the measured
errors in the transverse superposed elastoresistance configura-
tion appear in proportion to the amount of δϵ A1g ,1 ≡

1
2 (δϵ (3)(xx)′

− δϵ
(4)
(xx)′ + δϵ

(3)
(y y)′ − δϵ

(4)
(y y)′), δϵ A1g ,2 ≡ δϵ

(3)
(zz)′ − δϵ

(4)
(zz)′, and

δϵB1g ≡
1
2 (δϵ (3)(xx)′ + δϵ

(4)
(xx)′ − δϵ

(3)
(y y)′ − δϵ

(4)
(y y)′) strain that are

inadvertently applied during the measurement, and the degree
of error is at first order in the magnitude of the relative strain
offset. However, since (∆ρ/ρ)(yx)′′(Hz) = (∆ρ/ρ)(xy)′′(−Hz), one
can constrain these strain offsets to be precisely zero since
the measurements can be performed under the same mounting
conditions (only inverting the magnetic field environment).

That is, for a measurement performed on one single crystal,
δϵ

(4)
(xx)′ = δϵ

(3)
(xx)′, δϵ

(4)
(y y)′ = δϵ

(3)
(y y)′, and δϵ

(4)
(zz)′ = δϵ

(3)
(zz)′ such

that δϵ A1g ,1 = δϵ A1g ,2 = 0. Rephrased in terms of group theory,
the strain error does not mix symmetry channels (a measure-
ment of the B1g response is not contaminated by any A1g
signal), but the absolute magnitude of the strain experienced
by the sample is incorrectly recorded as ϵ (xx)′ rather than
ϵ (xx)′ + δϵ

(3)
(xx)′ and ϵ (y y)′ rather than ϵ (y y)′ + δϵ

(4)
(y y)′. Thus,

provided one can isolate (∆ρ/ρ)xy and (∆ρ/ρ)yx (i.e., sub-
tract out ρxx contributions which “contaminate” a nominally
ρxy measurement, which we describe in Appendix D), the
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transverse configuration is immune to contamination from
other symmetry channels arising from relative strain magni-
tude errors. As discussed in the main text, this is the primary
advantage of the transverse elastoresistance technique.

APPENDIX D: ISOLATING TRANSVERSE
ELASTORESISTIVITIES IN A LONGITUDINALLY
CONTAMINATED ELASTORESISTANCE
MEASUREMENT

In this section we describe in detail the process by which
a longitudinal resistivity (ρxx) “contamination” can be sub-
tracted from an erstwhile transverse resistivity (ρxy) measure-
ment. Such a situation is often encountered in the context of
Hall effect measurements, for which a nominally transverse
signal Rmeasured

xy (due to a ẑ-oriented magnetic field H = Hz ẑ)
is contaminated by a contribution from the longitudinal resis-
tance Rxx such that

Rmeasured
xy = Rxy + αRxx, (D1)

where α is a (not generally small) parameter characterizing the
amount of Rxx contamination. Such a contamination can arise,
for example, from curved current paths within the crystal or
from imperfectly aligned voltage contacts. In the Hall effect
measurement case, to isolate the Hall resistance signal, one
typically measures Rmeasured

xy for both positive and negative
magnetic field and uses the fact that the longitudinal (trans-
verse) signal is even (odd) in Hz,

Rmeasured
xy (Hz) − Rmeasured

xy (−Hz) = 2Rxy(Hz). (D2)

In this appendix, we will describe the analog to this mag-
netic field anti-symmetrization for a transverse elastoresis-
tance measurement. In contrast to the Hall effect, though, we
cannot rely on a simple parity-in-field argument since contami-
nation of a nominal 2mxy,xy or mxx,xx − mxx, y y measurement
can come from elastoresistivity coefficients that are either even
(e.g., mxx,zz) or odd (e.g., mxy,xx) in the magnetic field. Never-
theless, by pre-characterizing the contact geometry, it is still
possible to isolate the symmetry-connected elastoresistivity
coefficients which are related to thermodynamic susceptibil-
ities.

In performing a transverse resistivity measurement, the
most straightforward manner in which one might encounter
longitudinal contamination is due to imperfect contact geom-
etry (as in Figure 13) or to nonlinearly directed current paths
within the crystal. While microscopic details to do with the
specific mechanism of current non-uniformity would dictate
how such a longitudinal contamination would be subtracted
out, we instead focus on how to subtract out the longitudinal
contamination due to contact misalignment, otherwise assum-
ing a homogeneous material with uniformly directed current
paths.

Consider an experimental configuration as in Figure 13
in which one sources a current I⃗ = I · x̂ ′′ = [wt j(x)′′] · x̂ ′′ along
the x ′′direction in the transport frame (with j(x)′′ the magnitude
of the current density in the transport frame, w the crystal
width, and t the crystal thickness). One then seeks to isolate the
true transverse resistivity ρ(xy)′′ (in the transport frame) from

FIG. 13. (a) Schematic diagram illustrating contact misalignment in a trans-
verse measurement. The transverse voltage is to be measured between con-
tacts 1 and 2, while the longitudinal voltage can be measured between
contacts 1 and 3. The degree of transverse contact misalignment (horizontal
offset between contacts 1 and 2) has been greatly exaggerated for pedagogical
purposes. Contact 4 (dark gray) is a hypothetical contact which is perfectly
vertically aligned with contact 2, which means that the relative voltages
between these contacts V2−V4= 0 in zero magnetic field for zero strain.
(b) Primitive crystal frame and its relative alignment to the transport frame.

a measurement Rmeasured
(xy)′′ which contains longitudinal contami-

nation ρ(xx)′′ due to imperfectly aligned contacts 1 and 2. One
most conveniently characterizes this contamination by writing
Ohm’s law in the transport frame as

E(i)′′ = ρ(i j)′′ j( j)′′, (D3)

*....
,

E(x)′′

E(y)′′

E(z)′′

+////
-

=

*....
,

ρ(xx)′′ ρ(xy)′′ 0

ρ(yx)′′ ρ(y y)′′ 0

0 0 ρ(zz)′′

+////
-

*...
,

j(x)′′
0
0

+///
-

= j(x)′′
*....
,

ρ(xx)′′

ρ(yx)′′

0

+////
-

,

and then expressing the resistances in terms of measured volt-
ages, uniform electric fields, and crystal dimensions,

Rmeasured
(xx)′′ =

V3 − V1

I(x)′′
=

E(x)′′l13

I(x)′′
=

l13

l14

V4 − V1

I(x)′′
≡ 1
∆ℓ

V4 − V1

I(x)′′
,

(D4)

Rmeasured
(yx)′′ =

V2 − V1

I(x)′′
=

V2 − V4

I(x)′′
+

V4 − V1

I(x)′′
=

E(y)′′w
j(x)′′wt

+∆ℓRmeasured
(xx)′′ =

ρ(yx)′′
t
+ ∆ℓRmeasured

(xx)′′ ,

where Vi denotes a voltage measured at the ith contact in
Figure 13 and ∆ℓ ≡ l14

l13
characterizes the degree of misalign-

ment of the transverse contacts 1 and 2. Solving for ρ(yx)′′ in
(D4), one obtains

ρ(yx)′′ = t
(
Rmeasured
(yx)′′ − ∆ℓRmeasured

(xx)′′
)
≡ tR(yx)′′, (D5)

where R(yx)′′ represents the resistance that would be measured
in the absence of contact misalignment. Isolating R(yx)′′ thus
requires down-weighting the simultaneously measured quan-
tity Rmeasured

(xx)′′ by the parameter ∆ℓ, which is most readily deter-
mined via a zero-field, zero-strain measurement of the con-
tacts. Specifically, in the absence of either strain or a magnetic
field, there cannot be a transverse voltage for a crystal with
D4h symmetry; therefore, V2 = V4 and, with the assumption of
a uniform electric field within the material,

∆ℓ ≡
l14

l13
=

V4 − V1

V3 − V1

ϵ̂=0̂,Hz=0
=

V2 − V1

V3 − V1
. (D6)

Equations (D5) and (D6) express how one corrects for
contact misalignment in order to isolate the resistance R(yx)′′;
however, as prescribed in (4) of the main text, the meaningful
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quantity for elastoresistivity is the ratio of resistivities, not
resistances. The relationship between the two is elucidated
by considering the transverse quantities (∆ρ/ρ)(yx)′′(Hz) and
(∆ρ/ρ)(xy)′′(Hz), where(

∆ρ

ρ

)
(yx)′′

=
∆ρ(yx)′′

ρ(xx)′′(ϵ̂ = 0̂)ρ(y y)′′(ϵ̂ = 0̂)
, (D7)

(
∆ρ

ρ

)
(xy)′′

=
∆ρ(xy)′′

ρ(xx)′′(ϵ̂ = 0̂)ρ(y y)′′(ϵ̂ = 0̂)
,

and where the normalization factor contains the unstrained
longitudinal resistivities ρ(xx)′′ and ρ(y y)′′. Since ρ(yx)′′
= tR(yx)′′ (and likewise for ρ(xy)′′), the linearized strain-
induced resistivity change is given by ∆ρ(yx)′′ = t∆R(yx)′′
+ R(yx)′′∆t; substituting into (D7), and using the fact that for a
tetragonal material ρ(xx)′′(ϵ̂ = 0̂) = ρ(y y)′′(ϵ̂ = 0̂),(

∆ρ

ρ

)
(yx)′′

=
t∆R(yx)′′ + R(yx)′′∆t(

wt
l13

)
R(xx)′′(ϵ̂ = 0̂) , (D8)

and likewise for
(
∆ρ
ρ

)
(xy)′′. When the strain is of a B1g or

B2g character (i.e., area-preserving), the thickness change due
to strain ∆t is precisely zero and so the second term in the
numerator of (D8) vanishes (i.e., R(yx)′′∆t = 0). When the
strain is predominantly of a B1g or B2g character but also

possesses an area-deforming (A1g) component (as is a more
realistic approximation to our specific experimental realiza-
tion), ∆t is finite; nevertheless, provided the measured resis-
tance change is dominated by changes in the resistivity under
strain as opposed to geometric effects, it will still be true that
R(yx)′′∆t ≪ t∆R(yx)′′. In either case then, ∆ρ(yx)′′ ≈ t∆R(yx)′′,
and, combining (D5) and (D8),

(
∆ρ

ρ

)
(yx)′′

≈ l13

w


*
,

∆Rmeasured
(yx)′′

R(xx)′′
+
-
− ∆ℓ *

,

∆Rmeasured
(xx)′′

R(xx)′′
+
-


, (D9)

and likewise for
(
∆ρ
ρ

)
(xy)′′. In (D9), it is to be understood that

the approximation becomes an exact equality under conditions
of pure B1g or B2g strain. This is the procedure we used to
subtract longitudinal resistance “contamination” and obtain
the data described in the main text.

In zero magnetic field and for appropriate mounting config-
urations, a single measurement with contact misalignment
accounted for according to (D9) is sufficient for extracting
the relevant elastoresistivity coefficients; in a finite field, one
requires an extra measurement that is performed after revers-
ing the magnetic field. Upon taking the symmetry-motivated
sum (∆ρ/ρ)(yx)′′(Hz) + (∆ρ/ρ)(xy)′′(Hz) (and using (D9) and the
Onsager relations), the generalized expression for finite Hz is
given by

(
∆ρ

ρ

)
(yx)′′
(Hz) +

(
∆ρ

ρ

)
(xy)′′
(Hz) =

(
∆ρ

ρ

)
(yx)′′
(Hz) +

(
∆ρ

ρ

)
(yx)′′
(−Hz) (D10)

=
l13

w


*
,

∆Rmeasured
(yx)′′ (Hz)

R(xx)′′(Hz)
+
-
− ∆ℓ *

,

∆Rmeasured
(xx)′′ (Hz)

R(xx)′′(Hz)
+
-
+ *
,

∆Rmeasured
(yx)′′ (−Hz)

R(xx)′′(−Hz)
+
-
− ∆ℓ *

,

∆Rmeasured
(xx)′′ (−Hz)

R(xx)′′(−Hz)
+
-


.

Equations (D9) and (D10) express the transverse elastore-
sistivity analog to anti-symmetrization in a magnetic field for
Hall resistance measurements. By measuring

�
∆Rmeasured

(yx)′′ /R(xx)′′
�

and
�
∆Rmeasured

(xx)′′ /R(xx)′′
�

simultaneously, and having pre-
characterized ∆ℓ in zero magnetic field (using (D6), measured
under conditions of zero strain), one can simply subtract
the two elastoresistance measurements (with the longitudinal
contribution weighted by ∆ℓ and an overall geometric correc-
tion by l13

w
) in order to isolate (∆ρ/ρ)(yx)′′. The same subtraction

procedure works for measuring either mxx,xx − mxx, y y or
2mxy,xy since the above derivation is independent of the
relative orientation of the transport and crystal frames.

APPENDIX E: EVALUATING GOODNESS OF FIT
OF CURIE-WEISS MODEL TO THE MEASURED
ELASTORESISTIVITY COEFFICIENT 2mxy,xy

The elastoresistivity coefficient 2mxy,xy exhibits a mono-
tonic increase with decreasing temperature from the highest
temperature measured (220 K in the present work) down to
136 K, which is just above the coupled structural and magnetic

transition temperature TS,N ≈ 134 K. In this section, we briefly
describe the procedures used to fit the data to a Curie-Weiss
temperature dependence above the phase transition, which is
physically motivated based on a mean-field description of the
nematic susceptibility.4,5

As discussed in the main text, the 2mxy,xy elastoresistivity
data were fit to a Curie-Weiss temperature dependence of the
form 2mCurie−Weiss

xy,xy = λ
a0(T−θ) + 2m0

xy,xy (see (12) of the main
text). In order to evaluate the goodness of fit of the Curie-Weiss
form to the measured data, we illustrate in Figure 14 a bullseye
plot as a function of a varying temperature window. A bullseye
plot is a contour map of the root mean square error (RMSE) of
the observed data from an expected model as a function of a
varying window in the independent variable. In the ideal case
where the expected model perfectly conforms to the measured
data over a particular range, the RMSE will obtain a local
minimum over this range and the output of the contour map
will resemble a bullseye-like pattern. Since narrowing the
independent variable window also diminishes the sample size
over which the fit is performed and relaxes constraints on
the parameters in the fit model, bullseye plots also display a
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FIG. 14. Bullseye plot of the 2mx y,x y elastoresistivity coefficient, illus-
trating the minimized RMSE from the Curie-Weiss form as a function of
a varying temperature window. While an ideal fit over a particular range
would produce a local minimum in the RMSE in that range and hence a
bullseye-like pattern in the contour map, no such bullseye pattern is observed
for the present data. This indicates that there is no “optimal” temperature
range over which the data best conform to the Curie-Weiss form. Without
such a best-fit range, we opt to fit over the maximal range from 220 K (the
highest temperature measured) down to 136 K (just above TS,N ≈ 134 K).

general trend of decreasing RMSE as one increases (decreases)
the low (high) end cutoff in the independent variable window;
one therefore expects a general trend of decreasing RMSE as
one approaches the bottom right region of the contour map.

In the context of the present measurement, the expected
model is a Curie-Weiss temperature dependence and the color
output of the bullseye plot in Figure 14 corresponds to the
residual difference (for each temperature window) between
the inverse susceptibility (2mxy,xy − 2m0

xy,xy)−1 and a linear
function of temperature. For each fixed window, we first esti-
mate the temperature-independent parameter 2m0

xy,xy by a
least RMSE minimization procedure between the measured
2mxy,xy and the Curie-Weiss form; with this 2m0

xy,xy, we then
estimate the best-fit parameters λ/a0 and θ by minimizing the
RMSE between the (2mxy,xy − 2m0

xy,xy)−1 and a linear fit. The
low temperature cutoff for the windows varies between 135 K
and 155 K, while the high temperature cutoff for the windows
varies between 190 K and 220 K. As displayed in Figure 14,
a bullseye-like pattern is not observed; the only discernible
feature is a general trend of decreasing RMSE as the temper-
ature window is narrowed. This indicates the absence of an
“optimal” temperature range over which the elastoresistivity
coefficient 2mxy,xy displays Curie-Weiss behavior; therefore,
we choose to fit the data over the maximal range from 220 K
(the highest temperature measured) down to 136 K (just above
TS,N). This range is demarcated by a star on the top-left portion
of Figure 14 and yields the fit parameters given in the main text
(see Table I).

The most easily interpretable parameter from the Curie-
Weiss fit is the Weiss temperature θ. To characterize the depen-
dence of the Weiss temperature on the particular temperature
window used for the fit, we also plot a contour map of the best-
fit estimates of θ as a function of a varying temperature window

FIG. 15. Contour map of estimated Weiss temperatures θ as a function of
a varying temperature window. The star on the top-left region again corre-
sponds to the maximal temperature range, which we use due to the absence of
any particular best fit range. The distribution of Weiss temperatures is heavily
concentrated around ∼120 K for the ranges close to the maximal window,
which is the value of θ quoted in the main text.

(Figure 15). The star on the top-left region of Figure 15 again
corresponds to the maximal temperature range, which we use
due to the absence of any particular best fit range. The distri-
bution of Weiss temperatures is heavily concentrated around
∼120 K for the ranges close to the maximal window, which is
the value of θ quoted in the main text.
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coefficients.

24H. Man, X. Lu, J. S. Chen, R. Zhang, W. Zhang, H. Luo, J. Kulda, A. Ivanov,
T. Keller, E. Morosan, Q. Si, and P. Dai, Phys. Rev. B 92, 134521 (2015).

25H.-H. Kuo, “Electronic nematicity in iron-based superconductors,” Ph.D.
thesis, Stanford University, 2014.

26R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Nat. Phys. 10, 97
(2014).
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