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Elastoconductivity as a probe of broken mirror symmetries
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We propose the possible detection of broken mirror symmetries in correlated two-dimensional materials by
elastotransport measurements. Using linear response theory we calculate the“shear conductivity” �xx,xy , defined
as the linear change of the longitudinal conductivity σxx due to a shear strain εxy . This quantity can only be
nonvanishing when in-plane mirror symmetries are broken and we discuss how candidate states in the cuprate
pseudogap regime (e.g., various loop current or charge orders) may exhibit a finite shear conductivity. We also
provide a realistic experimental protocol for detecting such a response.
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I. INTRODUCTION

Phases of matter in solids are often empirically distin-
guished by their transport properties. Electrical transport mea-
surements probe long-wavelength properties of the system, and
in metallic phases, they are sensitive to electronic excitations
near the Fermi level. In addition, these measurements often
exhibit singular features at phase transitions, thus indicating
the onset of broken symmetries. However, aside from a few
instances such as the anomalous Hall effect in ferromagnets,
the exact form of the broken symmetry is not usually
evident from a transport measurement. Experiments that aid
in directly identifying subtle forms of broken symmetry are
therefore invaluable in the study of strongly correlated electron
materials.

Motivated by such considerations, we study the linear
change of electrical transport coefficients in the presence of
applied strain which we refer to as a “shear conductivity.” If
such a linear response is present, it is necessarily encoded
in a fourth-rank tensor. As we discuss below, the shear
conductivity is a binary indicator of point group and mirror
symmetry breaking and retains its character as a transport
coefficient in probing the dynamics of the quasiparticles (or
lack thereof) near the Fermi level. By contrast, ordinary
transport coefficients, which are second-rank tensors, are at
best indirect markers of such transitions.

Specifically, we discuss how a linear change in longitudinal
conductivity σxx due to applied strain εxy can only occur if
certain vertical mirror plane symmetries are broken. When
such symmetries are absent a response of this sort is no
longer forbidden, and is therefore generically finite. While
our considerations here are based solely on symmetry and
are therefore quite general, we are primarily motivated by the
cuprate superconductors, where a variety of broken symmetry
phases are likely present in the pseudogap regime of hole-
doped materials. Several candidate order parameter theories
have been proposed for the pseudogap regime including
current-loop phases [1,2], d-density wave phases [3,4], various
forms of charge order [5–14], electron nematic phases [12,15],
and pair density wave states [16–18] to name just a few.

Here, we have focused on two phases that break among
other symmetries, point group and mirror symmetry. These are

the variants of phases with loop current order as well as those
with charge order. Our key result is that there is a finite and
measurable shear conductivity in both states. Furthermore, we
predict a parametrically higher shear conductivity response
in the orbital current loop phase near its onset temperature,
when compared to the response of charge ordered states.
Our analysis was inspired by an elegant set of experiments
[19–22] that have utilized transport measurements in the
presence of strain as a probe of nematicity. Our goal is
to generalize these experimental protocols to help uncover
more subtle patterns of symmetry breaking. We also note that
while our focus here is on electrical transport coefficients,
the symmetry considerations discussed below apply equally
to other measurements, such as ultrasound attenuation [23],
which also involves the determination of a fourth-rank tensor.

This paper is organized as follows: we first review the
simple symmetry considerations which lead to a nonvanishing
shear conductivity in Sec. II. We then discuss how this quantity
is actually evaluated in the framework of the Kubo formula,
before performing explicit calculations for model charge
ordered systems and loop current phases in Sec. III. Next, in
Sec. IV, we discuss how the response is trained in macroscopic
crystals, before closing by discussing realistic experimental
protocols for the measurement of the shear conductivity in
Sec. V.

II. SYMMETRY CONSIDERATIONS

We define the shear conductivity as the elastoconductivity
tensor component �xx,xy ≡ ∂σxx/∂εxy , which describes the
change of the longitudinal dc conductivity induced by a shear
strain of the crystal. The tensor �xx,xy can be nonvanishing
only when each of the symmetries is broken: (i) reflection
about the xz plane, which has a normal vector along y: σ̂y

(ii) reflection about the yz plane, σ̂x and (iii) the combination
σ̂(x=y) ∗ C4. Here, σ̂(x=y) denotes reflection about the vertical
(x = −y)z plane and C4, a fourfold rotation about the principal
z axis. This follows from the fact that under each of these
symmetry operations, σxx is even while εxy is odd. More
generally, in the presence of any of the three symmetries
mentioned above, �ij,kl vanishes if the indices contain an odd
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number of x or y. An example is �xy,xx , which represents
the change in the Hall conductivity due to a longitudinal
strain. On the other hand, inversion symmetry imposes no
restrictions �ij,kl . Moreover, Onsager’s reciprocity theorem
dictates that �ij,kl(M) = �ji,kl(−M), where M is odd under
time reversal (the final pair of indices is unaffected since
strain is a symmetric time-reversal invariant tensor). Lastly,
we remark that reciprocity does not relate �ij,kl and �il,kj .
Further details on symmetry properties of �xx,xy and the full
elastotransport tensor in a tetragonal system are provided in
Appendix E.

III. ELASTOCONDUCTIVITY IN MODEL SYSTEMS

A. Calculation of elastoconductivity

Having disposed of generalities, we now compute the
elastoconductivity tensor from an explicit microscopic model,
using the Kubo formula, and taking into account the effects
of strain. We consider a noninteracting Hamiltonian, which
captures the appropriate broken symmetry and takes the form

H =
∑
k,αβ

Hk,αβc
†
k,αck,β =

∑
k

�̂
†
kĤk�̂k, (1)

where α,β can be spin, band, or other quantum numbers,
�

†
k = (c†k,1,c

†
k,2, . . .) denote the fermionic creation operators,

and k is the crystal momentum. Anticipating the physical
systems that we will apply our results to in the next section, we
restrict ourselves to 2D; however, the formalism generalizes in
a straightforward way to 3D. Without strain, the Kubo formula
gives1

σxx = −πe2
∫

B.Z.

d2k
(2π )2

∫ ∞

−∞
dE

∂f (E)

∂E
tr

[(
Âk(E)

∂Ĥk

∂kx

)2]
,

(2)

where Âk(E) = i
2π

[Ĝk(E + i/2τsc) − Ĝk(E − i/2τsc)] is the
spectral function2 and f (E) is the Fermi distribution function.
As explained in Appendix B, the application of a strain ε̂ leads
to a change of the Bravais lattice vectors {ai} → {(1 + ε̂)ai},
which can easily be implemented in a tight-binding approach.
This has two main effects on a tight-binding Hamiltonian [24]:
(i) the tight-binding hopping parameters may change since
they depend on the distance between the atoms in general, and
(ii) the momenta are modified according to k → (1 + ε̂)k. As
a consequence, the Hamiltonian is modified as Ĥk → Ĥ s

(1+ε̂)k
where the superscript s indicates the modified tight-binding
parameters, and the Brillouin zone is also altered accordingly.

After introducing strain in Eq. (2), a coordinate transforma-
tion p = (1 + ε̂)k effectively undoes (ii) while introducing
a Jacobian into the expression for σxx . As a result, the dc

1Also the Hall conductivity can be calculated using the presented
formalism. Note that in this case, one has to use a different response
than (3).

2Since we are calculating the dc conductivity, we have to assume a
finite scattering time 1/τsc � μ, where μ is the chemical potential,
so that the spectral functions are sharply peaked Lorentzians rather
than delta functions.

conductivity in the strained crystal can be written as

σ s
xx = − πe2

det(1 + ε̂)

∫
B.Z.

d2 p
(2π )2

∫ ∞

−∞
dE

∂f (E)

∂E

× tr

({
Âs

p(E)

[
(1 + εxx)

∂Ĥ s
p

∂px

+ εxy

∂Ĥ s
p

∂py

]}2)
, (3)

where the momentum integration spans the unstrained first
Brillouin zone of the lattice. The shear conductivity �xx,xy , can
be computed from (3) by setting εxx = εyy = 0, expanding and
extracting the linear coefficient via σ s

xx = σxx + �xx,xyεxy +
O(ε2

xy).
We now apply the formalism outlined above to study two

candidate phases relevant to the pseudogap regime of the
hole-doped cuprates: (i) a particular form of charge order
that breaks mirror symmetries and (ii) two-dimensional loop
current phases proposed first by Varma.

B. Shear conductivity as a probe of charge order

Despite the remarkable recent experimental progress in
identifying (generally short-range correlated) charge order as
a ubiquitous member of the cuprate phase diagram [25–30],
many fundamental questions of symmetry remain. Candidate
states such as predominantly d-wave charge order [10,31,32]
and criss-crossed stripes [14] do break the mirror symme-
tries required to produce a finite shear conductivity, while
conventional s-wave checkerboard charge density waves, or
unidirectional stripes [5] would produce no such response. A
possible detection of broken mirror symmetries is significant
as it reveals the presence of robust, thermodynamic, long range
ordered phase in the pseudogap regime.

A model calculation can be done by considering the most
general Hamiltonian, which includes charge and bond density
waves (CDWs and BDWs) in both x and y directions. This
captures the essential mirror-symmetry breaking physics, and
more complicated candidate states (e.g., d-wave charge order)
can be constructed from this model. At mean-field level, the
density wave Hamiltonian we consider is given by

δHDW =
∑

Ri

[
φRi

c
†
Ri

cRi
+

∑
α=x,y

(

α

Ri
c
†
Ri+aα

cRi
+ H.c.

)]
,

(4)

where φRi
= φx cos( Qx · Ri) + φy cos( Qy · Ri) describes the

CDW and 

x/y

Ri
= 
x/y cos( Qx/y · Ri) the BDW. We omit

the spin degrees of freedom, which will only double the
overall conductivity, and for simplicity we consider period-
two density waves, i.e., | Qx/y | = π . With these choices,
a candidate striped state has (say) finite φx and 
x but
φy = 
y = 0, while a state with both s- and d-wave charge
order in both x and y directions has finite φx = φy , along with
finite 
x = −
y . With similar generalizations, any candidate
commensurate charge order can be included in this model
Hamiltonian, and while the specific choice of ordering period
will affect the following symmetry considerations, we consider
the above an appropriate minimal model to calculate the shear
conductivity.

Before proceeding with a formal calculation, it is useful
to anticipate our results using symmetry arguments. From the
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FIG. 1. (Color online) (Left) A real-space picture of a square
lattice in the presence of a CDW and BDW in both x and y directions.
Darker points indicate a higher electron density and darker lines an
increased hopping between neighboring sites. (Right) A real-space
picture of the CuO2 plane showing the �2 planar loop order phase,
which produces a finite shear conductivity. Orange circles represent
copper sites, green circles are oxygen sites, and arrows indicate the
direction of spontaneously formed microscopic current loops.

real space picture in Fig. 1 it is easy to see that the vertical
mirror plane symmetries σ̂x , and σ̂y are broken only when
finite period 2 charge and bond DW fields in both x and
y directions are present. Finally, the product σ̂x=y ∗ C4 is
also a broken symmetry, since the state is not invariant under
fourfold rotations. Thus we only expect a nonvanishing shear
conductance for this system if all charge and bond fields are
finite. Moreover, because a mirror reflection is implemented
by the change in sign of any of the order parameters above,
and �xx,xy much change sign under vertical mirror plane
reflections, we expect that the shear conductivity is in general
an odd power of each order parameter. The lowest order
contribution would therefore be linear in each order parameter,
i.e., � ∝ φxφy
x
y

(Γ
x
x
,x

y
/σ

x
x
)
×

10
6

φx/t

Δx/t

FIG. 2. (Color online) Ratio �xx,xy/σxx of shear conductivity
over longitudinal conductivity for checkerboard charge and bond
order (scattering time τsc = 10/t). Blue dashed curve as a function of
φx for a finite and fixed value of the other three order parameters:
φy = 
x = −
y = 0.1 t and red curve as a function of 
x for
similarly fixed φx = φy = −
y = 0.1 t .

To apply this analysis to the cupratelike systems, we use a
single-band effective next-nearest-neighbor tight-binding dis-
persion εk = −2t[cos(kx) + cos(ky)] + 4t ′ cos(kx) cos(ky) −
μ of the Cu square lattice with parameters t ′ = 0.45t

and μ = −0.65t (where t is the nearest-neighbor hop-
ping for the unstrained system). The shear strain does not
affect the nearest-neighbor hopping at O(εxy), but does
modify the next-nearest-neighbor hopping. On the other hand,
both the charge and the bond orders are unaffected at this
order in strain. Rewriting the Hamiltonian in the four band
basis of the new (four site) unit cell, and expanding Eq.
(3) to linear order εxy in the limit T → 0 then leads to
σ s

xx = σxx + �xx,xyεxy = Px + 2Pyεxy with

Pα = πe2
∫ π/2a

−π/2a

d2 p
(2π )2

Re tr

[
Â p(0)

∂Ĥ p

∂px

Â p(0)
∂Ĥ p

∂pα

]
, (5)

where the momentum integral is over the new reduced Bril-
louin zone. The results of the calculation are shown in Fig. 2,
where we plot the ratio �xx,xy/σxx as a function of the charge
order φx and 
x . Consistent with our expectations based on
symmetry, the response vanishes when any of φx,φy,
x , or 
y

vanishes, since mirror symmetries are partially restored when
this happens. Close to the onset temperature of such charge
order, we expect the response to be small, as it is proportional
to a high power of the order parameter fields. However, there is
no reason to expect a small response well below the onset tem-
perature, where the order parameters strengths are generically
of order unity, in the case of long-range charge order.

C. Shear conductivity as a probe of loop current order

While it is now clear that charge ordered states exist within
the pseudogap regime in many cuprates, a more vexing issue
is the nature of the pseudogap itself. The pseudogap onset
temperature T ∗ is typically higher than the charge ordering
temperature, with a primary experimental signature being
the suppression of the electronic density of states [33–36],
and the onset of Q = 0 magnetism [37–39]. Such magnetic
order is consistent with predictions first made by Varma [1,2],
who argued that various loop current states are responsible
for the pseudogap phenomenology. Recent theoretical work
[40–43] has suggested that orbital current phases could also
explain magneto-optic effects observed in the pseudogap
regime [44,45]. Here, we discuss how planar versions of such
a phase can be detected via shear conductivity measurements.

We have considered the so-called �1 and �2 planar
loop current states described in Ref. [2]. As Fig. 1
demonstrates, the �2 state breaks all the required symmetries
(σ̂x,σ̂y,σ̂(x=y) ∗ C4) to produce a shear conductivity, while
the related �1 state with currents on all four diagonal bonds
preserves the mirror planes σ̂x and σ̂y and so should not
produce a shear conductivity response.

For a formal calculation, we work with a three-band model
that includes the Cu d orbitals as well as the oxygen px

and py orbitals and consider the mean-field Hamiltonian with
order parameter R of the loop current (formally an anapole or
toroidal moment, which is a polar vector R [46]). Following
the same procedure as before, we implement strain into this
model by modifying the tight binding parameters and shearing
the Brillouin zone. The results are shown in Fig. 3 and, as
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FIG. 3. (Color online) Ratio �xx,xy/σxx for the loop current states
�1 (brown dashes) and �2 (blue) as afunction of the order parameter
magnitudes R/t , where t the tight-binding hopping parameter of
the copper-oxygen bond. The response is parametrically larger than
for charge order since it is quadratic in the magnitude of the small,
dimensionless order parameters, R/t , and not quartic as in the case
of charge order.

expected, the system shows a finite shear conductivity �xx,xy

in the symmetry broken state �2, but not in �1.
We note that unlike the response to charge order, �xx,xy is

even in the current loop order parameter, R. This follows
from the symmetry of the �2 state, where the state with
order parameter R is related to its time reversed partner by
a C2 rotation about the z axis (see Fig. 1). Because a C2

rotation leaves the tensor �xx,xy invariant, we have the equality
�xx,xy(R) = �xx,xy(−R). Therefore the response must be
proportional to an even power of R. We stress that the shear
conductivity is likely to be considerably larger in the Varma
current loop phase than in the charge ordered states studied in
the previous section since it is proportional to a smaller power
of the order parameter R near the onset temperature, where a
Landau-Ginzburg treatment remains valid.

IV. TRAINING THE SHEAR CONDUCTIVITY RESPONSE

Having demonstrated that �xx,xy is finite when the requisite
point group symmetries are broken, it is natural to ask
whether the shear conductivity is measurable in macroscopic
crystals where domains are inevitably present. Indeed, for both
the charge and loop current order parameters, the response
from different domains will cancel, as we discuss below.
Nevertheless, because the response involves a product of order
parameters (i.e., it is proportional to a composite order parame-
ter), it is in fact possible to train this composite order parameter
(and hence the shear conductivity) across the putative phase
transition into a mirror symmetry breaking phase.

One can anticipate how such training is achieved based
on general symmetry considerations: in crystals where a
D4h point group symmetry is present in the symmetric
phase (the corresponding space group is P 4/mmm), �xx,xy

behaves like the B2g (dxy) representation of D4h, and so
must be proportional to a composite order parameter with
this symmetry. We can therefore train domains of such a
composite order parameter by applying a shear strain, εxy ,

through a symmetry breaking transition. Below, we discuss
the formal symmetry considerations that allow such training
for the loop current phase (where the absence of translation
symmetry breaking makes the analysis simpler), and then the
charge ordered phase.

First, in the case of the �2 loop current state, there are four
possible domains: two time reversed partners with currents on
the x = y diagonals (with order parameters denoted as ±Ra),
and another two with currents on the opposite diagonal (±Rb).
The responses from domains with currents on opposite diag-
onals cancel, because they are related by a C4 rotation which
sends �xx,xy(Ra) → −�yy,yx(Rb) = −�xx,xy(Rb), where the
second equality follows from σ̂(x=y) mirror symmetry of the
state (see Appendix A 2). Nevertheless, because the responses
from time reversed partners on a given diagonal are equal,
a macroscopic response is possible if we can bias domains
to be of a single orientation. This is easily accomplished by
cooling through the loop current transition in the presence of an
externally applied B2g strain field (a shear strain εxy), which
couples to the orientational component of the loop current
order in the free energy like δF = λεxy(|Ra|2 − |Rb|2), where
λ is a coupling constant.

Next, in the case of the charge order considered in
Sec. III B, there are two possible domains of the composite
order parameter φxφy
x
y , which if both present will lead
to a vanishing shear conductivity. Nevertheless, while these
individual order parameters cannot be trained, their product
preserves translation symmetry while only breaking point
group symmetries and so can once more be trained by
application of an appropriate strain. We can determine the
appropriate symmetry channel as follows: the composite order
parameter φx
x is translation invariant for the case of Qx =
(π,0). This pattern breaks the σ̂x mirror symmetry, and upon
C4 rotations, is transformed into the composite order parameter
φy
y . Thus, φx
x and φy
y have px and py symmetry,
and so transform like components of the two dimensional
Eu representation of D4h. The product of these two order
parameters is therefore in the B2g representation of D4h, and
there is an allowed coupling to shear strain in the free energy,
with a term of the form δF = λεxyφxφy
x
y . Applying
shear strain and cooling through the charge ordering transition
should therefore induce a finite shear conductivity response.

V. SHEAR RESISTANCE MEASUREMENTS

Having computed �xx,xy for various ordered phases, we
now discuss the experimental protocols required to measure
such a response. Here, we build on recently used experimental
methods [19–21] for determining specific terms in the ela-

storesistivity tensor3 mαβ,γ δ = ∂[( 
ρ

ρ
)
αβ

]

∂εγ δ
|ε→0, which describes

the strain-induced change in the normalized resistivity. The
technique, which was originally employed to reveal the
presence of nematic fluctuations, can be generalized in the
following way.

3Note that the same symmetry arguments can be applied to either
the shear conductivity or shear resistivity and moreover �xx,xy 	= 0 ⇔
mxx,xy 	= 0.
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ab
εxxεxx

εyy=-νεxx

εyy=-νεxx

θ

piezo

FIG. 4. (Color online) Experimental setup for the detection of
shear resistance similar to Refs. [20,21].

A rectangular sample with principal axes a,b oriented along
its edges is glued with a relative angle θ onto a piezoelectric
stack in order to measure the longitudinal elastoresistance
(Fig. 4). Applying a voltage to the piezo leads to a stress
and therefore tensile strains εxx and εyy = −νpεxx (where νp

is the Poisson ratio of the piezoelectric stack) in the coordinate
system of the piezo stack. Since the sample is mounted with
a relative angle on the piezo element, the pure tensile strain
of the piezo stack translates into a combination of tensile and
shear strain in the coordinate system of the crystal axes a,b

for the sample.
Measuring the change of the resistance (
R/R)xx �

(
ρ/ρ)xx due to the applied strain for several angles θ , the
angularly antisymmetric component of the response is given
by

(

R

R

)odd

xx

(θ ) = 1

2

[(

R

R

)
xx

(θ ) −
(


R

R

)
xx

(−θ )

]

= (νp+1)

(
mxx,zzCzz,xy

Czz,zz

−mxx,xy

)
sin(2θ ) εxx,

(6)

where Cij,kl are components of the elastic stiffness tensor. For
tetragonal or orthorhombic symmetry, Czz,xy = mxx,xy = 0,
and the odd contribution vanishes; conversely, a nonzero
(
R/R)odd

xx is proof of broken mirror symmetries. An equiva-
lent approach involves using lithographic methods to prepare
samples with different axes orientations (see Appendix E).

VI. DISCUSSION

We have demonstrated the use of a higher rank tensor —
the shear conductivity �xx,xy—as a sensitive probe of broken
point group symmetries. In the context of the cuprates, the
onset of such a response at the charge ordering temperature
would unambiguously demonstrate that charge order breaks all
in-plane mirror reflection symmetries; recall these are discrete
symmetries that are less susceptible to disorder and can survive
as true long-range ordered states. However, it is possible that
a current loop state onsets at a higher, pseudogap temperature
scale, in which case the detection of �xx,xy at T ∗ supports
proposals of the �2 version of this Q = 0 magnetic state. In
either scenario, any identification of broken mirror symmetries
is significant as it specifies a true thermodynamic phase in
the pseudogap regime, and places constraints on a putative

quantum critical point, which may exist near optimal doping
in cuprate materials.

To summarize, we have considered transport coefficients
in the presence of strain that are direct indicators of mirror
symmetry breaking. We have studied the shear conductivity
in the context of two broken symmetry phases that have been
proposed to occur within the pseudogap regime of hole-doped
cuprates and have discussed experimental protocols to measure
such response. Our analysis can be generalized to study other
components of the strain conductivity tensor �ijkl .
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APPENDIX A: SYMMETRY CONSIDERATIONS

1. General properties of tensorial response functions

Given a Hamiltonian H that is invariant under the point
group transformation Ô : r → r ′, then a physical response
function Rx1,...,xn

, which is a tensor of rank n (e.g., resistivity,
elasticity, etc.) is constrained according to

Rx1,...,xn
= Ôx1,y1 . . . Ôxn,yn

Ry1,...yn
. (A1)

This condition typically restricts several elements of R̂ to
vanish; conversely, breaking some point group symmetries
relaxes these constraints, allowing the new responses to serve
as evidence of broken symmetry. In the following, we will
restrict ourselves to the case of (quasi) two-dimensional
materials as the various cuprates, iron-based superconductors,
or heavy-fermion compounds mostly possess a tetragonal
symmetry in the high-temperature regime. Nevertheless, it
is straightforward to generalize these considerations to more
general crystal classes.

Consider now a state that is invariant under reflection about
say the xy plane (σ̂z : {x,y,z} → {x,y,−z}). We find the
condition that

Rx1,...,xn
= (−1)NzRx1,...,xn

,

where Nz is the number of z indices (and likewise for σ̂x and
σ̂y symmetry). Fourfold rotation symmetry about the z axis
leads to the conditions

Rx1,...,xn
= (−1)Nx Rx1,...,xn

|x↔y

and

Rx1,...,xn
= (−1)Ny Rx1,...,xn

|x↔y.

Finally, a mirror symmetry σ̂(x=y) (about the (x = −y)z plane)
implies the condition

Rx1,...,xn
= Rx1,...,xn

|x↔y.
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Of particular interest to us is the shear conductivity com-
ponent �xx,xy = ∂σxx/∂εxy for 2D systems, which describes
the change of the longitudinal dc conductivity induced by
a shear strain of the crystal. Based on the above symmetry
considerations, this can be nonvanishing only when reflections
about the x and the y axes—σ̂y , σ̂x —as well as the
combination σ̂(x=y) ∗ C4, where σ̂(x=y) denotes reflection about
the vertical (x = −y)z plane and C4 a π/2 rotation about the
z axis, are broken. Following these lines, it is straightforward
to construct the explicit forms of higher-rank tensors as the
elastoresistance or the elastic stiffness systems with arbitrary
symmetries, see, e.g., Appendix E.

2. Properties of �xx,x y for planar loop currents

We now discuss properties of the shear conductivity within
a given loop current state, i.e., a single domain, which
corresponds to one configuration of the loop current order
parameter R. The magnetic point group symmetry within
the loop current state is isomorphic to D2h [46], with the
following group elements in addition to the identity: C2(z)T ,
C2(x = y)T , C2(x = −y), iT , σ̂z, σ̂(x=−y)T , and σ̂(x=y),
where C2(z) denotes a 180 ◦ rotation about the z axis, etc., T
denotes time reversal, i is inversion, and σ̂(x=y) denotes mirror
reflection as before etc. Note that these are the group elements
for the configuration shown in Fig. 1. These group operations
place the following constraints on the shear conductivity in the
presence of a c-axis directed magnetic field Hz:

C2(z)T , iT : �xx,xy(R,Hz) = �xx,xy(R,−Hz), (A2)

C2(x = −y),σ̂(x=y) : �xx,xy(R,Hz) = �yy,yx(R,−Hz),
(A3)

C2(x = y)T ,σ̂(x=−y)T : �xx,xy(R,Hz) = �yy,yx(R,Hz).
(A4)

while σ̂z places no constraint. For clarity, note that C2T and
iT independently imply the identity of Eq. (A2), and similarly
for the subsequent equations.

3. Properties of �xx,x y for charge order

In the case of the charge order described in Sec. III B,
the point group symmetry is much more restricted. In the
case of equal magnitude charge and bond order parameters as
drawn in Fig. 1, with |φx | = |φy | and |
x | = |
y |, the point
group symmetry is C2v , with the group elements C2(x = −y),
σ̂(x=y), and σ̂z in addition to the identity. These enforce the
following constraints on the shear conductivity in a c axis
directed magnetic field:

C2(x = −y),σ̂(x=y) : �xx,xy(Hz) = �yy,yx(−Hz), (A5)

while σ̂z places no constraint. Alternatively, when the magni-
tudes of the order parameters are different, with |φx | 	= |φy |
and |
x | 	= |
y |, the point group symmetry is reduced to Cs ,
with only two group elements: the identity and σ̂xy . This places
no constrains on transformations of �xx,xy .

APPENDIX B: LINEAR RESPONSE THEORY
OF ELASTOCONDUCTIVITY

In this section, we derive the general expression for the
elastoconductivity using Kubo’s linear response theory. The
presented formalism is suitable for any kind of bilinear
Hamiltonian with the form

H =
∑
k,αβ

Hk,αβc
†
k,αck,β =

∑
k

�̂
†
kĤk�̂k, (B1)

with corresponding Matsubara Green’s function Ĝk(iωn) =
[iωn1 − Ĥk]−1. Following Mahan [47], the longitudinal dc
conductivity for such a multiband system can be calculated to
be

σxx=−πe2
∫

1st B.Z.

dd k
(2π )d

∫ ∞

−∞
dε

∂f (ε)

∂ε
Re tr

[(
Âk(ε)

∂Ĥk

∂kx

)2]
,

(B2)

where Âk(ε) = i
2π

[Ĝk(ε + i/2τsc) − Ĝk(ε − i/2τsc)] is the
spectral weight of the system, ε is an energy and f (ε) is
the usual Fermi-Dirac distribution function. In order to yield
a finite result of this transport expression, it is necessary to
introduce a finite lifetime τsc for the fermionic quasiparticles,
which can originate from electron-electron, electron-phonon,
or electron-impurity interactions. Here, we just assume τsc 	=
0, and neglect other processes (e.g., vertex corrections). Thus
the scattering rate 1/τsc � EF (where EF is the Fermi energy)
can be viewed simply as an effective parameter of the theory.

We now focus on two spatial dimensions and consider a
system with a Hamiltonian (B1), to be described by a tight-
binding model

H =
∑

Ri

∑
α,β

εαβc
†
i,αci,β +

∑
〈Ri ,Rj 〉

∑
α,β

(
t
αβ

ij c
†
i,αcj,β + H.c.

)
+

∑
〈〈Ri ,Rj 〉〉

∑
α,β

(
(t ′)αβ

ij c
†
i,αcj,β + H.c.

) + · · · , (B3)

where Ri are the positions of the atoms of the lattice (Bravais
vectors a1,a2) and α describes for example possible orbital or
spin degrees of freedom. The matrix/hopping elements (tn)αβ

ij

are in general dependent on the distance between the atoms,
which can be parameterized as

(tn)α,β

ij = [tn(|Ri − Rj |)]αβ = (tn)αβe−γ
αβ
n (|Ri−Rj |−|R0

i −R0
j |),
(B4)

where R0
i are the equilibrium positions of the atoms. Without

strain, the Fourier space representation of (B3) is just given by

H =
∑

k

∑
α,β

c
†
k,αck,β{εαβ + 2tαβ[cos(a1 · k) + cos(a2 · k)]

+ 2(t ′)αβ[cos((a1 + a2) · k) + cos([a1 − a2] · k)] + · · · }
=

∑
k

�
†
kĤk�k, (B5)
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with the spinor �k = (ck,1,ck,2, . . .)T describing the multiband system. We now apply a general strain to the crystal, which has
the form

ε̂ =
(

εxx εxy

εxy εyy

)
. (B6)

The strain changes the Bravais lattice vectors a1,a2 of the system to

as
1/2 = (1̂ + ε̂)a1/2, (B7)

and therefore also the positions of the atoms R0
i → Rs

i = (1̂ + ε̂)Ri . The Hamiltonian in the presence of strain is therefore given
by

Hs =
∑

k

′ ∑
α,β

c
†
k,αck,β

⎧⎨
⎩εαβ + 2tαβ

∑
j=1,2

e−γ αβ [|(1̂+ε̂)aj |−|aj |] cos([(1̂ + ε̂)aj ] · k)

+ 2(t ′)αβ
∑
j=±

e−γ ′αβ [|(1̂+ε̂)(a1+ja2)|−|a1+ja2|] cos([(1̂ + ε̂)(a1 + ja2)] · k) + · · ·
⎫⎬
⎭

=
∑

k

′ �†
kĤ

s
(1̂+ε̂)k�k. (B8)

Note that there are now three major changes if we compare (B8) with (B5): (i) due to (B7), the Brillouin zone is strained,
which is indicated by

∑
k

′; (ii) the Hamiltonian matrix

Ĥ s
(1̂+ε̂)k = Ĥ(1̂+ε̂)k|(tn)αβ

ij →(tn)αβ

ij (ε̂), (B9)

has modified tight-binding parameters depending on the strain ε̂; and (iii) the quasimomentum k → (1̂ + ε̂)k takes into account
the change of the Brillouin zone. Inserting now our strained Hamiltonian (B8) into the linear response theory, we find

σ s
xx = − πe2

∫
strained
1st B.Z.

d2k
(2π )2

∫ ∞

−∞
dε

∂f (ε)

∂ε
Re tr

[(
Âs

(1̂+ε̂)k(ε)
∂Ĥ s

(1̂+ε̂)k

∂kx

)2]

= − πe2

det(1̂ + ε̂)

∫
1st B.Z.

d2 p
(2π )2

∫ ∞

−∞
dε

∂f (ε)

∂ε
Re tr

({
Âs

p(ε)

[
(1 + εxx)

∂Ĥ s
p

∂px

+ εxy

∂Ĥ s
p

∂py

]}2)
, (B10)

where in the second line we substituted p = (1̂ + ε̂)k so
that the integral over the original (unstrained) Brillouin zone
is recovered. In the following, we will always differentiate
between the momentum k defined in the strained Brillouin
zone and p in the unstrained Brillouin zone (see Fig. 5).

Bravais lattice

Brillouin zone

unstrained sheared

kp=(1+ε)k

FIG. 5. Unstrained and sheared Bravais lattice and corresponding
first Brillouin zone of square lattices.

1. Next-nearest-neighbor tight-binding dispersion for square
lattice in the presence of shear strain

In order to make the connection between the generalized
tight-binding Hamiltonian in Eq. (B5) to the systems consid-
ered in this paper, we now calculate the dispersion of a simple
square lattice in next-nearest-neighbor approximation and in
the presence of a pure shear strain

ε̂ =
(

0 εxy

εxy 0

)
. (B11)

The Bravais vectors of a square lattice are a1 = ex,a2 =
ey , where we set the lattice constant a = 1. The nearest-
neighbor hoppings t s = t (and also the charge and bond order
parameters) do not change linearly in εxy by a pure shear strain
since the distance between neighbor atoms is |(1̂ + ε̂)ex/y | =
1 + ε2

xy ≈ 1. In contrast, the next-nearest-neighbor hoppings[
t ′
(
es
x ± es

y

)]s = t ′e−γ ′(|es
x±es

y |−|ex±ey |) ≈ t ′(1 ∓
√

2γ ′εxy)
(B12)

obtain a linear εxy dependence and we get the sheared
dispersion

εs
p = 2t[cos(px) + cos(py)] + 2t ′(1 −

√
2γ ′εxy) cos(px + py)

+ 2t ′(1 +
√

2γ ′εxy) cos(px − py) − μ. (B13)
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Note that p is, as mentioned in the last section, the momentum
in the unstrained Brillouin zone which has to be used in formula
(B10).

APPENDIX C: SHEAR CONDUCTIVITY IN CUPRATES
WITH CHARGE ORDER

1. Effective Hamiltonian for bidirectional charge order

A bidirectional charge (φ) and bond (
) density wave of
period N ∈ N on a square lattice (which describes our quasi
two-dimensional material) is described by the commensurate
fields

φRi
= φx · cos( Qx · Ri) + φy · cos( Qy · Ri),

(C1)



x/y

Ri
= 
x/y · cos( Qx/y · Ri),

where φx/y,
x/y ∈ R, and Qx/y = 2π
N

ex/y . Note that C4

symmetric (i.e., “checkerboard”) order with φx = φy and

x = 
y , also preserves the σ̂(x=−y) symmetry. We consider
here the effective square copper lattice (Bravais lattice ax =
ex,ay = ey) describing the material’s dispersion (note that we
have ignored spin degrees of freedom, which simply contribute
an overall factor of 2 in the conductivity). The effective
Hamiltonian reads

H =
∑

Ri

(φRi
− μ)c†i ci +

[
−

∑
α=x,y

∑
Rj =Ri+aα

(
t + 
α

Ri

)
c
†
j ci

+ t ′
∑

Rj =Ri+ax±ay

c
†
j ci + H.c.

]
, (C2)

where we use the parameters t = 1,t ′ = 0.45t,μ = −0.65t .
Transforming this Hamiltonian into Fourier space leads to

H =
∑

k

εkc
†
kck +

∑
k

∑
α=x,y

({
φα

2
− 
αe−i Qα ·aα

× cos

[(
k + Qα

2

)
· aα

]}
c
†
k+ Qα

ck + H.c.

)
, (C3)

with the free dispersion

εk = −2t[cos(kx) + cos(ky)] + 4t ′ cos(kx) cos(ky) − μ.

(C4)

Due to the density waves the periodicity of the crystal changes
from a = 1 to N , so we have downfolded our original Brillouin
zone

kx/y ∈ [−π,π ] → kx/y ∈ [−π/N,π/N ], (C5)

so that we end up with an effective band Hamiltonian

H =
∑

k

�
†
kĤk�k, (C6)

where �k = (ck,ck+ Qx
, . . .)T . From this point on, we will

restrict ourselves to the case of N = 2, but the following
arguments and steps are valid for arbitrary N . For N = 2,
we have the spinor �k = (ck,ck+ Qx

,ck+ Qy
,ck+ Qx+ Qy

)T and

3 2 1 0 1 2 3
3

2

1

0

1

2

3

kx

k
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

kx

k
y

FIG. 6. (Color online) Fermi surface of the original (left) and
downfolded (right) Brillouin zone for charge and bond order (N = 2)
with gaps opening at the hot spots of the Fermi surface that are
connected by Qx/y = πex/y . Note that the figure on the right is the
reduced Brillouin zone shown here as the upper right corner of the
original Brillouin zone.

the Hamiltonian

Ĥk =

⎛
⎜⎜⎝

εk χx(k) χy(k) 0
χ∗

x (k) εk+ Qx
0 χy(k + Qx)

χ∗
y (k) 0 εk+ Qy

χx(k + Qy)
0 χ∗

y (k + Qx) χ∗
x (k + Qy) εk+ Qx+ Qy

⎞
⎟⎟⎠,

(C7)

with

χx/y(k) = φx/y + 2
x/ye
−i Qx/y ·ax/y cos[(k + Qx/y/2) · ax/y]

= φx/y − 2i
x/y cos[kx/y + π/2]. (C8)

In Fig. 6, we show the original cuprate Fermi surface and the
downfolded Fermi surface for the period 2 charge and bond
density waves.

2. Shear conductivity

We now discuss how to apply the shear strain Eq. (B11)
on the density wave system. The change of the Bravais-
lattice as

x/y = (1 + ε̂)ax/y will also lead to a change of the
reciprocal lattice vectors bs

x/y = 2π
V

(ez × as
y/x) and finally also

the ordering vector Qs
x/y = 1

N
bs

x/y . This means that

Qα · aβ = Qs
α · as

β = 2π

N
, (C9)

remains invariant under the application of the strain. As we
saw in Sec. B 1, the nearest-neighbor hoppings are not affected
linearly in εxy by a pure shear strain and the same argument
should therefore hold for the charge and bond order φx/y,
x/y

since their ordering vectors are aligned with the x and y axes.
This means that the strained Hamiltonian of (C7) is given by

Ĥ s
p =

⎛
⎜⎜⎝

εs
p χx( p) χy( p) 0

χ∗
x ( p) εs

p+ Qx
0 χy( p + Qx)

χ∗
y ( p) 0 εs

p+ Qy
χx( p + Qy)

0 χ∗
y ( p + Qx) χ∗

x ( p + Qy) εs
p+ Qx+ Qy

,

⎞
⎟⎟⎠

(C10)

with the strained dispersion εs
p defined in Eq. (B13). We now

rewrite the formula for the elastoconductivity in the case of
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pure shear strain

σ s
xx

(B10)= − πe2

1 − ε2
xy

∫
1st B.Z.︸ ︷︷ ︸∫ π/2

−π/2

d2 p
(2π )2

∫ ∞

−∞
dε

∂f (ε)

∂ε
Re tr

[(
Âs

p(ε)Ĵ s
p,x

)2]
, (C11)

where the integral is performed over the reduced Brillouin zone and we have defined the current vertex as

Ĵ s
p,x = ∂Ĥ s

p

∂px

+ εxy

∂Ĥ s
p

∂py

. (C12)

Expanding the spectral weight and the current operator to linear order in the shear strain εxy , we have

Âs
p(ε) = Âs

p(ε)

∣∣∣∣
εxy=0

+ Âs
p(ε)

∂εxy

∣∣∣∣
εxy=0

· εxy = Â p(ε) + δÂ p(ε) · εxy,

Ĵ s
p,x = Ĵ s

p,x

∣∣∣∣
εxy=0

+ Ĵ s
p,x

∂εxy

∣∣∣∣
εxy=0

· εxy = Ĵ p,x + δĴ p,x · εxy. (C13)

Inserting this in Eq. (C11) and expanding again, we find the dc conductivity

σxx = −πe2
∫ π/2

−π/2

d2 p
(2π )2

∫ ∞

−∞
dε

∂f (ε)

∂ε
Re tr[(Â p(ε)Ĵ p,x)2] (C14)

and the shear conductivity

�xx,xy = −2πe2
∫ π/2

−π/2

d2 p
(2π )2

∫ ∞

−∞
dε

∂f (ε)

∂ε
Re tr[δÂ p(ε)Ĵ p,xÂ p(ε)Ĵ p,x + Â p(ε)δĴ p,xÂ p(ε)Ĵ p,x]. (C15)

A numerical investigation shows that �xx,xy is insensitive to γ ′, so we henceforth set γ ′ = 0. In this case, we can finally simplify

σxx = Qx, �xx,xy = 2Qy, (C16)

with

Qα = −πe2
∫ π/2

−π/2

d2 p
(2π )2

∫ ∞

−∞
dε

∂f (ε)

∂ε
Re tr

[
Â p(ε)

∂Ĥ p

∂px

Â p(ε)
∂Ĥ p

∂pα

]
T →0−−→ πe2

∫ π/2

−π/2

d2 p
(2π )2

Re tr

[
Â p(0)

∂Ĥ p

∂px

Â p(0)
∂Ĥ p

∂pα

]
,

(C17)

where in the end we considered the zero-temperature limit. This formula is then numerically evaluated to find the shear
conductivity numerically, as discussed in the main text.

APPENDIX D: SHEAR CONDUCTIVITY IN CUPRATES FOR CURRENT LOOP ORDER

Following Ref. [2], we calculate the shear conductivity for the Varma current loop states �I and �II . From the minimal model
of the copper oxides that takes into account the dx2−y2 orbitals of the copper atoms and the px,py orbitals of the oxygen atoms,
we can write down the mean-field Hamiltonian of the time-reversal breaking fields as (spin degrees of freedom are introduced
later)

H�I
=

∑
k

⎛
⎝ dk

px,k

py,k

⎞
⎠†

Ĥ
�I
k︷ ︸︸ ︷⎛

⎝εd − μ [2tpd − Reiφ]sx(k) [2tpd + Reiφ]sy(k)
H.c. −μ −4tppsx(k)sy(k)
H.c. H.c. −μ

⎞
⎠

⎛
⎝ dk

px,k

py,k

⎞
⎠,

(D1)

H�II
=

∑
k

⎛
⎝ dk

px,k

py,k

⎞
⎠† ⎛⎝εd − μ 2tpdsx(k) − Reiφcx(k) 2tpdsy(k) + Reiφcy(k)

H.c. −μ −4tppsx(k)sy(k)
H.c. H.c. −μ

⎞
⎠

︸ ︷︷ ︸
Ĥ

�II
k

⎛
⎝ dk

px,k

py,k

⎞
⎠,

where tpd and tpp are the next nearest-neighbor hopping parameters of the copper-oxygen and oxygen-oxygen bonds, εd the
on-site energy of the copper orbitals, μ the chemical potential, R eiφ the current loop order parameter of the Varma theory
(with φ = ±π/2) and we defined sx/y(k) = sin(k · ax/y), cx/y(k) = cos(k · ax/y) with ax/y = a · êx/y . The creation/annihilation
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ab
εxxεxx

νεxx

νεxx

θ

εxx
εxx

εxx

νεxx

νεxx

εxx

νεxx

νεxx

νzεxx

FIG. 7. (Color online) The first example of an experimental setup, where samples which have the same alignment of their crystalline a-b
axes are glued at several different angles to a piezoelectric stack.

operators are defined in such a way that the current vertex is
again just given by

J
�I/II

k = ∂Ĥ
�I/II

k

∂k
. (D2)

Introducing the shear as in the previous section and assuming
a linear shear-dependence of t

↗
pp(εxy) = tpp(1 − γ εxy) and

t
↘
pp(εxy) = tpp(1 + γ εxy) (where arrows schematically indi-

cate the direction of oxygen-oxygen bonds on the diagonal), we
can expand expression (B10) linear in strain. For the numer-
ical investigation, we use the parameters tpp = 0.3tpd ,εd =
−0.7tpd ,μ = 1.5tpd ,τ = 10/tpd,γ = 1.3tpd . As discussed in
the main text, the �I state, which does not break the σ̂z

and σ̂y mirror symmetry, does not produce a finite shear
conductivity —�xx,xy = 0. In contrast, the �II state breaks
the requisite mirror symmetries and hence shows a finite
shear conductivity �xx,xy 	= 0 which increases with the order
parameter R. Note that it is the �II state (and several symmetry
related partner states involving out of plane current loops
to apical oxygens), which is both a stronger theoretical and
experimental candidate for a pseudogap state.

APPENDIX E: EXPERIMENTAL SETUPS

1. Explicit forms of tensors for broken tetragonal symmetry

Let us now consider (quasi) two-dimensional materials with
an intrinsic σ̂z symmetry, e.g., the layered cuprate or iron
pnictide compounds. If all tetragonal point group symmetries
σ̂x,σ̂y,σ̂(x=−y),C4 are broken, a generic rank-4 tensor only has
components with an even number of z indices, see Sec. A. In
the usual Voigt notation (1,2,3,4,5,6) = (xx,yy,zz,yz,zx,xy)
we can then write a rank-4 tensor T̂ that is symmetric in the

piezo

thin film crystal

x

y a

b

lithography

piezo

x

y

ab

ab

ab

ab

ab

θ

FIG. 8. (Color online) A second possible experimental setup,
where crystals with different alignment of their crystalline axes can
be glued onto the piezoelectric stack.

first and last two indices (such as the elastoresistance or elastic
stiffness)4 as

symmetry: σ̂z

T̂ =

⎛
⎜⎜⎜⎜⎜⎝

T11 T12 T13 0 0 T16

T21 T22 T23 0 0 T26

T31 T32 T33 0 0 T36

0 0 0 T44 T45 0
0 0 0 T54 T55 0

T61 T62 T63 0 0 T66

⎞
⎟⎟⎟⎟⎟⎠. (E1)

Let us now consider what happens if we restore the different
point group symmetries σ̂y,σ̂z,σ̂(x=−y),C4 of the tetragonal
group. Restoring either σ̂x or σ̂y will lead to the vanishing of all
tensor elements with an odd number of x indices (and therefore
also for the elements with an odd number of y indices):

Symmetries: σ̂z,(σ̂x or σ̂y)

T̂ =

⎛
⎜⎜⎜⎜⎜⎝

T11 T12 T13 0 0 0
T21 T22 T23 0 0 0
T31 T32 T33 0 0 0
0 0 0 T44 0 0
0 0 0 0 T55 0
0 0 0 0 0 T66

⎞
⎟⎟⎟⎟⎟⎠. (E2)

Restoring the σ̂(x=−y) symmetry relates many of the tensor
elements in Eq. (E1) so that

Symmetries: σ̂z,σ̂(x=−y)

T̂ =

⎛
⎜⎜⎜⎜⎜⎝

T11 T12 T13 0 0 T16

T12 T11 T13 0 0 T16

T31 T31 T33 0 0 T36

0 0 0 T44 T45 0
0 0 0 T45 T44 0

T61 T61 T36 0 0 T66

⎞
⎟⎟⎟⎟⎟⎠. (E3)

4The elastoresistance mαβ,γ δ = ∂Rαβ/∂εγ δ is symmetric in the first
two indices due to Onsager’s relation Rαβ (H) = Rβα(H) (in the
absence of a magnetic field H) and in the last two indices due to
the symmetric definition of the strain tensor εγ δ = εδγ .
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Finally, having a σ̂z and C4 symmetric system we would end up with

Symmetries: σ̂z,C4 T̂ =

⎛
⎜⎜⎜⎜⎜⎝

T11 T12 T13 0 0 T16

T12 T11 T13 0 0 −T16

T31 T31 T33 0 0 0
0 0 0 T44 T45 0
0 0 0 −T45 T44 0

T61 −T61 0 0 0 T66

⎞
⎟⎟⎟⎟⎟⎠. (E4)

Combining the tensor representations (E2)–(E4) one can determine the tensor for an arbitrary combination of the considered
point group symmetries. For example, restoring the tetragonal symmetry would lead to the tensor

Tetragonal symmetry: T̂ =

⎛
⎜⎜⎜⎜⎜⎝

T11 T12 T13 0 0 0
T12 T11 T13 0 0 0
T31 T31 T33 0 0 0
0 0 0 T44 0 0
0 0 0 0 T44 0
0 0 0 0 0 T66

⎞
⎟⎟⎟⎟⎟⎠. (E5)

2. Setup 1

In this section, we describe the two proposed experimental setups to detect tetragonal symmetry breaking in elastoresistance
measurements in detail. Earlier experiments [20] glued single crystals of Ba(Fe1−xCox)2As2 to the surface of a piezo stack as
shown in Fig. 7. Varying the strain of the piezo crystal εxx,εyy = −νpεxx (with νp the Poisson ratio of the piezo stack), Kuo et al.
measured select admixtures of elastoresistivity coefficients. Both the resistance and the applied strain are tensors of second rank
and can be written in the reducible Voigt notation by six component arrays:

R = (Rxx,Ryy,Rzz,Ryz,Rzx,Rxy)T ,

ε = (εxx,εyy,εzz,εyz,εzx,εxy)T . (E6)

Defining the relative change of the resistance due to the applied strain as δri = δRi

Ri
, we can write down the relation

δri = m̂ij εj , (E7)

with the elastoresistance tensor m̂. Note that although m̂ is a tensor of rank 4 (as it relates two rank-2 tensors), the Voigt notation
simplifies this tensor to a matrix form. Consider gluing a rectangular sample, which is cut along the a,b crystal axes, onto the
stack with a relative angle of θ as shown in Fig. 7. The sample is described by the elastoresistance tensor m̂ and the elastic
stiffness Ĉ (both tensors are in the basis that is shown along the a,b crystal axes). Assuming that we have a system which breaks
all of the tetragonal symmetries, we can write down the elastic stiffness and elastoresistance according to (E1) as5

Ĉ =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠, m̂ =

⎛
⎜⎜⎜⎜⎜⎝

m11 m12 m13 0 0 m16

m21 m22 m23 0 0 m26

m31 m32 m33 0 0 m36

0 0 0 m44 m45 0
0 0 0 m54 m55 0

m61 m62 m63 0 0 m66

⎞
⎟⎟⎟⎟⎟⎠ . (E8)

Upon restoring the tetragonal symmetry, this simplifies to

Ĉ =

⎛
⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎞
⎟⎟⎟⎟⎟⎠, m̂ =

⎛
⎜⎜⎜⎜⎜⎝

m11 m12 m13 0 0 0
m12 m11 m13 0 0 0
m31 m31 m33 0 0 0

0 0 0 m44 0 0
0 0 0 0 m44 0
0 0 0 0 0 m66

⎞
⎟⎟⎟⎟⎟⎠. (E9)

Comparing (E8) with (E9) we see that, as stated earlier, the breaking of the in-plane mirror symmetries allows for a broad range
of new responses (e.g., the elastoresistivity coefficient m16 = mxx,xy 	= 0).

We now consider the relation (E7) for the rotated sample and in the absence of in-plane mirror symmetries. We align
our coordinate system axes with the rectangular crystal edges and therefore along the a,b crystal axes. In this system, the

5Note that the elastic stiffness has the more general symmetry Cαβ,γ δ = Cβα,γ δ = Cαβ,δγ = Cγδ,αβ since it can be written as the second

derivative of the free energy with respect to strain: Cαβ,γ δ = ∂2F

∂εαβ ∂εγ δ
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elastoresistance and elastic stiffness are given by the expressions in Eq. (E8) and the strain εcrystal seen by the crystal is related
to the strain in the coordinate system of the piezo by a rotation:

εcrystal = R̂α̂θ R̂
−1 εpiezo . (E10)

Here, we defined the relation between the real and the engineering strain R̂ = diag(1,1,1,2,2,2) and the rotation matrix for the
6-component arrays similar to Ref. [20]:

αθ =

⎛
⎜⎜⎜⎜⎜⎝

cos2(θ ) sin2(θ ) 0 0 0 2 cos(θ ) sin(θ )
sin2(θ ) cos2(θ ) 0 0 0 −2 cos(θ ) sin(θ )

0 0 1 0 0 0
0 0 0 cos(θ ) − sin(θ ) 0
0 0 0 sin(θ ) cos(θ ) 0

− cos(θ ) sin(θ ) cos(θ ) sin(θ ) 0 0 0 cos2(θ ) − sin2(θ )

⎞
⎟⎟⎟⎟⎟⎠, (E11)

The strain in the piezo system is given by εpiezo = (1,−νp, − νz(θ ),0,0,0)εxx . Note that due to the crystal axis rotation, the
Poisson ratio νz(θ ) of the crystal in the z direction now depends on the rotation angle θ (see Fig. 7). The angular dependence can
be derived by considering the stress-strain relation τ crystal = Ĉεcrystal and the condition τ3,crystal = τzz,crystal = 0 since there is no
applied stress in the z direction of the crystal. One finds that

νz(θ ) = C13(cos2(θ ) − ν sin2(θ )) + C23(sin2(θ ) − ν cos2(θ )) − C36(ν + 1) sin(2θ )

C33
. (E12)

The resistance change δr is therefore given by

δr = m̂εcrystal = m̂R̂α̂θ R̂
−1 εpiezo, (E13)

such that the measured xx component is given by

δr1(θ ) =
(


R

R

)
xx

(θ ) = {m11[cos2(θ ) − νp sin2(θ )]

+ m12[sin2(θ ) − νp cos2(θ )]

− m16(νp + 1) sin(2θ ) − m13νz(θ )} εxx. (E14)

Looking at the odd contribution, we finally find(

R

R

)odd

xx

(θ ) = 1

2

[(

R

R

)
xx

(θ ) −
(


R

R

)
xx

(−θ )

]

= (νp + 1)

(
mxx,zzCzz,xy

Czz,zz

− mxx,xy

)
× sin(2θ ) εxx.

3. Setup 2

The second proposed setup is similar to the one described in
the previous section, but here we start from a thin film crystal
and use lithography to cut out the rectangular sections as shown
in Fig. 8. The advantage of this method is that aligning the

crystal by gluing it on the piezo element with high precision
is a rather difficult task, whereas in using lithography, one can
cut out the samples very precisely.

In contrast to the other experiment, the crystal axes
a,b are aligned with the principal axes of the piezo stack.
Therefore the Poisson ratio in the z direction does not depend
on the angle of the cut. If we consider the coordinate system
to be along the a,b (and thus also x,y) axis, what is measured
is effectively the rotated resistance,

δr(θ ) = α̂θ δr0 = α̂θ m̂ · εpiezo. (E15)
The measured longitudinal resistance is therefore given by

δr1(θ ) =
(


R

R

)
xx

(θ ) = {cos2(θ )[m11 − νm12 − νzm13]

+ sin2(θ )[m21 − νm22 − νzm23]

− sin(2θ )[m61 − νm62 − νzm63]}εxx, (E16)

and the antisymmetric part(

R

R

)odd

xx

(θ ) = − sin(2θ )[m61 − νm62 − νzm63]εxx, (E17)

is again proportional to sin(2θ ) and only present for broken
mirror symmetries.
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