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A new method is presented for measuring terms in the elastoresistivity tensor m;; of single crystal
samples with tetragonal symmetry. The technique is applied to a representative underdoped Fe-arsenide,
Ba(Fe.975C0¢ 025)2Asz, revealing an anomalously large and anisotropic elastoresistance in comparison to simple
metals. The me coefficient follows a Curie-Weiss temperature dependence, providing direct evidence that the
tetragonal-to-orthorhombic structural phase transition that occurs at 7; = 97.5 K in this material is not the result
of a true-proper ferroelastic transition. Rather, the material suffers a pseudoproper transition for which the lattice

strain is not the primary order parameter.
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I. INTRODUCTION

The elastoresistance of a material describes the relation
between strain and changes in the electrical resistance. An
important quantity in the semiconductor industry, for which
strain effects must be carefully controlled,' this property has
been largely overlooked in the study of strongly correlated
quantum materials. However, the elastoresistance tensor con-
tains a wealth of information relating to both the symmetry of
ordered states and also the nature of fluctuations. In addition,
since electronically driven phase transitions often strongly
affect the conductivity of a material, and since the order
parameter must be coupled to the crystal lattice, such materials
are likely to have anomalously large elastoresistance values
relative to simple metals. In this paper we describe a new
method to determine specific terms in the elastoresistivity
tensor that is especially suitable for small samples, appropriate
for typical cases of interest in the field of strongly correlated
materials. We focus on the specific case of the underdoped iron
arsenide Ba(Fe( 975C0q.025)2As,, for which an electronically
driven structural phase transition leads to a divergence of
specific terms in this tensor.

The iron-arsenide superconductors undergo a tetragonal-
to-orthorhombic structural transition at a temperature that
either precedes or accompanies the onset of long range
magnetic order. The origin of this effect has been discussed
in various contexts, including orbital order,”® a spin-driven
nematic state,’"'> a combination of both,'® and a Pomerancuk-
type instability.'” In a recent paper, we presented results of
measurements of the induced resistivity anisotropy in the
tetragonal state of the archetypal electron-doped iron-arsenide
Ba(Fe;_,Co,),As, under conditions of uniaxial strain, using
a piezoelectric stack to generate the strain.'® We related
the induced in-plane resistivity anisotropy to the nematic
susceptibility, and interpreted the divergence of this quantity
as providing evidence that the structural transition is driven
by an electronic nematic phase transition. In the current
paper we describe the elastoresistive properties in greater
detail, and show how terms in the elastoresistance tensor
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can be determined through measurement of longitudinal and
transverse elastoresistance measurements.

The experiment itself is straightforward to describe. Single
crystals of Ba(Fe;_,Co,),As, are glued to the top surface
of a piezoelectric stack, and the strain varied while simul-
taneously measuring the induced changes in the resistance.
Our initial experiments were inspired by the original work by
Shayegan et al.,'” and followed a similar characterization of
the piezoelectric stacks used for their measurements. Some
care must be taken to ensure that the strain is fully transmitted
to the sample, which can be readily checked by comparing
strain measurements on the top surface of the sample relative
to the surface of the piezoelectric stack. In our most recent
experiments, described in this paper, samples are mounted
in both longitudinal and transverse geometries such that the
strain €,, is parallel or perpendicular to the current in the
sample respectively (illustrated in Fig. 1). The strain €,, is
modulated by varying the voltage applied to the piezoelectric
stack [Fig. 2(a)], and measured by strain gauges glued to the
surface of the piezoelectric stack. The piezoelectric stack is
characterized by an effective Poisson’s ratio v, = —€,,/¢€xx,
and as such the measurements are technically made under
conditions of biaxial in-plane strain, rather than uniaxial
strain. However, the biaxial strain is highly anisotropic, having
opposite signs for €,, and €,,, so the part that couples to
the bulk modulus (e, +¢€,,) is small compared to the part
that couples to the orthorhombicity (e, — €,,). The effective
Poisson’s ratio of the piezoelectric stack can be readily
measured using mutually transverse strain gauges, and is
shown in Fig. 2(b) as a function of temperature. For the purpose
of this paper we follow a convention in which the value of v,
is greater than one because of the choice of coordinate axes
(an alternative convention would give values 1/v,).

II. THE ELASTORESISTIVITY TENSOR

A. Definition of piezoresistivity and elastoresistivity tensors

Elastoresistance is rarely discussed in the context of
strongly correlated materials, although it conveys a wealth
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FIG. 1. (Color online) Schematic diagrams illustrating measure-
ment of (a) longitudinal elastoresistance (i.e., current | €,,) and
(b) transverse elastoresistance (i.e., current L €,,) for the specific
case of €,, aligned along the [100]r tetragonal crystallographic
direction. For a tensile strain in the x direction, the strain in the
y direction is compressive and vice versa, with a ratio defined by
the effective Poisson’s ratio of the piezoelectric stack v, = —€,,/€,,.
Panel (c) illustrates measurement of the longitudinal elastoresistance
for €,, aligned along an arbitrary in-plane direction making an
angle 6 with respect to [100]r. Strain, current directions, and
crystal axis orientation are indicated in all three panels. Gold stripes
indicate current and voltage connections used for standard 4-terminal
resistance measurements. Panel (d) shows a photograph of two
representative crystals mounted on the surface of a PZT piezo stack
for simultaneous measurement of the longitudinal (left crystal) and
transverse (right crystal) elastoresistance. Scale bar indicates size of
crystals, and red axes indicate crystal orientation.

of important information relevant to understanding the nature
of both fluctuations and also broken symmetry states. In the
following paragraphs we briefly outline the tensor description
of this quantity, making clear how specific terms in the
elastoresistance tensor can be determined by a combination
of longitudinal and transverse elastoresistance measurements
made for specific crystal orientations. We start by describing
the better known case of piezoresistance.

The piezoresistance of a material relates changes in resis-
tance (R) and the stresses experienced by the material. From
the definition of resistivity (p), changes in the resistance are
given by

AR/R = Ap/p + AL/L — AA/A. (1)

The first term on the right hand side of Eq. (1) describes
changes in the resistivity of the material as a result of the
applied stress. The second two terms describe purely geometric
effects associated with changes in the length L and cross-
sectional area A. For typical metals, these geometric terms
dominate the piezoresistance. However, as we show below, for
the Fe pnictides this is not the case, and we must also consider
the effect of changes in the resistivity of the material as a
function of applied stress.

The piezoresistivity is a fourth rank tensor, relating the
applied stress and the resistivity, both second rank tensors. It
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FIG. 2. (Color online) (a) Temperature dependence of the strain
per volt applied to the piezoelectric stack, de,,/dV (blue) and
de,, /dV (green), measured using mutually orthogonal strain gauges.
(b) Temperature dependence of the effective Poisson’s ratio v, =
—e€,y /€., Of the piezoelectric stack, calculated using data shown in

(a). Blue curve is an empirical fit of v, from 80 to 300 K used for
subsequent analysis of elastoresistance data.

is, however, more convenient to use the symmetry properties
of the resistivity p and stress t tensors to express these as six
component arrays, with components

T = (fxx,Tyyafzz’fyz’fzxvfxy) (2)

and

£ = (PxxsPyys P2z, Pyz> Pexs Pxy) 3)

such that the piezoresistivity is described by a pseudosecond
rank tensor 7;

6
(Ap/p)i =Y Tty )

k=1

where | = xx,2 =yy,3=2zz,4=yz,5=2zx,6 = xy.
The stress can be expressed in terms of the elastic stiffness
C and the strain €,2°

6
w =Y Cue. ®
=1

and hence we can readily derive an equivalent relation to
Eq. (4), relating changes in the resistivity to the strains
experienced by the material:

6 6 6
Bolon = (zn,-,c,-k)ek Yme. ©
k=1

k=1 \ j=I

Equation (6) defines the elastoresistivity tensor, sometimes
also called the piezoresistive strain matrix m. The measure-
ments we describe below directly measure terms in this tensor.
For a tetragonal material, appropriate for the Fe arsenides
for temperatures above the structural transition, there are six
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independent terms in the elastoresistivity tensor:

myp mp myz 0 0 0
mp my myz 0 0 0
nij3 nij3 nmsj3 0 0 0
miy = (7
0 0 maq 0 0
0 0 0 0 Myy 0

0 0 0 0 0 Meg

B. Measurement of terms in the elastoresistivity tensor

For the longitudinal arrangement shown in Fig. 1(a), if
we neglect geometric factors, the change in resistance of the
crystal is given by

(AR/R)yy = m11€xy + M 26y, + M13€,. (8)

The strain in the y direction, €,,, is determined by the effective
Poisson’s ratio of the piezoelectric stack v, whereas the strain
in the z direction, perpendicular to the plane of the crystal, is
given by an effective Poisson’s ratio v,. Although vy can be
determined from knowledge of the elastic stiffness coefficients
and v,,*! we will soon see that it cancels out when we
consider the difference of longitudinal and transverse values.
Expressing the change of resistance in terms of just the strain
in the x direction, we then have for the longitudinal geometry
[Fig. 1(a)]

(AR/R)xx = €xx(my — Vphia — Vi 13). (9)

Similarly, the change in resistance for the transverse geometry
[Fig. 1(b)] is given by

(AR/R)” = exx(mIZ — Vpmjp — Vsml?a)- (10)

To determine other relevant terms in the elastoresistance
tensor, in particular mee, we need to apply strain in directions
that are not just along the crystallographic [100]; tetragonal
axes. If we rotate the sample around the ¢ axis by an angle 6,

the elastoresistance tensor transforms?> according to
myy = mj —Z(WLH —mi —2m66)sin2000529 (11)
myy = miy + 2(m —m12—2m66)sin29c0329. (12)

Hence, measurements of the longitudinal and transverse
elastoresistance for samples rotated by an in-plane angle 6
[illustrated in Fig. 1(c)] are given by

(AR/R)yx = €xx(myy — vpmyy — vgmyy)
= €x{mi — 2(my1 — myp — 2meg) sin® 0 cos”
—vplmin + 2(my — mip — 2mee) sin® 0 cos® 0]
—vgmyy}. 13)
Similarly, the transverse elastoresistance is given by
(AR/R)yy = €xx(myy — vpmypy — vgmyy)
= € {m +2(myy — myy — 2meg) sin® 6 cos 0
—v,lmyy — 2(my; — myy — 2meg) sin® 6 cos? 0]
—vymyy ). (14)

Itis useful at this stage to define the induced in-plane resistivity
anisotropy N, referred to a particular set of orthogonal in-plane
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axes x and y;
N = ]pxx_pyy .
E(pxx + pyy)
Since changes in the resistance have opposite signs for
longitudinal and transverse configurations, to leading order
the anisotropy is given by

N ~ [(AR/R)xx — (AR/R)yy]. (16)

Hence, for arbitrary angle 6, the induced anisotropy is given by
N = exx(l + Vp)(ml’l’ - ml’Z’)
= Exx(l + ‘)p)[(mll - m12)

—4(myy — myy — 2meg) sin® O cos> 0], (17)
As anticipated, terms involving vym 3 cancel. For the two high
symmetry cases 6 = 0 and 7 /4 (corresponding to €, aligned
along the tetragonal [100] and [110] directions, respectively),
we obtain

as)

N = 0) = € (1 +vp)(mi1 —my2) (18)
N@O =7/4) = € (1 4+ v),)2meg. (19)

Hence, measurement of the induced resistance anisotropy,
and in particular of the slope dN/de,,, combined with the
measured effective Poisson’s ratio of the piezoelectric stack,
directly yields a measure of the coefficients (m; — m ;) and
2meg in the elastoresistivity tensor of the crystal sample.??

C. The elastoresistance of simple metals and semiconductors

Microscopically, the resistivity of a metal is determined by
a combination of Fermi surface parameters and the scattering
rate. For the case of a single band, free electron model, the
resistivity is given by the familiar expression p = m*/ne’.
In this case, the induced anisotropy due to the strain effects
described above is given by

=), (), = e
P/ xx P Jyy m* T

where my, and mj, (and 7, and t,) differ only because of
the anisotropic biaxial strain. Hence, the measured elastore-
sistance and the derived slope d N /d¢,, reflect induced aniso-
tropy in both the effective mass m* and the relaxation time t
IN 1 dmy, —m3)  13(t, — 1) )1
de  m* de T de @h
For the case of a simple free-electron-like metal, anisotropy in
m* and 7 arise from strain-induced anisotropy in the bandwidth
and phonon-spectrum, respectively. Neither of these effects is
large, and neither has a strong temperature dependence. For a
multiband material, the situation is more complex, since the
conductivity is determined from the sum of all of the pockets,
each described by its own parameters. Even so, we can loosely
think of the elastoresistivity as arising from some combination
of strain-induced changes in the Fermi surface parameters,
parameterized by an effective mass, and in the scattering,
parameterized by some effective relaxation time. Measurement
of the dc elastoresistivity coefficients cannot distinguish
these effects, but equivalent measurements of the optical
conductivity under applied strain are able to differentiate
between anisotropy in scattering and spectral weight, as has
recently been demonstrated for Ba(Fe;_,Co,),As,.>*
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If we also include the geometric factor described by Eq. (1),
then the total change in the resistance as a function of strain
yields the so-called gauge factor, GF, of a material. (The name
derives from the use of such materials as strain gauges: the
gauge factor relates the change in resistance to the strain for
a given configuration.) For the longitudinal configuration, this
yields

_ (AR/R)y, _ (Ap/P)xx

EXX GXX

GF + (1 +2v). (22)
For ordinary metals, like copper, the first term on the right hand
side is negligible as described above, and the gauge factor is
almost solely determined by the geometric effect, yielding
temperature-independent values with a magnitude close to 2
since the Poisson’s ratio v for most metals is about 0.5. For
the Fe pnictides, the opposite is true, and the first term on the
right hand side dominates for specific crystal orientations. This
effect is intimately connected with the electronically-driven
structural phase transition, as described in greater detail below.

By way of comparison, for semiconductors, the gauge factor
is typically dominated by the change of resistivity [the first
term on the right side of Eq. (22)] and consequently can be
much larger than values obtained for typical simple metals. For
example, the elastoresistivity coefficients for n-Si and p-Si,
cubic semiconductors used in the most sensitive commercially
available solid-state strain gauges, are respectively m;; =
—100.7,1’)112 = 58.0,17144 =—10.8 andm11 = 9.5,m12 = 1.7,
and my4 = 109.9 at room temperature,! comparable to the
maximum values observed for Ba(Fe,_,Co,);As, in this
study. However, the physical mechanism that results in the
large elastoresistance of semiconductors is very different,
being associated with strain-induced changes in the band gap
that strongly affect the majority carrier density. Consequently,
the elastoresistance of semiconductors follows a characteristic
1/T temperature dependence.'->

III. EXPERIMENTAL METHODS

Single crystals of Ba(Fe,_,Co,),As; with x = 0.025 were
grown from a self-flux method as described elsewhere.?*?’
The composition was determined by electron microprobe
analysis with an uncertainty of 0.0015. Crystals were cut
into rectilinear bars with long sides having angles 6 = 0°,
22.5°, and 45° with respect to [100]r (i.e., the [100]
direction referenced to the tetragonal crystal lattice), with
an uncertainty less than 5°. Electrical contact was made to
sputtered gold pads using Dupont 4929N silver paste, and
the temperature dependence of the resistance measured by
a standard four-point technique. These samples were then
glued to the top surface of a PZT piezoelectric stack (Part
No. : PSt150/5x5/7 cryo 1, from Piezomechanik GmbH) using
five minute epoxy (from ITW Devcon) spread uniformly
across the bottom and sides of each crystal. Care must be
taken to minimize unintentional strain caused by the gluing,
and can be best monitored by comparing the temperature
dependence of the resistance before (Rp)and after [R(V = 0)]
mounting on the piezoelectric. Two samples were mounted
close together on the surface of the piezoelectric stack, as
illustrated in Fig. 1(d), enabling simultaneous measurement
of the longitudinal and transverse elastoresistance for a given
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crystallographic orientation. The strain €,, was measured
by a strain gauge glued on the other side of the piezoelectric
stack. Elastoresistance measurements were made at fixed tem-
perature by sweeping the voltage applied to the piezoelectric
stack, typically between —50 V and 4150 V at a sweep rate of
8 V/s while simultaneously measuring the sample resistance
and strain. Three complete hysteresis sweeps were made for
each temperature, before the temperature was changed and
allowed to stabilize ready for the next measurement.

IV. RESULTS

Representative longitudinal and transverse elastoresistance
data [(AR/R)., and (AR/R),,, respectively] as a function
of strain €,, are shown in Fig. 3 for a temperature of
130 K. In terms of the experimentally measured quanti-
ties, AR/R = (R(V)— R(V =0))/Ry and €,, = €, (V) —
€xx(V = 0), where R(V) and ¢,, are the resistance and strain
measured at a given voltage V applied to the piezo stack,
and Ry is the free-standing sample resistance. Equivalence to
Egs. (13) and (14) follows from the linearity of AR /R with €,
(appropriate for small strains.) Data are shown for three distinct
crystal orientations, corresponding to 6 = 0°, 22.5°, 45°,
where 0 is the angle between the [100]7 crystal axis and the x
axis (defined by the PZT piezo stack orientation, see Fig. 1).
Similar data were obtained at 2 K increments between 80 and
280 K. The measured elastoresistances vary linearly with the
applied strain,?® and are largest for & = 45°. For each angle,
the longitudinal and transverse elastoresistances are opposite
in sign, but are not exactly equal in magnitude, as can be antici-
pated by inspection of Eqgs. (9) and (10). This effect arises from
a combination of the effective Poisson’s ratio of the PZT piezo
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FIG. 3. (Color online) Representative data showing the change
in resistance as a function of strain €,, for longitudinal (red)
and transverse (green) configurations for (a) 8 = 0 (i.e., €,, along
[100]7), (b) & = 22.5°, and (c) 6 = 45° (i.e., €,, along [110]7). All
measurements are at a temperature 7 = 130 K.

085113-4



MEASUREMENT OF THE ELASTORESISTIVITY ...

20 T T T T T T

Yy

—_ —
(=] W
1 !

W
!

XX

(AR/R) -(AR/R) _(x10%)

(=]
!

25 20 -15 -0 -05 00 05
g, (x10%

FIG. 4. (Color online) Representative data showing the induced
anisotropy N = (AR/R)., — (AR/R),, as a function of the strain
€,» [see Egs. (16) and (17)] at T = 130 K, for 6 = 0° (blue), 22.5°
(green), and 45° (red). Black lines show linear fits for each angle.

stack v, and also the effective Poisson’s ratio of the sample vy,
this latter quantity affecting strain in the z direction. The sign
of the elastoresistance for & = 45° is in accord with previous
measurements of single crystals of Ba(Fe;_,Co,),As, held
in a mechanical clamp, for which the longitudinal resistance
increases under compressive stress (negative strain), while
the transverse resistance decreases.’’® Consequently the
slope d(AR/R),./dexy is negative while d(AR/R),,/dée
is positive.

For each temperature, the induced anisotropy N =
(AR/R)xx — (AR/R),, can be determined from the elastore-
sistance data; representative data based on the measurements
shown in Fig. 3 for T = 130 K are shown in Fig. 4 as a function
of the strain €,, for each angle, 6 = 0°, 22.5°, and 45°. The
data are linear with strain, with intercept at zero anisotropy
for zero applied strain. For all three angles the slope d N /de,,
is negative, as anticipated from Fig. 3, indicating an increase
(decrease) in the longitudinal (transverse) elastoresistance as a
function of strain €,,. The largest slope is obtained for 6 = 45°
(red data points in Fig. 4).

The anisotropy in d N /de, can be more clearly represented
on a polar plot, shown in Fig. 5, for which we have used
the tetragonal crystal symmetry to generate equivalent data
points. Data for & = 0° and 45° were used to extract values for
(m1; —myy) and 2mgg, respectively, following Egs. (18) and
(19), and using measured values for v, shown in Fig. 2(b).
Following Eq. (17), these values can be used to calculate
dN/de,, for any angle 6, shown by the solid blue line in
Fig. 5. As can be seen, the theoretical curve based on these
values goes through the additional data point for 6 = 22.5°.
One could imagine making similar measurements for a more
densely spaced range of angles, and using all of the data
points to fit to Eq. (17) and hence obtain an even more precise
estimate of (m;; —myy) and 2mes, though for the small
crystals used in this study that would be challenging. Even
so, the data at the intermediate angle of 6 = 22.5° nicely
confirm the anticipated angle dependence based on the tensor
transformation described in the previous section.

The procedure used to determined (m; — m2) and 2mgg
was repeated in 2 K increments from 280 K down to 80 K
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90

-dN/dg,,

270

FIG. 5. (Color online) Representative data showing the angle
dependence of the induced anisotropy dN/de,, at T = 130 K.
Solid points show data for 6 = 0°, 22.5°, and 45°, with additional
equivalent data points generated by symmetry. Solid blue line shows
calculated anisotropy based on Eq. (17) and measured (m, — m2)
and 2mgg values.

(just below Ty). The T dependence of these elastoresistivity
coefficients is shown in Fig. 6. Vertical lines in the fig-
ure indicate Ty = 92.5 K and T, = 97.5 K, determined
from resistivity measurements of the unstrained crystals
before mounting on the piezoelectric stack (see for example
Ref. 27). The coefficient 2mgq increases as the temperature
decreases, exhibiting a weak change in slope at 7. In contrast
(my; —myp) is smaller in magnitude, has a much weaker
temperature dependence, and exhibits a sharper feature close to
T, and Ty which is presumably related to critical fluctuations.

V. DISCUSSION

A. Comparison to simple metals

Several features of the data shown in Figs. 3—6 are unusual
from the perspective of a simple metal. First, the magnitude of
the elastoresistance is much larger than anticipated for a simple
metal. For the specific cobalt concentration that we focus on in
this paper, the mgg coefficient reaches a maximum value of 24
(2mgs = 48) for T = 98 K. The gauge factor for other doping
levels rises to a maximum of 300 for x = 0.0051 ~ 0.007.'% As
described in Sec. II, for simple metals, one anticipates values
of the gauge factor close to 2 since geometric effects dominate
the elastoresistance. With the exception of the semimetals Sb
and Bi, and ferromagnetic materials like Ni, this is indeed
found to be the case.?’

Second, the temperature dependence of the elastoresistivity
coefficient mgg is found to diverge towards lower temperatures.
Following our initial analysis in Ref. 18, the data can be very
well fit by a Curie-Weiss temperature dependence:

2mee = +2mY. (23)

ao(T — T*)
The fit, shown by a solid line in Fig. 6, yields fit param-
eters AJap = —1238 £46 K, T* =74 £ 1 K, and 2ml =
3.6 £0.3. Using the mY, value estimated from this fit, it
is possible to plot the inverse elastoresistivity coefficient
—[2(mgg —mgé)]_1 as a function of temperature (Fig. 7),
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FIG. 6. (Color online) Temperature dependence of the elas-
toresistivity coefficients (m;; —miy) and 2mes, determined from
the induced anisotropy dN /de,, for 6 = 0° and 45° respectively.
Black line shows fit to Curie-Weiss model for the mgq coefficient;
2mes = A/lao(T — T*)] + 2mY. Vertical dashed lines mark 7, and
Ty of the sample.

yielding a clear linear behavior up to at least 250 K. While
the strain-induced anisotropy for a simple metal will not
necessarily be temperature independent, there is no physical
reason to anticipate a Curie-Weiss temperature dependence.

Finally, the elastoresistivity exhibits a large anisotropy,
not just in magnitude, but also in terms of the temperature
dependence, neither of which effect is anticipated for a material
described by a simple nearly-free-electron picture. In the
following section, we describe how all of these observations
can be understood in terms of electronic nematic order.

B. Relation to the structural phase transition

A natural order parameter for the ferroelastic structural
phase transition is the spontaneous lattice strain that develops
at T;. The orthorhombic lattice parameters are rotated by
45° with respect to the tetragonal unit cell, so referenced to
the high-temperature tetragonal lattice the order parameter

18—
16
144
124

)™ (x10°%)

0
66

6

—[2(m6 -m
i“

104

80 100 120 140 160 180 200 220 240 260 280
T (K)

FIG. 7. (Color online) Temperature dependence of [2(mgs —
m2)]~!, proportional to the inverse nematic susceptibility xy !, for
6 = 45°. Black line shows linear fit (Curie-Weiss model) to the data
between 100 and 250 K. Vertical dashed lines mark 7; and Ty of the
sample.
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would be €5 (€5 = Yap,”" where a,b refer to the in-plane

crystal axes). Softening of the associated elastic stiffness
modulus cge in the tetragonal state has been observed via
resonant ultrasound measurements.'>* For a true-proper
ferroelastic phase transition, the lattice strain is the primary
order parameter, and the phase transition is driven by the
elastic part of the free energy.’® Hence, a Landau treatment of
a true proper ferroelastic transition begins with a free energy
expansion given by

FeFot S+ et —ne, (24)
2 4

where h represents an externally applied stress, the elastic
modulus ¢ is assumed to have a temperature dependence
¢ = co(T — T.), and we have dropped the tensor description
for simplicity. Under conditions of zero stress, the material
develops a spontaneous strain at 7 = T,. Within such a
picture, all other physical quantities, including the resistivity,
develop an in-plane anisotropy at 7, as a consequence of
the orthorhombicity. Since all of these physical quantities
share the same symmetry as the spontaneous strain, for small
strains they are linearly proportional. Application of external
stress in the same direction as the spontaneous strain (i.e.,
6 = 45°) yields a finite strain for all temperatures, and the
phase transition is smeared out. The associated strain-induced
anisotropy in the resistivity in the tetragonal state is small,
and hence linearly proportional to the strain €. With reference
to Eq. (19), the proportionality constant is given by the
elastoresistivity coefficient (1 + v,)2meg, the quantity that we
have measured. Within the picture of a true-proper ferroelastic
transition, meg 1S not necessarily temperature independent.
For example, critical fluctuations very close to the structural
transition could lead to anisotropic scattering, though this
effect is anticipated to be small given that the orthorhombic
distortion is a ¢ = 0 phenomenon (i.e., does not lead to
large momentum transfer). However, the observation of a
divergent elastoresistivity coefficient mgg that follows Curie-
Weiss-like temperature dependence over a wide temperature
range is completely inconsistent with a scenario in which
the structural transition is driven by a true-proper ferroelastic
transition. Rather, these data suggest either an improper or
pseudoproper ferroelastic transition, implying that the primary
order parameter is not the elastic strain.

For an improper ferroelastic transition, the primary order
parameter has a different symmetry to the spontaneous strain.
There is no reason based on any physical measurements to
expect that this is the case for Ba(Fe;_,Co,),As;. Rather, it is
much more natural to assume that the primary order parameter
shares the same symmetry as the spontaneous strain, which is
indeed consistent with results of transport,?>=¢ and ARPES*’
measurements of detwinned crystals, and neutron scattering
measurements*' ™3 of twinned crystals. Lacking knowledge
of the specific physical mechanism that is responsible for the
electronic order that drives the lattice distortion, we need to
choose suitably precise terminology that at least describes the
broken symmetry, and therefore label this as an electronic
nematic phase, following Ref. 44. The only semantic caveats
are: first, that in contrast to liquid crystal nematic phases,
this electronic nematic phase breaks a discrete (rather than
continuous) symmetry, and second, that use of the word

085113-6



MEASUREMENT OF THE ELASTORESISTIVITY ...

nematic does not necessarily imply the orientational order of
local objects.

Proceeding as described above, we define an electronic
nematic order parameter . We do not directly measure this
quantity, but assume that the resistivity anisotropy N [Eq. (15)]
is a sensitive measure of it, and is linearly proportional for
small enough values (appropriate in the tetragonal state for
strained samples). As described in our previous paper,'® the
associated free energy expansion is given by

a , b , ¢, d,
F_F0+21/f +41// +26 +4€ Afe —he.  (25)
Since € and i have the same symmetry, they are coupled in a
bilinear fashion.

Furthermore, since strain acts as a field on the nematic order
parameter via the coupling X, the measured proportionality
constant relating the resistivity anisotropy N and the strain
€6 (i.e., the quantity 2mg*®) is proportional to the nematic
susceptibility:

XN = 0y /0€ X AN /Iyap = 2mes. (26)

The temperature dependence of the elastoresistivity coefficient
mee can then be readily understood in terms of the pseudo-
proper ferroelastic phase transition. In particular, minimization
of the free energy [Eq. (25)] with respect to both € and i for
a strained sample yields

A

=" @7)
a

Hence, the observation of an elastoresistivity coefficient mgg
that follows the mean-field Curie-Weiss form directly implies
that the coefficient of the electronic nematic order parameter
vanishes following a = ao(T — T*), as anticipated if ¢ is the
primary order parameter. The value 7% = 74 & 1 K, which
is directly found from fitting the temperature dependence of
the mgg coefficient (Fig. 6), would be the mean-field critical
temperature for the nematic phase transition if there were
no coupling to the crystal lattice. However, as we previously
described in Ref. 18, the coupling A both ensures that there
is a concurrent structural phase transition and also raises the
critical temperature to a value
)\’2
T, =T+ —. (28)
apc
This is also consistent with the observation that T* < T (T, =
97.5 K for the specific cobalt concentration used in this study).
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As a final comment we note that there is no evidence
for any additional phase transition for temperature above Ty,
up to our maximum measured temperature of ~300 K in
contrast to recent claims.*® However, the large magnitude of
the elastoresistivity coefficients imply an extreme sensitivity
to in-plane stress, and consequently care must be taken when
interpreting results of experiments probing in-plane anisotropy
for temperature above T since residual strain can easily cause
unintentional twofold anisotropy.

V1. CONCLUSION

In writing this paper we have had two broad goals in
mind. Our first goal has been to describe the elastoresistivity
tensor, which relates changes in the resistance of a material
to strain, and explain in some detail a new technique that we
have developed to measure specific terms in this tensor. This
is a physical quantity that has been largely neglected in the
study of strongly correlated materials, but which can provide
important insight to the nature of broken symmetry states and
also fluctuations. The measurement technique is quite general,
though our description and analysis has been specific to the
case of a material with tetragonal symmetry.

Our second goal has been to describe the angle and
temperature dependence of the elastoresistance of the proto-
typical electron-doped iron arsenide Ba(Feg 975C00.025)2AS:.
Building on our earlier experiments,'® we have shown via a
combination of longitudinal and transverse measurements that
the mgq elastoresistivity coefficient of this material follows
a Curie-Weiss temperature dependence. This observation
provides direct evidence that the elastic strain is not the
primary order parameter, and hence that the tetragonal-to-
orthorhombic structural phase transition should be classified as
being a pseudoproper ferroelastic phase transition driven by an
electronic nematic instability. The divergent elastoresistivity
coefficient can be related to the nematic susceptibility of the
material, and hence bears witness to the presence of electronic
nematic fluctuations in the normal state.
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